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Preface

Science and technology are very closely related subjects. Science (more specifically physics) can be thought 

of as the mother of engineering and technology. The progress of engineering and technology will stop fully 

without the help of science, in general, and that of physics, in particular. So, the progress of engineering and 

technology is directly related to that of science, and the progress of science depends on research in science 

as well as new inventions in the field. Engineering and technology are the applied aspects of science. Science 

provides concepts, theories as well as formulae to engineering and technology and thus aids in their progress. 

Any technological development depends on the scientific understanding of the working of nature. Though 

physical science and technology are very closely interlinked, some modern technologies like biotechnology, 

medical technology, food technology, etc., are also very much dependent on biological science. It is thus 

clear that the students of engineering and technology must have appropriate knowledge of advanced topics 

of science, in general, and physics in particular, to face the challenges of the future world as engineers and 

technologists.

Aim

The West Bengal University of Technology recently reorganized the physics syllabus of first-year BTech by 

selecting those topics which are commonly studied by students of all streams of engineering and technology. 

The university has introduced some specific advanced topics of physics in the syllabus of second-year BTech 

selectively for a few streams only where more knowledge of physics is essential. The first-year syllabus of 

physics consists of topics like waves and acoustics, classical optics (i.e., interference, diffraction and polar-

ization), modern optics (i.e., laser and fiber optics), foundation of quantum theory, x-ray, and crystallography. 

So, we have put all the aforesaid topics of physics in the present book Basic Engineering Physics.

 Though many books covering the said topics are available in the market, none of them cover entirely the 

new syllabus and a major part of them discuss topics either insufficiently or in an exaggarated manner. For 

this reason, these books are not completely suitable for BTech first-year students of WBUT to understand 

their physics course. Keeping these points in mind, we decided to present this textbook to the first-year BTech 

students of WBUT for comprehensive yet lucid study.

 This book has been written on the basis of the class lecture notes we have prepared and used to teach this 

subject during the last nine and half years. The text has been written in the most coherent and exhaustive 

manner so that students can grasp the subject with minimum labor as well as time. Much effort has been 

given to clarify the fundamental concepts of the subject in an easy way. Apart from appropriate examples and 

illustrations, we have enriched the book with a large number of solved problems at the end of each chapter so 

that students can develop a thorough understanding of the topics.
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Salient Features

 • Coverage and chapter organization as per the latest WBUT syllabus

 • Excellent coverage of forced vibrations, interference of light, quantum physics, and crystallography

 • Exhaustive and varied pedagogical features to provide practice for solving all types of questions for 

WBUT examination

 • Useful lists of Greek alphabets, derived units, prefixes as multiplying factors, and physical constants 

for easy reference

 • 10 lab experiments with detailed step-wise procedures, clear illustrations and aids to viva voce 

 • Model Question Papers based on WBUT pattern for self-practice

 • Latest Solved WBUT Question Papers

 • Pedagogy:

  140 Illustrations

  120 Worked-out Examples

  340 Multiple Choice Questions

  145 Short Questions with Answers

  280 Long Questions with Answers

  140 Numerical Problems

Chapter Organization

This book comprises 10 chapters. The chapters have been judiciously arranged in such a way that the stu-

dents can develop the concepts of the subject step by step without skipping any required topic. Chapter 1 of 

the book gives an idea of simple harmonic motion. Chapter 2 discusses free and damped vibration. Forced 

vibration has been presented in Chapter 3. As (classical) optics is a broad topic, it has been divided into 

three chapters. Interference of light is covered in Chapter 4. Diffraction of light is discussed in Chapter 5. 

Polarization of light is dealt with in Chapter 6. Laser optics is discussed in Chapter 7. Holography is dis-

cussed in Chapter 8. The foundation of quantum theory is discussed in Chapter 9 on quantum physics. 

X–ray and crystallography are explained in Chapter 10. Besides these, angular concept, coherence of light, 

and relativistic concept are presented respectively in Appendices A, B and C. A set of 10 experiments of 

physics practicals with detailed step-wise procedures, clear illustrations, and aids to viva voce is presented 

in Appendix D.

 Review Exercises given at the end of each chapter are divided into three parts. Part 1 contains multiple 

choice questions and short questions followed by their answers. Part 2 consists of descriptive questions and 

Part 3 consists of unsolved  numerical problems. For solving such problems, students will have to apply 

critically the text which they have already learnt. This exercise will help them develop an analytical view of 

the topics. This book also has five model question papers which have been set as per the pattern of WBUT 

question papers. Further, the questions from WBUT exam papers of years 2008, 2009, 2010, 2011 and  2012 

have been solved year-wise and provided toward the end of this book.

 We were very much surprised to observe that in this country, the study of science fails to have an impact 

in the development of scientific mindedness among most of the science as well as engineering and technol-

ogy students. It may be due to the faulty method of teaching science in India. We feel that practical use of the 

knowledge of science in one’s daily life will help remove superstitions. Having kept this view in mind, the use 
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of scientific theories learnt in various chapters of this book has been discussed at the end of each chapter. We 

hope that it will help develop a scientific attitude among the students.
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Roadmap to the Syllabus
This text will be useful for subject codes:

PH101 and  PH201 – Physics-I

Module 1: Oscillation

 1.1 Simple harmonic motion, Preliminary concepts, Superposition of SHMs in two mutually perpendicular 

direction, Lissajous figure

 1.2 Damped vibration, Differential equation and its solution, Critical damping, Logarithmic decrement, 

Quality factor

 1.3 Forced vibration, Differential equation and its solution, Amplitude resonance, Velocity resonance, 

Sharpness of resonance, Application LCR Circuit

  GO TO:

  CHAPTER 1. Simple Harmonic Motion

  CHAPTER 2. Free and Damped Vibrations

  CHAPTER 3. Forced Vibrations

Module 2: Optics 1

 2.1 Interference of electromagnetic waves, Conditions for sustained interference, Double-slit as an example, 

Qualitative idea of spatial and temporal coherence, Conservation of energy and intensity distribution, 

Newton’s ring (no deduction necessary)

 2.2 Diffraction of light – Fresnel and Fraunhofer class, Fraunhofer diffraction for single-slit and double- 

slits. Intensity distribution of N-slits and plane transmission grating (no deduction of the intensity dis-

tributions is necessary), Missing orders, Rayleigh criterion, Resolving power of grating and microscope 

(definition and formulae)

  GO TO

  Chapter 4. Interference of Light

  Chapter 5. Diffraction of Light
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Module 3: Optics 2 

 3.1 Polarization — General concept of polarization, Plane of vibration and plane of polarization, Qualitative 

discussion on plane, Circulary and elliptically polarized light, Polarization through reflection and 

Brewster’s law, Double refraction (birefringence), Ordinary and extraordinary rays, Nicol’s prism, 

Polaroid. Half-wave plate and quarter-wave plate

 3.2 Lasar — Spontaneous and stimulated emission of radiation, Population inversion, Einstein’s A and B 

coefficients (derivation of the mutual relation), Optical resonator and condition necessary for active laser 

action, Ruby laser, He–Ne laser — Application of laser

 3.3 Holography — Theory of holography, Viewing the hologram, Applications

  GO TO

  Chapter 6. Polarization of Light

  Chapter 7. Laser Optics

  Chapter 8. Holography

Module 4: Quantum Physics

 4.1 Concept of dependence of mass with velocity, Mass energy equivalence, Energy momentum relation (no 

deduction required). Black-body radiation— Rayleigh Jeans’ law (Derivation without the calculation of 

number of states)’ Wien’s law, Ultraviolet catastrophy, Planck’s radiation law (Calculation of the aver-

age energy of the oscillator), Derivation of Wien’s displacement law and Stephan’s law from Planck’s 

radiation law. Raylegh Jean’s law and Wien’s law as limiting cases of Planck’s law, Compton effect 

(Calculation of Compton wavelength is required)

 4.2 Wave-particle duality and de Broglie’s hypothesis, Concept of matter waves, Davisson-Germer 

experiment, Concept of wave packets and Heisenberg’s uncertainty principle

  GO TO

  Chapter 9. Quantum Physics

Module 5: Crystallography

 5.1 Elementary ideas of crystal structure — Lattice, basis, unit cell, Fundamental types of lattices – Bravais 

lattice, Simple cubic, f.c.c. and b.c.c. lattices (Use of models in the class during teaching is desirable) 

Miller indices and miller planes, Coordination number and Atomic packing factor

 5.2 X-rays — Origin of characteristic and continuous X-ray, Bragg’s law (No derivation), Determination of 

lattice constant

  GO TO

  Chapter 10. Crystallography



The Greek Alphabet 
 Small Capital Name Roman equivalent

 a A alpha a 

 b B beta b

 g G gamma g

 d D delta d

 e E epsilon e 

 V Z zeta z

 h H eta e

 q Q theta th

 i I iota i

 k K kappa k

 l L lambda l

 m M mu m

 n N nu n

 x X xi x

 o O omicron o

 p P pi p

 r r rho r 

 s S sigma s

 t T tau t

 u g upsilon u 

 j F phi ph

 c c chi kh 

 y Y psi ps 

 w W omega o

Some Useful Derived Units 

 Physical Quantity Derived unit Symbol 

 Area square meter m2

 Volume cubic meter or litre m3 or 1

 Force newton N

 Pressure and Stress pascal Pa (or N/m2)

 Work, Energy, Heat joule J 

 Power watt W

 Moment of inertia kgm2 I 

 Torque Nm T 

 Specifi c heat capacity J/(kg k) c

 Thermal conductivity W/(mk) k

 Luminance lux lx



 Luminous fl ux lumen lm

 Electric charge coulomb C

 Electric potential volt V

 Electric resistance ohm W

 Frequency hertz Hz

Prefixes as Multiplying Factors 
 Prefi x Symbol (Multiplying) factor value 

 atto – a 10–18

 femto – f 10–15

 pico – p 10–12

 nano – n 10–9

 micro – m 10–6

 milli – m 10–3 

 centi – c 10–2

 deci – d 10–1

 deca – da 101

 hecto – h 102

 kilo – k 103 

 mega – M 106

 giga – G 109

 tera – T 1012

 peta – P 1015

 exa – E 1018

Examples: 1 fm = 1 × 10–15 m,

 1 mg = 1 × 10–3 g,

 1 M watt = 1 × 106 watt etc.



CHAPTER

1
Simple Harmonic Motion

 1.1 INTRODUCTION

The simple harmonic motion is a special case of the generalized periodic motion. In our daily life, we come 

across numerous things. We can classify them into two categories: The bodies which remain at rest with 

respect to us and the bodies which move with respect to us. The motions of all moving bodies can be catego-

rized into two categories, namely, (i) the motion in which the body moves about a mean position (i.e., fixed 

point), and (ii) the motion in which the body moves from one place to another with respect to time. The first 

category of motion is called periodic motion while the second one is called translatory motion. 

 A moving bus, a flying aeroplane, a moving football, etc., are examples of translational motion while the 

motion of a simple pendulum, a spring-mass system, vibrations of a stretched string, etc., are examples of 

periodic motion. 

 Sometimes both the categories of motion can be observed in the same phenomenon depending on the 

observer’s point of view. The waves in the sea appear to us to move towards the beach but the water moves 

up and down about a mean position. When someone displaces a stretched string, the displacement pulse trav-

els from one end to the other end of the string but the material of the string vibrates about a mean position 

without getting itself translated forward. The periodic motion in which the concerned body moves in a 

straight line is known as simple harmonic motion.

 1.2 RELATION OF SIMPLE HARMONIC MOTION WITH CIRCULAR 
MOTION 

Simple harmonic motion (i.e., oscillation) is a special case of circular motion. To understand this relationship, 

let us discuss this with the help of a diagram. Figure 1.1 shows that PAB is a circle with its centre at C. Let 

us assume that P is a moving point on the circumference of the circle PAB. At time t = 0, it was at the point 

O and it has taken t units of time to reach the position P. So, the angle made by it with the line CO is q = w t 

where w  is the uniform angular velocity of the particle. Let us drop a perpendicular PM from the point P to 

the diameter YY¢ of the circle. So, the point M also will be a moving point. While P will make an angle of 2p 

radian (q = 360°), the point M will make a complete oscillation. That is, when P will start moving from O 

towards the point P, M will start moving from C towards the point M. M will make a complete oscillation by 

moving from C to Y, then from Y to Y¢ and lastly from Y¢ to C during the time when P will make one complete 
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revolution on the circumference of the said circle by making an angular displacement of q = 2p. If one plots a 

graph of y against t, then one will get the graph OP¢DEF. The circle along which the point P moves is called 

the reference circle. From Fig. 1.1 we can write,

    
MC

 ____ 
CP

   =   
y
 __ a   = sin q

or,  y = a sin q ...(1.1)

 Equation (1.1) represents the oscillation (i.e., vibration) of the moving particle M on the straight path YCY¢ 
while the other moving particle P circulates on the circumference of the circle OPABRO.

 Now if we consider M as our simple harmonic oscillator, we can consider P as the reference point which 

circulates uniformly on the reference circle with an angular velocity w . If P remains at R instead of O, at t 

= 0, then the reference point P will start moving from the point R instead of the point O. In that case we can 

represent the motion of M by the following equation

  y = a sin (q – d) ...(1.2) 

 So Eq. (1.2) represents the generalized equation of a simple harmonic oscillator. If now, we put q = w t, 

then we can write Eq. (1.2) as

  y = a sin (w t – d) ...(1.3)

 CM (= y) is called the displacement of the oscillator M, i.e., the vibrating particle. The displacement of 

a vibrating particle at any instant of time can be defined as its distance from the mean position of rest. In 

this case, C is the position of rest of the oscillating particle M. The maximum displacement of a vibrating 

particle is called its amplitude of vibration.

 The instantaneous displacement y is given by,

  y = a sin (q – d)

or,  y = a sin (w t – d) ...(1.3)

where d is the initial phase of the oscillator and a is the amplitude 

\  ymax = a

 The rate of change of displacement is called the velocity of the vibrating (i.e., oscillating) particle.

\ velocity, v =   
dy

 ___ 
dt

   = a w  cos (w t – d) ...(1.4)

 The rate of change of velocity of an oscillating particle is called acceleration.

Fig. 1.1 Graph of simple harmonic oscillation along with its reference circle.
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\ the acceleration  is given by 

  f =   
d
 __ 

dt
   (v) =   

d2

 ___ 
dt2

   (y)

   = – aw2 sin (w t – d)

or,  f = – aw2 sin (w t – d) ...(1.5)

where f represents the acceleration of the oscillating particle.

 Now using Eq. (1.3) we can write the Eq. (1.5) as follows:

  f = – w2 y ...(1.6)

 At the extreme positions, where y is maximum, the velocity v =   
dy

 ___ 
dt

   = 0 and the acceleration f =   
d2y

 ___ 
dt2

   is maxi-

mum and it is directed towards the mean position. The returning force induces a negative velocity at the point 

of return. When the displacement y becomes zero, the velocity v becomes maximum and when the velocity v 

becomes zero, the acceleration becomes maximum in magnitude. The returning force again induces a veloc-

ity in the opposite direction. It becomes maximum when the displacement again becomes zero. The particle 

overshots the mean position due to its velocity. The process repeats itself periodically. Thus, the system 

vibrates. And in this way, displacement y, velocity v and acceleration f continuously keep on changing with 

respect to time.

 Thus, the velocity of the vibrating particle becomes maximum (either in the direction of CY or that of 

CY¢) at the mean position of rest and it becomes zero at the extreme positions of vibration. The acceleration 

of the particle becomes zero at the mean position of rest and it becomes maximum at the extreme positions 

of vibration. And the acceleration is always directed towards the mean position of rest and it is also directly 

proportional to the displacement of the vibrating particle. So, we can define simple harmonic motion as 

follows: It is such a motion where the acceleration is always directed towards a fixed point (i.e., mean 

position of rest) and is proportional to the displacement of the oscillating particle. 

 Again, acceleration f is given by 

  f =   
d2y

 ___ 
dt2

   = – w2y

\  acceleration = – (angular velocity)2 × displacement

or,  angular velocity2 =   
acceleration

 ___________  
displacement

   (considering the magnitude only)

or,  angular velocity =  ÷ 
___________

    
acceleration 

 ___________  
displacement

    

 It implies that, 

  angular velocity =  ÷ 
___________

    
acceleration 

 ___________  
displacement

    

 Symbolically, we can write,

  w = 2pn =  ÷ 
__

   
f
 __ y     where n is the frequency of oscillation.

or,    
2p

 ___ 
T

   =  ÷ 
__

   
f
 __ y    , where T is the time period of vibration

or,  T = 2p  ÷ 
__

   
y
 __ 

f
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or,  T = 2p  ÷ 
__

 g

  where g is the displacement per unit acceleration.

 1.3 DIFFERENTIAL EQUATION OF SIMPLE HARMONIC MOTION

Let us consider an oscillating particle which is executing simple harmonic motion. The general equation of 

its displacement is given by

  y = a sin (w t + d) ...(1.3)

where y is the displacement and a is the amplitude and d is the phase (or epoch) of the oscillating particle. 

Now, differentiating Eq. (1.3) with respect to time t, we get

    
dy

 ___ 
dt

   = aw  cos (w t + d)

 Here   
dy

 ___ 
dt

   (= v) represents the velocity of the particle. 

 Again, differentiating   
dy

 ___ 
dt

   with respect to time t, we get 

    
d2y

 ___ 
dt2

   = – aw2 sin (w t + d)

 But, we know that y = a sin (w t + d)

\    
d2y

 ___ 
dt2

   = – w2y

or,    
d2y

 ___ 
dt2

   + w2y = 0 ...(1.7)

 The second derivative   
d2y

 ___ 
dt2

   represents the acceleration of the oscillating particle. Equation (1.7) represents 

the differential equation of simple harmonic motion.

 In any phenomenon, where an equation similar to Eq. (1.7) is obtained, the related body executes simple 

harmonic motion (SHM). The general solution of Eq. (1.7) is given by 

  y = a sin (w t + d) 

 One can also calculate the time period of oscillation of Eq. (1.7), 

 Numerically, w  =  ÷ 
______

   
d2y/dt2

 ______ y    

or,  w  =  ÷ 
___________

    
acceleration 

 ___________  
displacement

    

\  T =   
2p

 ___ 
w

   = 2p  ÷ 
___________

    
displacement

  ___________ 
acceleration

    

 1.4 VARIOUS CHARACTERISTICS OF SHM

When one particle executes simple harmonic motion, one can observe the following characteristics in its 

motion:
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 (a) The motion is periodic as well as oscillatory.

 (b) The restoring force acting on the particle (and hence the acceleration) is directly proportional to the 

displacement of the particle and directs oppositely to the displacement measured from the mean 

position.

 (c) The acceleration of the oscillating particle is always directed towards the mean position of its path.

 (d) The motion of the simple harmonic oscillator (SHO) always takes place in a straight line.

 1.5 SOLUTION OF THE DIFFERENTIAL EQUATION OF SHM

Let y = aeat. Now differentiating y with respect to t, we get

    
dy

 ___ 
dt

   = a aeat

or,    
d2y

 ___ 
dt2

   = a2 (aeat) = a2y

 Now, substituting this value in Eq. (1.7), we get

  a2y + w2y = 0

or,  a2 = – w2

or,  a = ± iw  where i =  ÷ 
___

 –1  

 So, y = ae iw t or y = ae–iw t

 Hence, the general solution is given by 

  y = a1 e
+iw t + a2 e

–iw t
 ...(1.8) 

where a1 and a2 are arbitrary constants.

\  y = a1 (cos w t + i sin w t) + a2 (cos w t – i sin w t) 

[  eiq = cos q + i sin q and e– iq = cos q – i sin q]

or,  y = (a1 + a2) cos w t + i (a1 – a2) sin w t 

or,  y = a cos w t + b sin w t …(1.9)

where a = (a1 + a2) and b = i(a1 – a2) 

 Let us now replace a and b by q and d where a = q cos d and b = q sin d

\  q =  ÷ 
______

 a2 + b2  

and d = tan–1 (    b __ a   ) 
 Now, putting these values of a and b in Eq. (1.9), we get

  y = q cos d cos w t + q sin d sin w t

or,  y = q cos (w t – d) ...(1.10)

 Hence, Eq. (1.10) represents the general solution of the differential equation 

    
d2y

 ___ 
dt2

   + w2y = 0 

 The maximum value of the displacement y is given by

  ymax = q

q is known as amplitude of the simple harmonic motion.
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 If T be the period of oscillation, the same displacement repeats after an interval of time T, i.e.,

  yt = yt + T

or,  a cos (w t – d) = a cos {w  (t + T) – d}

or,  a cos (w t – d) = a cos {(w t – d) + wT}

or,  cos (w t – d) = cos {(w t – d) + wT}

 Hence, wT = 2p 

\  T =   
2p

 ___ w   ...(1.10)

or,  w  =   
2p

 ___ 
T

   [w  is angular velocity]

 The frequency of SHM is given by 

  n =   
1
 __ 

T
   =   

w
 ___ 

2p
   ...(1.11)

 At t = 0, y = a cos d

\  d = cos–1  (   y __ a   ) 
 The variable d is known as the initial phase or epoch.

 1.6 VELOCITY AND ACCELERATION OF THE PARTICLE EXECUTING 
SHO

The displacement (y) of a particle, which executes simple harmonic motion, at any time t is given by the fol-

lowing generalized equation,

  y = a sin (w t + d)

\ the velocity of the particle, v is given by 

  v =   
dy

 ___ 
dt

   = aw  cos (w t + d) ...(1.12)

 When the particle reaches its mean position, the phase d = 0

\  v = aw  cos (w t) = ± aw   ÷ 
_________

 1 – sin2 w t  

or,  v = ± aw   ÷ 
______

 1 –   
y2

 __ 
a2

    

\  v = ± w   ÷ 
______

 a2 – y2   where w  = 2pn

 When the particle is at its mean position, we get y = 0, so in this position the particle velocity is maximum 

and it is given by 

  vmax = ± aw

 And at either of the extreme positions (i.e., y = ± a), velocity becomes minimum and it is given by 

  vmin = 0

 From Eq. (1.12), we get 

  v = aw  cos (w t + d)
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\ the acceleration of the particle is given by

  f =   
dv

 
___ 
dt

   = – aw2 sin (w t + d) ...(1.13)

 When the particle is at its mean position, we get d = 0, so in this position the acceleration of the particle is 

given by

  f = – aw2 sin w t

or,  f = – w2y [  t = 0 and d = 0 fi y = a sin w t] 

 So, when the particle is at its extreme position, y = a and the magnitude of the acceleration is given by 

  fmax = aw2 [It is maximum]

 And when the particle is at its mean position, y = 0 and the magnitude of the acceleration is given by 

  fmin = 0 [It is minimum]

 1.7 ENERGY OF A PARTICLE EXECUTING SHM AND LAW OF 
CONSERVATION OF ENERGY

When a particle executes simple harmonic motion, it possesses both kinds of mechanical energy, namely 

potential and kinetic energy at any instant of time.

Kinetic Energy (Ek) In case of a particle of mass m and velocity v which is executing SHM, the kinetic 

energy is given by 

  Ek =   
1
 __ 

2
   mv

2

 Now, y = a sin (w t + d)

\  v =   
dy

 ___ 
dt

   = aw  cos (w t + d) = ± aw   ÷ 
______

 1 –   
y2

 __ 
a2

    

or,  v = ± w   ÷ 
______

 a2 – y2  

\  Ek =   
1
 __ 

2
   mw2 (a2 – y2) ...(1.14)

Potential Energy (EP) In case of a particle of mass m and velocity v which is executing SHM, the poten-

tial energy is given by 

  Ep =  Ú 
o

   

y

   (mw2y) dy  =   
1
 __ 

2
   mw2y2 ...(1.15)

 Because the potential energy of an oscillating particle at any instant of time can be calculated from the 

total amount of work done in overcoming the effect of the restoring force, in this case the restoring force is 

given by,

  F = – mw2y

 When the particle comes to an extreme point, its kinetic and potential energies become

  Ek = Ek(min) = 0

and Ep = Ep(max) =   
1
 __ 

2
   mw2 a2 [  in this case, y = a]

 Similarly, when it is at the mean position, its kinetic and potential energies are given by
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  Ek = Ek(max) =   
1
 __ 

2
   mw2 a2

and Ep = Ep(min) = 0

 So, the kinetic energy is maximum when the potential energy is minimum and vice versa.

Total Energy At any instant of time, the total energy of the oscillating particle is given by 

  E = Ek + Ep

or,  E =   
1
 __ 

2
   mw2 (a2 – y2) +   

1
 __ 

2
   mw2y2

or, E =   
1
 __ 

2
   ma2w2 = 2p2 ma2 n2 ...(1.16)

where w  = 2pn

\  E = constant. 

 Hence, we can conclude that in case 

of simple harmonic oscillation the total 

energy is conserved. And it is propor-

tional to the square of the amplitude of 

oscillation. The energy distribution of 

a simple harmonic oscillator has been 

shown in Fig. 1.2. Both kinetic and poten-

tial energies have been plotted against 

displacement.

 1.8 SUPERPOSITION OF WAVES

It is an experimental fact that two or more waves can traverse through the same space independent of each 

other. For this reason, the displacement of any particle at a given instant of time is simply the algebraic sum 

of the individual displacements, this process of vector addition of the displacement of a particle is known as 

superposition.

Principle of Superposition If the wave equations governing the wave motions are linear, the 

displacement of any particle, at a particular instant of time, is simply the algebraic sum of the individual 

displacements due to the different waves.

1.8.1 Superposition of Two Collinear SHMs of Frequency n

Let two collinear simple harmonic motions be represented by the following two equations:

  y1 = a1 cos (w t – f1) 

and y2 = a2 cos (w t – f2)

where y1 and y2 are instantaneous displacements, a1 and a2 are the amplitudes, the w  (= 2pn) is, the angular 

velocity and f1 and f2 are the phases. The resultant amplitude at any instant of time is given by

  y = y1 + y2

or,  y = a1 cos (w t – f1) + a2 cos (w t – f2)

or,  y = a1 cos w t cos f1 + a1 sin w t sin f1 + a2 sin w t cos f2 + a2 sin w t sin f2

or,  y = (a1 cos f1 + a2 cos f2) cos w t + (a1 sin f1 + a2 sin f2) sin w t

y+a–a O

E
E E E= +k p

Ep

Ek

Fig. 1.2 The energy distribution curve of an SHO. y is 
displacement, Ep is potential energy and Ek is the 
kinetic energy.
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 Now, putting A cos f = a1 cos f1 + a2 cos f2 

and A sin f = a1 sin f1 + a2 sin f2

where A and f are two constants and given by

  A =  ÷ 
_______________________________________

    (a1 cos f1 + a2 cos f2)
2 + (a1 sin f1 + a2 sin f2)

2  

or,  A =  ÷ 
_________________________

   a1
2 + a2

2 + 2a1 a2 cos (f1 – f2)  

and f = tan–1 (   a1 sinf1 + a2 sin f2
  _________________  

a1 cos f1 + a2 cos f2

   ) 
\  y = A cos f cos w t + A sin f sin w t

or,  y = A cos (w t – f) ...(1.17)

 Thus, it is observed that the resultant motion is also a simple harmonic motion having the same component 

motions

Special Cases

 (a) If f1 = f2 then A = a1 + a2

 (b) If f1 ~ f2 =   
p

 __ 
2
   then A =  ÷ 

______

 a1
2 + a2

2  

 (c) If f1 ~ f2 = p then A = a1 ~ a2

 (d) If f1 ~ f2 = p and a1 = a2 then A = 0, i.e., the two SHMs destroy each other.

 If instead of two SHMs, there remain several motions of different amplitudes and phases but of the same 

time period T  ( =   
2p

 ___ w   )  or frequency, n  ( =   
w

 ___ 
2p

   )  then the resultant motion can be obtained in the same process. 

In such cases, we will get 

  y = y1 + y2 + y3 + ... + yn

or,  y = a1 cos (w t – f1) + a2 cos (w t – f2) + a3 cos (w t – f3) + ... + an cos (w t –fn)

or,  y = (a1 cos f1 + a2 sin f2 + a3 cos f3 + ... + an cos fn) cos w t

    + (a1 sin f1 + a2 sin f2 sin f3 + ... + an sin fn) sin w t

or,  y = A cos (w t – f) ...(1.17) 

where A =  ÷ 
_________________________

     (  S 
i = 1

  
n

    ai cos fi  )  
2

  +   (  S 
i = 1

  
n

    ai sin fi  )  
2

   

and f = tan  –1 (     S 
i = 1

  
n

    ai sin f i 

 __________ 

 S 
i = 1

  
n

   ai cos fi 

   ) 
1.8.2 Superposition of Two Mutually Perpendicular SHMs of Frequency n

Let us consider two SHMs of amplitudes a1 and a2 having same angular velocity w  (= 2p n) which act respec-

tively along x- and y-axes.

 Then their amplitudes can be represented by

  x = a1 cos (w t – f1)

and y = a2 cos (w t – f2)
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 Now, we can write 

    
y
 __ 

a2
   = cos (w t – f2)

   = cos {w t – f1) + (f1 – f2)}

or,    
y
 __ a2
   = cos (w t – f1) cos (f1 – f2) – sin (w t – f1) sin (f1 – f2)

or,    
y
 __ a2
   =   

x
 __ a1
   cos (f1 – f2) –  ÷ 

_______

  ( 1 –   
x2

 __ 
a1

2
   )    sin (f1 – f2)

or,    
y
 __ 

a2
   –   

x
 __ a1
   ◊ cos (f1 – f2) = –  ÷ 

_______

  ( 1 –   
x2

 __ 
a1

2
   )    sin (f1 – f2)

 Squaring both sides of the equation, we get

    
y2

 __ 
a2

2

   +   
x2

 __ 
a1

2
   cos2 (f1 – f2) –   

2xy
 _____ a1 a2
   cos (f1 – f2) =  ( 1 –   

x2

 __ 
a1

2
   )  sin2 (f1 – f2)

or,    
y2

 __ 
a2

2

   –   
2xy

 _____ a1 a2
   cos (f1 – f2) +   

x2

 __ 
a2

1

   {cos2 (f1 – f2) + sin2 (f1 – f2)} = sin2 (f1 – f2) 

or,    
y2

 __ 
a2

2

   –   
2xy

 _____ a 1 a2
   cos (f1 – f2) +   

x2

 __ 
a1

2
   = sin2 (f1 – f2)

or,    
y2

 __ 
a2

2
   – 2   

xy
 _____ a1 a2

   cos f +   
x2

 __ 
a1

2
   = sin2 f ...(1.18)

where f = f1 – f2 

 Equation (1.18) is a general equation of an ellipse bounded within a rectangle with sides 2a1 and 2a2. Thus 

the resultant motion (having combined two mutually perpendicular SHMs) is represented by an ellipse. Let 

us now consider the special cases of this generalized motion.

Case 1 If f1 – f2 = 0 or f = 0 then sin f = 0 and cos f = 1 

\ Eq. (1.18) gets reduced to 

    
x2

 ___ 
a2

1

   +   
y2

 __ 
a2

2

   – 2   
xy
 ____ a1a2
   = 0 

or,    (   x __ a1
   –   

y
 __ a2
   )  

2
   = 0

or,  y =   
a2

 __ a1
   x

 This represents a straight line passing through the origin 

and making an angle of inclination d = tan–1   
a2

 __ a1
   to the x-axis 

(Fig. 1.3).

Fig. 1.3 The resultant vibration of two 
mutually perpendicular vibrations. 
It takes place in a straight line 
which is inclined at an angle d with 

the x-axis and d <   
p

 __ 
2
   when f = 0.

2a
1

2a
2

d
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Case 2 If f1 – f2 = p/2 or f =   
p

 __ 
2
  , then sin f = 1 and 

cos f = 0.

 Equation (1.18) reduces to 

    
x2

 ___ 
a1

2
   +   

y2

 __ 
a2

2

   = 1 

 This equation represents an ellipse which is sym-

metrical about the two axes and a1 and a2 are the semi-

axes (Fig. 1.4).

Case 3 If f1 – f2 = p or f = p then sin f = 0 and 

cos f = – 1

\ Eq. (1.18) gets reduced to 

    
y2

 __ 
a2

2

   + 2   
xy
 ____ a1 a2
   +   

x2

 ___ 
a1

2
   = 0

or,    (   x __ a1
   +   

y
 __ a2
   )  

2
  = 0 

or,  y = –   
a2

 __ a1
   x

 This equation represents a straight line which passes through the origin making an angle of inclination 

d = tan–1  ( –   
a2

 __ a1
   )  to the x-axis (Fig. 1.5).

Case 4 If f1 – f2 = p/2 or f = p/2 and a1 = a2 (=a) (say) then sin f = 1 and cos f = 0.

 In this case, Eq. (1.18) gets reduced to 

  x2 + y2 = a2

 This equation represents a circle which is symetrical about the two axes with a as radius (Fig. 1.6).

Fig. 1.4 The resultant of two mutually perpendicular 
vibrations represents an ellipse. 

2a1

2a
2

Fig. 1.5 The resultant of two mutually perpendicular
vibrations represents a straight line which 

is inclined at an angle d where d >   
p

 __ 
2
   when 

f = p.

2a
1

2a
2

d

Fig. 1.6 The resultant of two mutually
perpendicular vibrations represents 

a circle when f =   
p

 __ 
2
   and a1 = a2.

2a

2a



Basic Engineering Physics1.12

 1.9 DERIVATION OF THE EQUATION OF MOTION FROM THE LAW OF 
CONSERVATION OF ENERGY

The total (mechanical) energy of a simple harmonic oscillator is given by

  E =   
1
 __ 

2
   mv

2 +   
1
 __ 

2
   mw2y2  ...(1.19)

where E is the constant of motion. Now getting differentiated on both sides of Eq. (1.19) with respect to time, 

we get

  mv   
dv

 
___ 
dt

   + mw2y   
dy

 ___ 
dt

   = 0

or,  mv  (   dv
 

___ 
dt

   + w2y )  = 0

    
d
 __ 

dt
    (   dy

 ___ 
dt

   )  + w2y = 0

or,    
d2y

 ___ 
dt2

   + w2y = 0 ...(1.20)

 Equation (1.20) is the same differential equation as Eq. (1.7).

 1.10 TWO VIBRATIONS IN A PLANE (OF COMMENSURATE FREQUENCIES) 
ACTING AT RIGHT ANGLES TO EACH OTHER

Case 1 If the frequencies of the two vibrations be of the ratio 1:2 with initial phase difference f, then we 

can represent the two vibrations by the following two equations:

  x = a1 cos (w t) 

and y = a2 cos (2w t + f)

 Now, we can write

    
y
 __ a2
   = cos (2 w t) cos f – sin (2 w t) sin f

or,    
y
 __ a2
   = (2 cos 2 w t – 1) cos f – 2 sin w t cos w t sin f

or,    
y
 __ a2
   =  ( 2   

x2

 __ 
a1

2
   – 1 )  cos f – 2  ÷ 

_______

  ( 1 –   
x2

 ___ 
a1

2
   )      x __ a1

   sin f

or,    
y
 __ a2
   –  (   2 x2

 ____ 
a1

2
   – 1 )  cos f = – 2  ÷ 

________

  ( 1 –   
x2

 ___ 
a1

2
   )      x __ a1

   sin f

 Now, having squared both sides of the equation, we get

    
y2

 __ 
a2

2

   – 2   
y
 __ a2
    (   2 x2

 ____ 
a1

2
   – 1 )  cos f +   (   2x2

 ___ 
a1

2
   – 1 )  

2

  cos2 f = 4  ( 1 –   
x2

 __ 
a1

2
   )    x

2

 ___ 
a1

2
   sin2 f
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or,    
4x2

 ___ 
a1

2
    (   x

2

 ___ 
a1

2
   –   

y
 __ a2
   cos f – 1 )  +   (   

y
 __ a2
   + cos f )  

2
  = 0 ...(1.21)

 The above equation gives the general equa-

tion of the resultant motion for any phase dif-

ference and amplitudes. If f = 0, Eq. (1.21) gets 

reduced to

    (   2x2

 ___ 
a1

2
   –   

y
 __ a2
   – 1 )  

2

  = 0 ...(1.22) 

 Equation (1.22) represents two coincident 

parabolas (Fig. 1.7).

 If f =   
p

 __ 
2
  , Eq. (1.21) gets reduced to 

    
4x2

 ___ 
a2

1

    (   x
2

 ___ 
a1

2
   – 1 )  +   

y2

 __ 
2
2

   = 0 ...(1.23)

 Equation (1.23) is a 4th degree equation 

and represents a curve which has two loops as 

has been shown in Fig. 1.8.

Case 2 If the frequencies of two vibrations 

be of the ratio 1 : 3 with initial phase differ-

ence f then we can represent the two vibra-

tions by the following two equations:

  x = a1 cos (w t) 

and  = a2 cos (3w t + f)

 Now, we can write

    
y
 __ a2
   = cos (3w t + f)

or,    
y
 __ a2
   = cos 3 w t cos f – sin 3w t sin f

or,    
y
 __ a2
   = (4 cos3 w t  – 3 cos w t) cos f – (3 sin w t – 4 sin3 w t) sin f

or,    
y
 __ a2
   =  (   4x3

 ___ 
a3

1

   –   
3x

 ___ a1
   )  cos f –  { 3   ( 1 –   

x2

 __ 
a2

1

   )  
  
1
 __ 

2
  

  – 4   ( 1 –   
x2

 __ 
a1

2
   )  

  
3
 __ 

2
  

  }  sin f

or,    
y
 __ a2
   =  (   4x3

 ___ 
a3

1

   –   
3x

 ___ a1
   )  cos f –   ( 1 –   

x2

 __ 
a2

1

   )  
  
1
 __ 

2
  

   (   4x2

 ___ 
a2

1

   – 1 )  sin f ...(1.24)

 Now, transposing and squaring, we get 

   {   y __ a2
   –  (   4x3

 ___ 
a3

1

   –   
3x

 ___ a1
   )  cos f }  

2

   =  ( 1 –   
x2

 ___ 
a2

1

   )    (   4x2

 ___ 
a2

1

   – 1 )  
2

  sin2 f

 If f = 0, then Eq. (1.24) gets reduced to 

Fig. 1.7 Resultant of two mutually perpendicular vibrations 
with frequency ratio = 1 : 2 and phase difference 
f = 0 represents coincident parabolas.

2a1

2a
2

Fig. 1.8 Resultant of two mutually perpendicular vibrations

with frequency ratio 1 : 2 and phase difference f =   
p

 __ 
2
  

represents a two loop curve.

2a
1

2a
2
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Fig. 1.11 Cathode-ray oscillograph.

    {   y __ a2
   –  (   4x3

 ___ 
a3

1

   –   
3x

 ___ a1
   )  }  

2

  = 0  ...(1.25)

 Equation (1.25) represents two coincident cubic curves (Fig. 1.9).

 If f =   
p

 __ 
2
  , Eq. (1.24) gets reduced to

   ( 1 –   
x2

 ___ 
a1

2
   )    (   4

2

 ___ 
a2

1

   – 1 )  
2

  –   
y2

 __ 
a2

2

   = 0  ...(1.26)

Fig. 1.9 Resultant of two mutually 
perpendicular vibrations with 
frequency ratio 1:3 and phase 
difference f = 0 represent two 
coincident cubic curves.

Fig. 1.10 Resultant of two mutually perpendicular 
vibrations with frequency ratio 1:3 and 

phase difference f =   
p

 __ 
2
   represents a curve of 

three loops.

2a
1

2a
2

 Equation (1.26) is a 6th degree equation and it gives a curve of three loops (Fig. 1.10).

 If one changes the phase difference gradually, then the shape of the loop gradually changes.

 For a ratio of frequencies of 1 : n, the curve will have n loops.

1.10.1 Lissajous Figures

Definition Lissajous figures are those curves which are generated by superimposing two simple harmonic 

motion acting at right angles to each other.

 The constituent simple harmonic motions may have different time periods, different amplitudes and also 

different initial phases. The size (or dimension) of the resultant curve depends on their amplitudes but the 

shape of the curve depends on 

the ratio of their time periods 

and the initial phase differ-

ences. These figures may be 

experimentally generated by (a) 

Blackburn’s pendulum, (b) opti-

cal method, and (c) cathode ray 

oscillograph, etc. The diagram 

of an oscillograph is shown in 

Fig. 1.11.
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 Figures 1.7, 1.8, 1.9, and 1.10 are examples of Lissaious figures.

Uses of Lissajous Figures

 (a) Lissajous figures can be used for determination of the ratio of the frequencies of two mutually per-

pendicular superposing vibrations.

 (b) They also can be used to determine the unknown frequency of a tuning fork.

 (c) The nature and shape of a signal can be known with the help of Lissajous’ figures.

 (d) The amplitude of a signal also can be determined with the help of these figures.

Example 1.1  The displacement of a body of mass 2 g executing simple harmonic motion is indicated by 

  y = 10 sin  (   p __ 
3
   t +   

p
 ___ 

15
   )  cm. Calculate the (a) amplitude, (b) angular velocity, (c) time period, (d) maximum 

and minimum velocity and maximum and minimum acceleration, (e) epoch, (f) kinetic energy, and (g) poten-

tial energy. Is its energy conserved?

Sol.  The general equation of a simple harmonic oscillator is given 

   y = a sin (w t + d) ...(1) 

  And in the present case, it is 

   y = 10 sin  (   p __ 
3
   t +   

p
 ___ 

15
   )  ...(2)

  Now, comparing eqs. (1) and (2), we get

 (a) The amplitude, a = 10 cm,

 (b) The angular velocity, w  =   
p

 __ 
3
   rad s–1

 (c) The time period, T =   
2p

 ___ 
w

   or, T = 2p ×   
3
 __ p   = 6 s

 (d) The velocity of the oscillating body at any time is given by v = ±w   ÷ 
______

 a2 – y2  

  Hence, vmax =   | ± w   ÷ 
______

 a2 – y2   |  max 

    = |± w a| [for y = 0 ]

i.e.,   vmax = aw  = 10 ×   
p

 __ 
3
   = 10.46 cm/s

  Similarly, the minimum velocity is given by vmin = 0 cm s–1 [for y = a]

  The acceleration at any time t is given by 

   f = w 2y

  \ fmax = aw 2 [for y = a]

or,   fmax = 10 ×   
p2

 __ 
9
   = 10 ×   (   3.14

 ____ 
3
   )  

2
 

or,   fmax = 10.95 cm s–2

Worked-out Examples
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  And the minimum acceleration fmin is given by

   fmin = 0 cm s–1 [for y = 0]

 (e) The phase of the oscillating body is given by, 

   f = (w t + d) 

  Now, we know that epoch is the initial phase at t = 0

  \ from Eq. (2), we get d = +   
p

 ___ 
15

  

 (f) The kinetic energy is given by

   Ek =   
1
 __ 

2
   mw2 (a2 – y2)

  So, the value of kinetic energy will vary with y.

 (g) The potential energy is given by

   Ep =   
1
 __ 

2
   mw2y2

  \ the value of the potential energy varies as y2.

  At any time, the total energy is given by

   E = Ep + Ek

or,   E =   
1
 __ 

2
   mw2y2 +   

1
 __ 

2
   mw2 (a2 – y2) 

or,   E =   
1
 __ 

2
   mw2y2 +   

1
 __ 

2
   mw2a2 –   

1
 __ 

2
   mw2y2

  \ E =   
1
 __ 

2
   mw2a2

 which is independent of the variables t and y.

  So, it is a constant w.r.t. time. Hence, the total energy of the oscillator is conserved. 

Example 1.2  A particle is executing SHM. At an instant of time its displacement is 12 cm, velocity is 

5 cm s–1 and when its displacement is 5 cm, the velocity is 12 cm s–1. Calculate its (i) amplitude, (ii) fre-

quency, and (iii) time period.

Sol.  The velocity of a particle executing SHM is given by 

   v =   
dy

 ___ 
dt

   = w  ÷ 
______

 a2 – y2  

  In the first case, 

   v1 = w  ÷ 
______

 a2 – y2
1  

where  v1 = 5 cm s–1 and y1 = 12 cm

or,   5 = w  ÷ 
_______

 a2 – 144   ...(1) 

  In the second case 

   v2 = w  ÷ 
______

 a2 – y2
2  

where  v2 = 12 cm s–1, y2 = 5 cm

  \ 12 = w  ÷ 
______

 a2 – 25   ...(2)
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  Dividing (1) by (2), we get 

     
5
 ___ 

12
   =   

 ÷ 
_______

 a2 – 144  
 _________ 

 ÷ 
______

 a2– 25  
  

or,     
25

 ____ 
144

   =   
a2 – 144

 _______ 
a 2 – 25

  

  \ the amplitude is 13 cm. 

  Now, substituting the value of a = 13 cm in Eq. (1), we get

   5 = w  ÷ 
________

 132 – 144  

  or, 5 = w  ÷ 
___

 25   \ w = 1 rad s–1 

  The frequency n =   
w

 ___ 
2p

   =   
1
 ___ 

2p
   Hz 

  The time period is T =   
1
 __ 

n 
   = 2p s

Example 1.3  Show that for a particle executing SHM, its velocity at any instant of time is given by 

    
dy

 ___ 
dt

   = w  ÷ 
______

 a2 – y2   

Sol.  The displacement of a particle executing SHM is given by 

   y = a sin (w t + f) ...(1)

  The velocity at any instant of time is given by,

     
dy

 ___ 
dt

   = aw cos (w t + f) ...(2)

  or,   
dy

 ___ 
dt

   = aw  ÷ 
______________

  1 – sin2 (w t + f)  

  or,   
dy

 ___ 
dt

   = w  ÷ 
__________________

  a2 – {a sin (w t + f)}2  

  or,   
dy

 ___ 
dt

   = w  ÷ 
______

 a2 – y2   [by Eq. (1)]

Example 1.4  The motion of a particle executing SHM is given by y = a sin w t. If it has a speed u when the 

displacement is y1, and a speed v when the displacement is y2, show that the amplitude of the motion is 

  a =   [   v
2y2

1 – u2y2
2
 __________ 

v
2 – u2

   ]    
1
 __ 

2
  

 

Sol.  We have, y = a sin w t

  \ u =   
dy1

 ___ 
dt

   = w  ÷ 
______

 a2 – y1
2   ...(1) 

  and v =   
dy2

 ___ 
dt

   = w  ÷ 
______

 a2 – y2
2   ...(2)

  Now, squaring both the equations, and dividing, we have
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u2

 __ 
v

2
   =   

a2 – y1
2

 _______ 
a2 – y2

2 
  

or,   u2a2 – u2y2
2 = v2a2 – v2y1

2

or,   a2 [u2 – v2] = u2y2
2 – v2y1

2 

or,   a2 =   
u2 y2

2 – v2y2
1
 ___________ 

u2 – v2
  

or,   a =   [   v
2y2

1 – u2y2
2
 __________ 

v2  – u2
   ]    

1
 __ 

2
  

 

Example 1.5  Show that for a particle executing SHM, the instantaneous velocity is w  ÷ 
______

 a2 – y2   and the 

instantaneous acceleration is – w2y where w is the angular frequency, a is the amplitude and y is the instan-

taneous displacement.

Sol.  The displacement of a particle executing SHM is given by

   y = a cos (w t + d) ...(1)

  The instantaneous velocity is 

   v =   
dy

 ___ 
dt

   = – w a sin (w t + d) ...(2)

  From Eq. (1)

   cos (w t + d) =   
y
 __ a  

  \ sin (w t + d) =  ÷ 
______________

  1 – cos2 (w t + d)   =  ÷ 
______

 1 –   
y2

 __ 
a2

    

  or, – aw sin (w t + d) = – aw  ÷ 
______

 1 –   
y2

 __ 
a2

    

  or, v = –   
aw

 ____ 
 ÷ 

__

 a2  
   ( ÷ 

______

 a2 – y2  ) [by Eq.(2)]

  \ v = ± w  ÷ 
_______

 a2 – y2)  

  Now, differentiating Eq. (2), we get 

   f =   
dv

 
___ 
dt

   = – w2 a cos (w t + d)

  or, f = – w2y [by Eq. (1)]

Example 1.6  Calculate the time period of the liquid column of length l in a U-tube, if it is depressed in 

one arm by x, d is the density of the liquid and A is the cross-sectional area of the arm of the U-tube.

[WBUT 2007]

Sol.  The U-tube as has been described in the question has been shown in Fig. 1.12.
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  The liquid column of a liquid with density d has been shown in the diagram. The height of the liquid 

column in each arm is equal to l. The liquid column has been depressed in the left arm through a 

depth of x. So, in the right arm it has risen through a height of x. So the difference in the levels of the 

two arms is 2x. The liquid column of length 2x in the right arm will try to bring back the two levels 

to their initial values. The force acting in this process will be

   F = (2x) Adg

  This force (F) acts on the liquid of both columns with length l.

  \ (2l Ad)   
d2x

 ___ 
dt2

   = – (2x) Adg [here, m = 2l Ad]

or,     
d2x

 ___ 
dt2

   = –   
xg

 ___ 
l
  

or,   x +  (   
g
 __ 

l
   )  x = 0 

  \ x + w2x = 0  [ where w2 =   
g
 __ 

l
   ] 

  This is the equation of a simple harmonic oscillator. 

  \ its time-period T is given

   T =   
2p

 ___ 
w

   = 2p  ÷ 
__

   
l
 __ g     

Example 1.7  9 kg of mercury is poured into a glass U-tube with a uniform internal diameter of 1.2 cm. 

It oscillates freely about its equilibrium position. Calculate the time period of oscillation of the mercury 

column.

Sol.  Let l be the height of the mercury column in each arm and m be the mass of liquid of the two col-

umns. Then

   m = 2l Ad where A is the area of crossection and d is the density 

  \ l =   
m
 ____ 

2Ad
  

  The mass m = 9 kg, d = 13.6 × 103 kg m–3

   A = 3.14 ×   (   1.2
 ___ 

2
   )  

2
  cm2 = 1.1304 × 10–4 m2

  \ l =   
9
  ____________________________   

2 × (1.1304 × 10–4) × (13.6 × 103)
   = 2.927 m

  \ the time period of oscillation T is given by 

   T = 2p  ÷ 
__

   
l
 __ g    

  or, T = 2p ×  ÷ 
_____

   
2.927

 _____ 
9.8

    

  \ T = 3.43 s

Fig. 1.12 A U-tube with vibrating liquid 
column.

x

l

2x

x
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Example 1.8  Two particles execute SHM with same amplitude and frequency along two parallel straight 

lines. They pass one another when going in opposite directions. Each time their displacement is half of their 

amplitude. What is the phase difference between them?

 Sol. Let the equation of motions of the two particles be as follows:

   y = a sin w t ...(1)

and   y = a sin (w t + f) ...(2)

when   y =   
a
 __ 

2
   for the first particle, we get

     
a
 __ 

2
   = a sin w t [from Eq. (1)]

  fi sin w t =   
1
 __ 

2
   ...(3)

  Again, when y =   
a
 __ 

2
   for the second particle, we get [from Eq. (2)]

     
a
 __ 

2
   = a sin (w t + f)

or,     
1
 __ 

2
   = sin w t cos f + cos w t sin f

or,     
1
 __ 

2
   =   

1
 __ 

2
   cos f +  ÷ 

____

 1–   
1
 __ 

4
     sin f [by Eq. (3)]

or,   1 = cos f +  ÷ 
__

 3   sin f

or,   1 – cos f =  ÷ 
__

 3   sin f

or,   1 – 2 cos f + cos2 f = 3 sin2 f

or,   1 – 2 cos f + cos2 f = 3 – 3 cos2 f

or,   4 cos 2 f – 2 cos f – 2 = 0

or,   2 cos2 f – cos f – 1 = 0 

or,   (2 cos f + 1) (cos f – 1) = 0

  Now, (cos f – 1) = 0 will give the value of f which equals to zero. So, this value of f cannot be 

accepted as the particles will have the same phase.

  Hence, (2 cos f + 1) = 0

or,   cos f = –   
1
 __ 

2
   = cos 120°

  Therefore, the phase difference between the two oscillators is 120°.

Example 1.9  The displacement of a moving particle at any time t is given by 

  y = a sin w t + b cos w t

  Show that the motion is simple harmonic.

Sol.  The equation representing the displacement of the particle is given by

   y = a sin w t + b cos w t ...(1)

or,     
dy

 ___ 
dt

   = aw  cos w t – bw sin w t 
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or,     
d2y

 ___ 
dt2

   = – aw 2 sin w t – bw2 cos w t 

or,     
d2y

 ___ 
dt2

   = – w 2 (a sin w t + b cos w t)

     
d2y

 ___ 
dt2

   = – w 2y [by Eq. (1)]

or,     
d2y

 ___ 
dt2

   + w 2y = 0 ...(2)

  Equation (2) is the standard differential equation of a simple harmonic oscillator. Hence, the given 

equation [i.e., Eq. (1)] represents a simple harmonic motion. 

Example 1.10  Calculate the displacement to amplitude ratio for a SHM when the kinetic energy is 90% 

of the total energy.

Sol.  Let m be the mass of the oscillator, a be the amplitude and w  be the angular frequency.

  So, the total energy of the oscillator is given by 

   E =   
1
 __ 

2
   mw 2a2

  Let y1 be the displacement when its kinetic energy Ek is 90% of the total energy. Now, the potential 

energy is given by 

   Ep =   
1
 __ 

2
   mw 2y2

1

  \   
Ep

 ___ 
E

   =   

  
1
 __ 

2
   mw 2y2

1

 ________ 

  
1
 __ 

2
  mw 2 a2

   fi   
 y 

1
  2 
 __ 

a2
   =   

10
 ____ 

100
   

  \ y1 : a =  ÷ 
___

 0.1   = 0.316

Part 1: Multiple Choice Questions

 1. The SI unit of the force constant of a spring is given by

 (a) Nm (b) Nm–2 (c) Nm–1 (d) N 

 2. Which of the following is not essential for simple harmonic motion?

 (a) Inertia (b) Gravity (c) Restoring force (d) Elasticity

 3. The velocity of a particle executing simple harmonic motion is minimum at a point where displace-

ment is

 (a) zero   (b) maximum

 (c) midway between zero and maximum (d) None of these

Review Exercises
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 4. If two SHMs of the same amplitude, time period and phase act at right angles to each other, then the 

resultant vibration is

 (a) elliptical (b) circular (c) straight line (d) parabolic

 5. If the velocity of a particle executing SHM is maximum, then displacement will be 

 (a) maximum (b) minimum (c) less than zero (d) greater than zero

 6. The potential energy of a particle executing SHM of amplitude a is equal to its kinetic energy when 

displacement of the particle is 

 (a) ± a (b) ±   
a
 ___ 

 ÷ 
__

 2  
   (c) ±   

a
 __ 

2
   (d) ±   

a
 __ 

4
  

 7. For a particle executing SHM, the phase difference between displacement and velocity is

 (a) p (b) 0 (c)   
p

 __ 
2
   (d) –   

p
 __ 

2
  

 8. Which one of the following statements is true? 

 (a) All periodic motion is simple harmonic.

 (b) All simple harmonic motions are periodic.

 (c) Potential energy is proportional to displacement.

 (d) All of the above statements are incorrect.

 9. Which one of the following relations is not true for a SHM?

 (a) Potential energy is always equal to the kinetic energy

 (b) T = 2p  ÷ 
___________

    
Displacment

 ___________ 
Acceleration

    

 (c)   
d2y

 ___ 
dt2

   +   
b

 __ m   y = 0

 (d) none of these

 10. The equation   
d2y

 ___ 
dt2

   = – w 2y represents (where w  is a constant) 

 (a) projectile motion   (b) motion of a freely falling body

 (c) simple harmonic motion (d) None of these

 11. Production of Lissajous figures can be shown through a device known as 

 (a) Geiger–Muller counter (b) traveling microscope

 (c) cathode ray oscilloscope (d) periscope

 12. The differential equation of a simple harmonic motion of a particle of mass m with angular frequency 

w  can be expressed as 

 (a)   
d2y

 ___ 
dt2

   – w 2y = 0 (b)   
d2y

 ___ 
dt2

   + w 2y = 0 (c)   
md2y

 _____ 
dt2

   = 0 (d)   
md2y

 _____ 
dt2

   + w 2 y = 0

 13. The total mechanical energy of a particle (executing SHM) of mass m, angular frequency w  and 

amplitude of vibration a is given by 

 (a)   
1
 __ 

2
   mw 2 (b)   

p2

 ___ 
2m

   (c)   
1
 __ 

2
   mw 2a2 (d)   

1
 __ 

2
   ma2
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 14. To have a circular Lissajous figure, the phase difference (d) and the amplitudes (a and b) of two 

superposing simple harmonic motions are respectively

 (a) d = 0, a π b (b) d = 0, a = b (c) d = p/2, a = b (d) d = p/2, a π b

 15. The time period of a particle of mass m (executing SHM) under, a force where the force per unit 

displacement is k can be expressed as 

 (a) T = 2p  ÷ 
__

   
k
 __ m     (b) T =   

1
 ___ 

2p
    ÷ 

__

   
k
 __ m     (c) T = 2p  ÷ 

__

   
m

 __ 
k
     (d) None of these

 16. In any damped oscillation the resisting force is proportional to 

 (a) displacement (b) acceleration (c) velocity (d) square of velocity 

 17. The general solution of the differential equation of simple harmonic motion is given by 

 (a) y = a sin w t (b) y = cos w t (c) y = a cos d (d) y = a sin (w t + d)

 18. The sound wave is 

 (a) an electromagnetic wave (b) an elastic wave 

 (c) a radio wave   (d) None of these 

 19. The time period of a simple pendulum of infinite length is given by 

 (a) finite (b) zero (c) infinite (d) None of these

 20. If the differential equation of the SHM of a body is represented by   
d2y

 ___ 
dt2

   + w 2y = 0 then its natural 

frequency is given by 

 (a) w  (b)   
2p

 ___ 
w

   (c)   
w

 ___ 
2p

   (d)   
w

 __ p  

 21. If the restoring force constant of a body is 98 Nm–1, then the restoring force of the body for a dis-

placement of 10 cm is 

 (a) 98 N (b) 9.8 N (c) 0.98 N (d) None of these 

  [Ans. 1. (c), 2. (b), 3. (c), 4. (b), 5. (b), 6. (b), 7, (c), 8. (b), 9. (a), 10.(c), 11. (c), 12. (b), 13. (c), 14. 

(c), 15. (c), 16. (c), 17. (d), 18. (b), 19. (c), 20. (c), 21 (b) ]

Short Questions with Answers

 1. Give four examples of non-oscillatory periodic motion.

 Ans. The following are the examples of non-oscillatory periodic motion:

  (a) The motion of the earth around the sun, (b) the motion the moon around the earth, (c) the motion 

of two twin stars, and (d) the whirling of a stone tied to a string.

 2. On what factors does the shape of Lissajous’ figures depend?

 Ans. The shape of Lissajous’ figures depends on the following factors: 

 (a) The ratio of the frequencies (or periods)

 (b) The amplitudes of the oscillations

 (c) The relative phase of the component motions

 3. Why is a loaded bus more comfortable than an empty bus?

 Ans. For a spring-mass system, the frequency of the vibrating mass is given by

   n =   
1
 ___ 

2p
    ÷ 

__

   
k
 __ m    
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  where n is the frequency of vibration, k is the spring constant and m is the mass. One can see from 

the equation that the frequency of vibration is inversely proportional to the square root of the mass. 

Hence, if the bus is loaded there will be less vibrations and it will be more comfortable to its riders.

 4. Is a transformer a source of simple harmonic motion?

 Ans. A transformer simply lowers the voltage of the applied ac supply and the secondary also generates 

an alternating current which reverses its direction according to simple harmonic motion. So, we can 

consider a transformer as a source of simple harmonic motion.

 5. The potential energy of a particle of mass m is given by   
1
 __ 

2
   mw2

y
2, where w is a constant. Show 

that the particle is executing simple harmonic motion.

 Ans. In the given problem, the potential energy is given by

   V =   
1
 __ 

2
   mw2y2

  If F be the force acting on the particle then 

   F = –   
dV

 ___ 
dy

  

  or, F = –   
d
 ___ 

dy
    (   1 __ 

2
   mw2y2 )  = – mw2y

  Hence, the acceleration of the particle is given by

   f =   
F

 __ m   = – w2y

  or, f μ – y (as w is a constant)

  Hence, we can conclude that the motion is simple harmonic.

 6. What is a Lissajous’ figure?

 Ans. If two simple harmonic motions at right angles to each other are superposed on each other, the path 

of the resultant motion is, in general, a closed curve. Such a curve is called a Lissajous’ figure.

 7. Show that for a body executing SHM, the acceleration leads the velocity by   
p

 __ 
2
   and the displace-

ment by p.

 Ans. Let us represent the SHM by the following equation:

   y = A sin (w t + d) ...(1)

  Then, the velocity is given by

   v =   
dy

 ___ 
dt

   = A w cos (w t + d) 

  or, v = Aw sin  ( w t + f +   
p

 __ 
2
   )  ...(2)

  Now, comparing Eqs. (1) and (2), one can note that velocity leads the displacement by   
p

 __ 
2
  .

  Again, the acceleration is given by 

   f =   
dv

 
___ 
dt

   =   
d2y

 ___ 
dt2

   = –Aw2 sin (w t + f)

  or, f = Aw2 sin (w t + f + p) ...(3)
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  Now, comparing Eqs. (2) and (3), one can see that the acceleration of a particle executing SHM leads 

the velocity by   
p

 __ 
2
  . From eqs. (1) and (3) it is evident that the acceleration leads the displacement by 

p.

 8. What are the dimensions of the force constant of a vibrating spring-mass system?

 Ans. The force F on the mass of the spring is F = – kx, where x is the displacement of the center of mass 

from the equilibrium position at any time t.

  \ the dimension of k is given by 

   [k] =   
[F]

 ___ 
[x]

    =   
[MLT–2]

 _______ 
[L]

   = [MT–2]

  i.e., the dimension of the spring constant k is [k] = [MT2].

 9. A hollow sphere is filled with water and used as a pendulum bob. If water trickles out slowly 

through the hole made at the bottom then how will its time period be affected?

 Ans. The time period of a simple pendulum with length l is given by the following equation:

   T = 2p  ÷ 
__

   
l
 __ g    

  where g is the acceleration due to gravity at the place of the pendulum. When water trickles out 

slowly through the hole made at the bottom of the hollow sphere, the mass of the bob goes down 

slowly. Though the time period is independent of the mass m of the pendulum, yet it will vary as  ÷ 
_

 l   

since due to leaking of water through the hole, the center of mass of the sphere will keep on changing 

its positions by varying the effective length. Initially the center of mass will keep on moving down 

form the center of the sphere but after some time it will keep on moving up. And after all the water 

has trickled away, the center of mass of the bob will lie again at the center of the sphere. So, as long 

as some water will remain in the hollow sphere, its time period will keep on changing. But the initial 

time period Ti and the final time period Tf will be same (i.e., Ti = Tf).

 10. How does periodic motion differ from simple harmonic motion?

 Ans. Any motion that repeats itself at regular intervals of time on the same path is called periodic motion. 

On the other hand, the simple harmonic motion is a periodic motion in which the particle traces the 

same path twice in one period. The locus of the moving particle may or may not be a straight line in 

case of a periodic motion. But in case of simple harmonic motion, the locus of the moving particle is 

always a straight line. In case of a simple harmonic motion, the acceleration of the particle is directly 

proportionnal to the displacement. But in case of a non-simple-harmonic periodic motion, the accel-

eration is never proportional to the displacement.

Part 2: Descriptive Questions

 1. What are the characteristics of SHM? Define time period, frequency, amplitude and phase of a simple 

harmonic oscillator. Prove the principle of conservation of energy in this case. [WBUT 2001]

 2. A cubical box of L cm side and density r is floating on water of density d (r < d). The block is 

slightly depressed and released. Show that it will execute simple harmonic oscillation. Determine its 

frequency of oscillation. [WBUT 2001]

 3. Establish the differential equation of simple harmonic motion and solve it. [WBUT 2004]
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 4. Prove that the motion of a simple pendulum (with small oscillation) is a simple harmonic motion. 

Hence, find the expression of its period of oscillation.

 5. Prove that the horizonal motion of a spring-mass system on a frictionless surface is simple harmonic. 

Hence find the expression for its time period and frequency.

 6. Prove that the vertical oscillation of a loaded spring is simple harmonic. And hence find an expres-

sion for its time period of oscillation.

 7. Two SHMs with the same time period of oscillation differing in phase and amplitude are acting in the 

same direction on a particle. Deduce expression for the amplitude and phase of the resulting motion. 

Discuss the special cases while the phase difference is 0, p/2, and p respectively.

 8. What is simple harmonic motion? Show that for a simple harmonic oscillator, the average kinetic 

energy equals the average potential energy.

 9. A simple harmonic oscillator is characterized by y = cos w t. Calculate the displacement at which 

kinetic energy is equal to its potential energy.

 10. Calculate the resultant of two simple harmonic oscillations at right angles when their periods are in 

the ratio of 3:1.

 11. Derive the equation of a simple harmonic oscillator form the energy consideration.

 12. What oscillates in a simple harmonic electrical oscillator? Can we realize it in practice? 

Part 3: Numerical Problems

 1. The displacement of a particle executing simple harmonic motion is given by 

   y = sin kt + cos kt

  Find (i) time period, (ii) amplitude of vibration.

 2. If y1 = 4 sin (10t + f) and y2 = 5 cos (10t) be the displacements of two particles at time t, then find 

the phase difference between the velocity of the particles.

 3. Two vibrations at right angles to each other are described by the following two equations: 

   x = 5 cos 3pt

   y = 5 cos  ( 6pt +   
p

 __ 
4
   ) 

  where x and y are expressed in cm and seconds. Construct the Lissajous’ figures.

 4. A particle of 100 g mass is held between two rigid supports by two springs of force constants of 

8 N/m and 2 N/m. If the particle is displaced along the directions of the lengths of the springs, calcu-

late the frequency of vibration.

 5. A body executing simple harmonic motion has an amplitude of 100 cm and a time period of 3 s. 

Calculate the time taken by the body to travel a distance of 5 ÷ 
__

 3   cm from its mean position.

 6. A particle describes simple harmonic motion in a line 4 cm long. Its velocity, when it passes through 

the center of the line, is 16 cm s–1. Find the time period of its oscillation.

 7. A point mass m is suspended at the end of a massless wire of length l and cross-sectional area A. If the 

Young’s modulus of elasticity of the wire be Y then obtain the frequency of oscillation for the simple 

harmonic motion along the vertical line.

 8. A particle moves along a straight line with a period of 2.5 seconds and an amplitude of 12 cm. What 

is the kinetic energy when it is 2 cm away from its position of equilibrium? 



CHAPTER

2
Free and Damped Vibrations

 2.1 FREE VIBRATIONS 

Let us consider a simple pendulum whose bob has been suspended from a rigid support with a string and kept 

in an evacuated chamber having a transparent window through which the bob can be seen from outside. Let 

us also assume that the bob is made of a magnetic substance and the string is inflexible and massless. Now, if 

the bob is displaced from its mean position with the help of a magnet from outside and left itself, then it will 

keep on oscillating for an indefinite time with a constant amplitude and a constant frequency of vibration. 

Such a vibration is called a free vibration.

 This type of vibration is, however, an ideal case since in reality we cannot have a massless and inflexible 

string. But this idea helps one develop the concept. So, we can define a free vibration as follows: The free or 

undamped or natural vibration is the vibration of a body which is completely free from external forces. 

In other words— simple harmonic motions which persist indefinitely without loss of energy and reduction in 

amplitude are called free or undamped vibrations.

 However, observations of the free vibrations of a real physical system reveals that the energy of the 

vibrator gradually decreases with respect to time and the vibrator eventually comes to rest. For example, the 

amplitude of a simple pendulum vibrating in air decreases with time and it ultimately stops its vibration. The 

vibrations of a tuning fork die away with elapsing of time. This happens because of the presence of friction 

(or damping) in actual physical systems. And the friction always resists motion. In the previous chapter, for 

the motion of simple harmonic oscillators, we have assumed that their vibrations are free or undamped.

 2.2 DIFFERENTIAL EQUATION OF FREE OR UNDAMPED VIBRATIONS

If a particle executes SHM freely, then its kinetic energy for a displacement y is given by

  Ek =   
1
 __ 

2
   m   (   dy

 ___ 
dt

   )  
2

 

 And at the same instant of time, its potential energy is given by Ep =    
1
 __ 

2
   ky2 where k is the restoring force 

per unit displacement.

 So, the total energy (E) at any instant of time is given by

  E = Ep + Ek
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or,  E =   
1
 __ 

2
   m   (   dy

 ___ 
dt

   )  
2

  +   
1
 __ 

2
   ky2

 As the concerned oscillator is a free one, its total energy will remain constant,

\  E =   
1
 __ 

2
   m   (   dy

 ___ 
dt

   )  
2

  +   
1
 __ 

2
   ky2 = constant …(2.1)

 Now, differentiating Eq. (2.1) with respect to time, we get

  m   
d2y

 ___ 
dt2

   + ky = 0 …(2.2)

or,    
d2y

 ___ 
dt2

   +  (   k __ m   )  y = 0

or,    
d2y

 ___ 
dt2

   + w2 y = 0 …(2.3)

where w2 =  (   k __ m   ) 
 Equation (2.3) is an ideal equation for a free oscillator. In Chapter 1, we considered this equation only.

 2.3 DAMPED VIBRATIONS

In real practice, when one causes a pendulum to vibrate in air, there are always frictional forces acting on the 

system and consequently, the energy of the system gets dissipated in each vibration. The amplitude of vibra-

tion decreases continuously with respect to time, and finally the oscillations of the vibrator die away. Such 

vibrations are known as free damped vibrations. The dissipated energy appears as heat either within the sys-

tem itself or in the surrounding medium. In case of small oscillations, the dissipative forces due to friction (or 

resistance in case of an LCR circuit) are proportional to the velocity of the vibrator in that instant of time.

 Let b   
dy

 ___ 
dt

   be the dissipative force due to friction. This term is to be introduced in the equation of a free 

simple harmonic oscillator (SHO), i.e., Eq. (2.2). So the differential equation in case of the free-damped 

vibrations is given by

  m   
d2y

 ___ 
dt2

   + b   
dy

 ___ 
dt

   + ky = 0 ...(2.4)

or,    
d2y

 ___ 
dt2

   +  (   b __ m   )    dy
 ___ 

dt
   +  (   k __ m   ) y = 0

or,    
d2y

 ___ 
dt2

   + 2b   
dy

 ___ 
dt

   + w2y = 0 …(2.5)

where b =   
b
 ___ 

2m
   and w2 =   

k
 __ m  

 So, Eq. (2.5) represents the equation of motion of a damped harmonic oscillator.
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 2.4 SOLUTION OF THE EQUATION OF A DAMPED OSCILLATOR AND ITS 
ANALYSIS

In order to solve Eq. (2.5), let us put y = aeat (the trial solution).

Then,   
dy

 ___ 
dt

   = a aeat = ay

or,    
d2y

 ___ 
dt2

   = a2 aeat = a2y

 Now, substituting the values of   
d2y

 ___ 
dt2

   and   
dy

 ___ 
dt

   in Eq. (2.5), we get

  a2y + 2bay + w2y = 0

or,  a2 + 2ba + w2 = 0

or,  a = – b ±  ÷ 
______

 b2 – w2  

\ the general solution of Eq. (2.5) can be written as

  y = A1e
(–b + ÷ 

_____

 
 b 2  –  w 2  )t + A2e

 (–b–÷
 

_____

 
 b 2  –  w 2  )t

or,  y = e–bt {A1e
÷
 

_____

 
 b 2  –  w 2   t + A2 e

–÷
 

_____

 
 b 2  –  w 2   t} ...(2.6)

where A1 and A2 are two constants whose values can be determined from the initial conditions.

 Now, depending upon the relative values of b and w, we can come across the following three cases which 

deal with three conditions of motion:

Case 1 When b < w, i.e., the damping force is small, the value of the quantity  ÷ 
______

 b2 – w2   is imaginary and 

it can be written as

   ÷ 
______

 b2 – w2   = i  ÷ 
______

 w2 – b2  

 Hence Eq. (2.6) gets reduced to

  y = e–bt  ( A1  e i  ÷ 
______

  w 2  –  b 2    ◊t + A2  e –i  ÷ 
______

  w 2  –  b 2    ◊t  ) 
or,  y = e–bt {(A1 + A2) cos ( ÷ 

______

 w2 – b2  ) t + i (A1 – A2) sin ( ÷ 
______

 w2 – b2  )t}

or,  y = e–bt {A cos ( ÷ 
______

 w2 – b2  .t) + B sin ( ÷ 
______

 w2 – b2  .t)} …(2.7)

where A = A1 + A2 and B = i (A1 – A2) 

 Now, let us put, A = P cos q and B = P sin q in Eq. (2.7)

where P = ( ÷ 
_______

 A2 + B2  ) and q = tan–1  (   B __ 
A

   ) 
 So, Eq. (2.7) takes the following form:

  y = e–bt {P cos q cos ( ÷ 
______

 w2 – b2  ) t + P sin q sin ( ÷ 
______

 w2 – b2  )t}

or,  y = Pe–bt cos ( ÷ 
______

 w2 – b2  . t – q) …(2.8)

 If there is no damping, then b = 0 and Eq. (2.8) reduces to

  y = P cos (w t – q) …(2.9)

which is the solution for the free and undamped SHM.
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 Now, let us apply the initial conditions in order to evaluate the values of the constants.

 Let y = yo at t = 0, so the initial displacement at t = 0 is yo. And the initial velocity at t = 0 is given by

   =   (   dy
 ___ 

dt
   )  

t = 0
  = vo (say)

 Putting these values of y, and t in Eq. (2.7), we get

\  yo = A fi A = yo

 Now, from Eq. (2.7), by differentiating with respect to t, we get

   = – be–bt {A cos  ÷ 
______

 w2 – b2   ◊ t + B sin  ÷ 
______

 w2 – b2   ◊ t}

    + e–bt  ÷ 
______

 w2 – b2   {– A sin  ÷ 
______

 w2 – b2   ◊ t + B cos  ÷ 
______

 w2 – b2   ◊ t} 

or,  ( )t = 0 = vo = – bA +  ÷ 
______

 w2 – b2   ◊ B

or,  B =   
vo + bA

 ________ 
 ÷ 

______

 w2 – b2  
   =   

vo + b ◊ yo
 ________ 

 ÷ 
______

 w2 – b2  
  

\  y = e–bt  { yo cos ( ÷ 
______

 w2 – b2   ◊ t) +   
vo + byo

 ________ 
 ÷ 

______

 w2 – b2  
   sin ( ÷ 

______

 w2 – b2  ) t }  …(2.10)

 The initial motion of the oscillator can be started by either of the two ways:

 (a) by giving initial displacement or

 (b) by striking, i.e., by imparting an initial velocity.

Case (a) When yo π 0 and vo = 0, we get

  y = yo e
–bt  { cos  (  ÷ 

______

 w2 – b2   )  ◊ t +   
b
 ________ 

 ÷ 
______

 w2 – b2  
   sin ( ÷ 

______

 w2 – b2  ) t }  …(2.11)

Case (b) When yo = 0 and vo π 0, we get

  y =   
voe

–bt

 ________ 
 ÷ 

______

 w2 – b2  
   sin ( ÷ 

______

 w2 – b2  )t …(2.12)

 Now, as A = P cos q and B = P sin q and we know the values of A and B as given above, we get

  P =  ÷ 
_______

 A2 + B2   =  ÷ 
_______________

   y  o  
2  +   (   vo + byo

 ________ 
 ÷ 

______

 w2 – b2  
   )  

2

   

or,  P =  ÷ 
_________________

    
 y o  

2  w2 +  v o  
2  + 2b yo vo

  _________________  
(w2 – b2)

    

and q = tan–1  (   
byo + vo

 __________ 
yo  ÷ 

______

 w2 – b2  
   ) 

 If the motion is started by imparting initial displacement, then we obtain

  y = yo e
–bt  { cos ( ÷ 

______

 w2 – b2   ◊ t) +   
b
 ________ 

 ÷ 
______

 w2 – b2  
   sin ( ÷ 

______

 w2 – b2   ◊ t) }  [Eq. (2.11)]
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 This equation can be written as

  y =  (   
wyo
 ________ 

 ÷ 
______

 w2 – b2  
   )  . e–bt cos  {  ÷ 

______

 w2 – b2  . t – tan–1  (   b
 ________ 

 ÷ 
______

 w2 – b2  
   )  }  …(2.13)

  Hints: Let b = w sin f

  \  ÷ 
______

 w2 – b2   =  ÷ 
____________

  w2 – w2 sin2 f   = w cos f

  \   
b
 ________ 

 ÷ 
______

 w2 – b2  
   =   

w sin f
 _______ 

w cos f
   = tan f

  \ f = tan–1   
b
 ________ 

 ÷ 
______

 w2 – b2  
  

 The motion expressed by Eq. (2.13) represents a damped oscillatory motion whose amplitude

 (   
wxo
 ________ 

 ÷ 
______

 w2 – b2  
   . e–bt )  decreases exponentially with respect to time at a rate determined by the decay constant b and 

the time period T is given by

  T =   
2 p
 ________ 

 ÷ 
______

 w2 – b2  
  

 This damping motion has been shown in 

Fig. 2.1.

 This decrement of amplitude is called 

logarithmic decrement of the amplitude of a 

damped oscillator, because the amplitude is an 

exponential function of time and is given by

  A(t) = Ao e
–bt

where A(t) is the time dependent amplitude and 

Ao is given by Ao =   
wyo
 ________ 

 ÷ 
______

 w2 – b2  
  

\  ln A(t) = ln Ao + ln (e–bt)

or,  ln A(t) = ln Ao – bt

 So, if we plot A(t) versus t, we get the graph of 

Fig. 2.2.

 Comparing this damped oscillator motion with 

the free undamped motion of an oscillator [Eq. 

(2.9)], we can see that damping force has the fol-

lowing effects on the motion of an oscillator:

 (i) The amplitude is not constant but it dies 

away logarithmically.

 (ii) The frequency of oscillation reduces slightly below the natural frequency. The damped frequency is 

given by nd =   
 ÷ 

______

 w2 – b2  
 ________ 

2p
   whereas the natural frequency is given by nn =   

w
 ___ 

2p
   .

Case 2 When b > w, i.e., damping force is large, the motion of the oscillator turns to be non-oscillatory. If 

yo be the initial displacement and vo be the initial velocity, then the general solution is given as follows:

Fig. 2.2 Logarithmic decrement of the amplitude of a 
damped oscillator with respect to time.

ln Ao

ln Ao

b

t

ln
(

)
A
t

(0, 0)

Fig. 2.1 The displacement of a damped oscillator 
decreases with increase of time and ultimately 
it dies out.

t

y
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  y = A1e
(–b + ÷ 

_____

 
 b 2  –  w 2  )t + A2e

(–b – ÷ 

_____

 
 b 2  –  w 2  )t

 This equation, at t = 0, reduces to

  yo = A1 + A2 …(2.14)

or,  A1 + A2 = yo

 Now, v =   
dy

 ___ 
dt

   = – be–bt {A1e
÷
 

_____

 
 b 2  –  w 2  . t + A2e

–÷
 

_____

 
 b 2  –  w 2  . t} +  ÷ 

______

 b2 – w2   . e–bt {A1e
÷
 

_____

 
 b 2  –  w 2  . t – A2 e

–÷
 

_____

 
 b 2  –  w 2  . t}

 At t = 0, vo = – b (A1 + A2) +  ÷ 
______

 b2 – w2   (A1 – A2)

or,  vo = – byo +  ÷ 
______

 b2 – w2   (A1 – A2) [by Equation (2.14)]

or,  A1 – A2 =   
vo + bo yo

 ________ 
 ÷ 

______

 b2 – w2  
   …(2.15)

 Now, from Eqs. (2.14) and (2.15), we get

  A1 =   
yo

 __ 
2
    { 1 +   

b + vo /yo
 ________ 

 ÷ 
______

 b2 – w2  
   } 

and A2 =   
yo

 __ 
2
    { 1 –   

b + vo /yo
 ________ 

 ÷ 
______

 b2 – w2  
   } 

 Now, substituting these values of A1 and A2 in the general equation, i.e., in

  y = e–bt (A1 e
÷
 

_____

 
 b 2  –  w 2   t + A2 e

–÷
 

_____

 
 b 2  –  w 2   t) 

we get

  y =   
yo

 __ 
2
   e–bt  {  ( 1 +   

b + vo /yo
 ________ 

 ÷ 
______

 b2 – w2  
   )   e  ÷ 

______

 b2 – w2   . t  +  ( 1 –   
b + vo /yo

 ________ 
 ÷ 

______

 b2 – w2  
   )   e – ÷ 

______

 b2 – w2   . t  }  …(2.16)

 Equation (2.16) represents an aperiodic 

motion, i.e., a non-oscillatory motion. The dis-

placement y gradually falls off with respect to 

time because of the term (e–bt). If a pendulum 

is allowed to move in a thick oil then it exhib-

its this type of aperiodic motion. Similarly, an 

over-damped moving coil galvanometer also is 

able to show such an aperiodic motion. It is rep-

resented in Fig. 2.3 and such a motion is called 

dead beat motion.

Case 3 When b = w, the motion is critical. 

That is, it is a transitional case when the damped 

oscillatory motion changes into a dead beat 

motion. This is known as critical damping 

and the decay of y is most rapid in this criti-

cal case. This motion is illustrated in Fig. 2.3. If the damping is slightly less than this, the damped oscillator 

starts oscillating.

Fig. 2.3 The overdamped and critically damped motions 
have been shown. If the daming is slightly less 
than critical damping then the oscillator will 
vibrate.
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2.4.1 Solution of Differential Equation in Critical Case 

To get the solution, in the critical case, we first take b ª w, i.e., b – w ª 0 and then finally put b – w = 0 (i.e., 

exactly equal to zero).

 We can rewrite Eq. (2.16) as follows:

  y =   
yo

 __ 
2
   e–bt  {  e  ÷ 

______

 b2 – w2   . t  +  e–  ÷ 
______

 b2 – w2   . t  +   
b + v0/y0

 ________ 
 ÷ 

______

 b2 – w2  
   ( e  ÷ 

______

 b2 – w2   . t  –  e–  ÷ 
______

 b2 – w2   . t ) } 

 Now, expanding and neglecting the higher order terms, we get

  y =   
yo

 __ 
2
   e–bt  { 1 + ( ÷ 

______

 b2 – w2  ) t + 1 – ( ÷ 
______

 b2 – w2  ) t +   
b + vo /yo

 ________ 
 ÷ 

______

 b2 – w2  
   (1 + ( ÷ 

______

 b2 – w2  )t – 1 + ( ÷ 
______

 b2 – w2  )t) } 

 Finally, upon simplification by putting b – w = 0, we obtain

  y =   
yo

 __ 
2
   e–bt {2 + 2 (b + vo/yo)t}

or,  y = yo e
–bt {1 + (b + vo/yo) t} …(2.17)

2.4.2 Mathematical Expression of Logarithmic Decrement

Let Ao and At be the amplitudes of a damped oscillator respectively at time t = 0 and t = t.

 At is given by

  At = Ao e
–bt  [see eqn.(2.8)]

where b is the damping constant and is given by b =   
b
 ___ 

2m
   where b is the damping force per unit velocity and m 

is the mass of the oscillator. If the oscillator starts from its mean position, then at t = T/4 (i.e., one fourth of its 

time period) it goes to its maximum displacement. Let this displacement be denoted by A1. Then we have

  A1 = Ao e 
–   

bT
 ___ 

4
  
 

  The oscillator goes to its maximum displacement (A2) on the same side after a time  ( T +   
T

 __ 
4
   ) , where

  A2 = Ao  e 
–b ( T +   

T
 __ 

4
   )  

  Similarly, the successive amplitudes A3, A4, … An, on the same side are given by

  A3 = Ao  e 
–b ( 2T +   

T
 __ 

4
   )  

  A4 = Ao  e 
–b ( 3T +   

T
 __ 

4
   )  

  …

  An = Ao  e 
–b (  

____

 n – 1  × T +   
T

 __ 
4
   )  

\    
A1

 ___ 
A2

   =   
A2

 ___ 
A3

   =   
A3

 ___ 
A4

   = … =   
An–1

 ____ 
An

  

   = e+bT = d (say)

  d being a constant  

 Hence,    
An

 ____ 
An+1

   = ebT = d  º(2.18)
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  This constant d is known as decrement.

 Now, ln  (   An
 ____ 

An+1

   )  = bT

 or, ln  (   Ai
 ____ 

Ai+1

   )  = bT = l (say) …(2.19)

  The constant l is called logarithmic decrement.

  So, l can be defined as the natural logarithm of the ratio of any amplitude to the next amplitude on the 

same side of the mean position of a damped oscillation separated by one full time period.

 2.5 ELECTRICAL ANALOGY OF SHM AND DV

Simple harmonic motions (SHM) and damped vibration (DV) can be observed in electrical circuits also like 

mechanical systems.

2.5.1 SHM in an LC Circuit

Let us consider the following electrical circuit which has been shown in Fig. 2.4. It is an LC circuit.

 Figure 2.4 shows an LC circuit which contains one inductor L and one capacitor C connected parallelly. 

Initially the key K2 is pressed and the capacitor C statrs charging. When C is fully chargred K2 is released and 

immediately the key K1 is pressed. At this state the LC circuit is closed. So it starts oscillating. The voltage 

across the capacitor is   
q
 __ 

C
   and that across the inductor is – L   

di
 __ 

dt
   = – L   

d2q
 ___ 

dt2
  . The minus sign indicates that the 

voltage opposes the increase of current. From Kirchhoff’s law, the net voltage in the circuit is zero.

\  – L   
d2q

 ___ 
dt2

   =   
q
 __ 

C
  

or,    
d2q

 ___ 
dt2

   +   
1
 ___ 

LC
   q = 0

or,    
d2q

 ___ 
dt2

   + w2q = 0 …(2.20)

where w2 =   
1
 ___ 

LC
  

 Equation (2.20) is similar to Eq. (2.3) which is the 

differential equation of SHO.

 Thus, in an electrical circuit consisting of an inductor (L) and a capacitor (C) the charge oscillates simple 

harmonically with an angular frequency w =   
1
 ____ 

 ÷ 
___

 LC  
   and a period T = 2p  ÷ 

___
 LC  ,

\  q = qo cos (w t – f) [where qo is the initial charge]

or,  i =   
dq

 ___ 
dt

   = – wqo sin (w t – f)

or,  i = – io sin (w t – f)

where io = wqo is the maximum current in the circuit and io is given by io = vo  ÷ 
__

   
C

 __ 
L

    

Fig. 2.4 An oscillatory LC circuit, L-inductor,
C-Capacitor, K-key and e -cell.



Free and Damped Vibrations 2.9

2.5.2 Damped Vibration (DV) in an LCR Circuit

Let us consider the following electrical circuit which has been shown in Fig. 2.5. It is an LCR circuit. It is 

capable of showing damped oscillations. When R = 0, the oscillations of the circuit are undamped with angu-

lar frequency wo =   
1
 ____ 

 ÷ 
___

 LC  
  . The resistance generates the resistive (or dissipative) force in the circuit. As soon 

as the key K2 is pressed, the capacitor gets charged by 

the battery and on release of the key, K2 if the key K1 is   

pressed then the battery is thrown out of the circuit and 

the capacitor starts discharging. At time t, V =   
q
 __ 

C
   is the 

potential of the capacitor and the induced emf across the 

inductor is L   
di

 __ 
dt

   and potential across the resistor is iR.

 So, we can write

    
q
 __ 

C
   = – L   

di
 __ 

dt
   – iR

or,  L   
di

 __ 
dt

   + iR +   
q
 __ 

C
   = 0

or,  L   
d2q

 ___ 
dt2

   + R  
dq

 ___ 
dt

   +   
q
 __ 

C
   = 0

or,    
d2q

 ___ 
dt2

   +   
R

 __ 
L

     
dq

 ___ 
dt

   +   
q
 ___ 

LC
   = 0

or,    
d2q

 ___ 
dt2

   + 2b   
dq

 ___ 
dt

   + w2q = 0 …(2.21)

where   
R

 __ 
L

   = 2b and   
1
 ___ 

LC
   = w2 

 Equation (2.21) is similar to Eq. (2.5) which is the equation for a damped vibration.

 So, the LCR circuit represents a damped vibrator.

 2.6 ENERGY OF THE DAMPED OSCILLATOR

The total energy of any oscillator is given by

   E = Ek + Ep

 where E is the total energy, Ek is the kinetic energy and Ep is the potential energy.

  \ E =   
1
 __ 

2
   mv

2 +   
1
 __ 

2
   ky2 …(2.22)

where k is the restoring force per unit change of displacement y.

  If the oscillator is a damped oscillator, then its displacement is given by

   y = ae–bt sin (w ¢t + d) …(2.23)

Fig. 2.5 An LCR circuit which shows damped 
vibration. R-resistance, L-inductor, 
C-Capacitor e-source, i-current, K-key.
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where   w ¢ =  ÷ 
______

 w2 – b2  

  \ v =   
dy

 ___ 
dt

   = ae–bt (w ¢) cos (w ¢t + d)   …(2.24)

  If the oscillator is excited by giving a velocity vo suddenly in the mean position then at t = 0,   
dy

 ___ 
dt

   = vo 

and d = 0

  \ vo = aw ¢ fi a = vo /w ¢

  \ y =   
vo

 ___ 
w ¢

   e–bt sin (w ¢t) …(2.25)

and   v = vo e
–bt cos (w ¢ t) –   

vob
 ___ 

w ¢
   e–bt sin (w ¢t)

  \ v ª voe
–bt cos (w ¢t) [  b is very small] …(2.26)

  \ Eq. (2.22) can be written as

   E =   
1
 __ 

2
   m v o  

2  e–2bt cos2 (w ¢t) +   
k v o  

2 
 ____ 

2w ¢2
   e–2bt sin2 (w ¢t) [using Eqs. (2.24) and (2.25)]

or,   E =   
1
 __ 

2
   m v o  

2  e–2bt cos2 w ¢t +   
1
 __ 

2
   mv

2   (   w ___ 
w ¢

   )  
2
  e–2bt sin2 w ¢t [  k = mw2]

or,   E =   
1
 __ 

2
   m v o  

2  e–2bt  [ cos2 w ¢t +   
w2

 ___ 
w ¢2

   . sin2w ¢t ] 
  In case of low damping

   w ¢ =  ÷ 
_______

 w2 – b2   ª w = natural angular frequency

  \ E =   
1
 __ 

2
   m v o  

2  e–2bt [cos2 w ¢t + sin2 w ¢t]

or,   E =   
1
 __ 

2
   m v o  

2  e–2bt

  Initially, at t = 0, E =   
1
 __ 

2
   m v o  

2  = Eo (say)

  \ E = Eo e
–2bt …(2.27)

  i.e., in case of small damping, the energy decays exponentially as given by Eq. (2.27). 

Worked-out Examples

Example 2.1  Show that y = (A + Bt)  e 
–   

bt
 ___ 

2m
  
  is the solution of the following differential equation for  critically 

damped vibration:

    
d2y

 ___ 
dt2

   +   
b

 __ m     
dy

 ___ 
dt

   +   
k
 __ m   y = 0

where m is the mass of the vibrating system, b is the resistive force per unit velocity and k is the restoring 

force per unit displacement.

Sol.  If the vibrating system gets displaced along the y-axis then the differential equation of a damped 

harmonic motion is given by
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d2 y

 ____ 
dt2

   + 2b   
dy

 ___ 
dt

   + w2 y = 0 …(1)

  where 2b =   
b

 __ m  , w2 =   
k
 __ m  

  Now, given,

   y = (A + Bt)  e 
–   

bt
 ___ 

2m
  
  = (A + Bt) e–bt

or,   y = (A + Bt) e–bt …(2)

  \   
dy

 ___ 
dt

   = – b(A + Bt) e–bt + Be–bt …(3)

and     
d2y

 ___ 
dt2

   = b2 (A + Bt) e–bt – 2b Be–bt …(4)

  Now, substituting the values of y,   
dy

 ___ 
dt

   and   
d2y

 ___ 
dt2

   respectively from Eqs. (2), (3) and (4) in Eq. (1), we 

get

   b2 (A + Bt) e–bt – 2bBe–bt – 2b2 (A + Bt) e–bt + 2bBe–bt + w2 (A + Bt) e–bt = 0

or,   (w2 – b2) (A + Bt) e–bt = 0

or,   (w2 – b2) y = 0

  But y cannot be zero for all times,

  \ w2 – b2 = 0

or,   w2 = b2

  This is the condition for critical damping of a vibration. Hence, the given expression y = (A + Bt)  e 
–   

bt
 ___ 

2m
  
  

is the solution of the given differential equation for the critically damped oscillation.

Example 2.2  What is decay constant (or relaxation time)? How does it vary with damping coefficient?

[WBUT 08]

Sol.  The relaxation time of a damping oscillator is defined as the time in which the amplitude of a damped 

oscillator decays to   
1
 __ e   time of its initial amplitude.

  If Ao and At be the amplitudes of the oscillator at times t = 0 and at time t = t respectively then we can 

write,

     
At

 ___ 
Ao

   =   
1
 __ e  

  But e = 2.717 fi   
1
 __ e   = 0.368

  \ At = 0.368 Ao

  Hence, the higher is the decay constant (or relaxation time, tr), the slower is the rate of decay of the 

amplitude. So, in such a case the rate of dissipation of energy of the damped oscillator also will be 

slow.

  For a damping system, the amplitude varies with time exponentially. 

  So, we can write

   At = Ao e
–bt



Basic Engineering Physics2.12

  where b =   
b
 ___ 

2m
   and b is the damping coefficient, i.e., damping force per unit velocity of the 

oscillator.

  Now, if time t is equal to the relaxation time tr (i.e., t = tr), then, we get

   At = Ao e
–b t 

r
  =   

1
 __ e   Ao [by definition]

or,   e–b t 
r
  = e–1

or,   btr = 1 fi tr =   
1
 __ 

b
  

or,   tr =   
2m

 ___ 
b

  

  So, the relaxation time (tr) of the damped oscillator varies inversely as the damping coefficient (b).

Example 2.3  Show that in case of damped oscillation with a small amount of damping, the corresponding 

time period of oscillation is higher than the time period of free oscillation.

Sol.  In case of small damping, the angular frequency wd =  ÷ 
______

 w2 – b2   where w is the angular frequency of 

a similar undamped oscillator and b =   
k¢ ___ 

2m
  , k¢ being damping coefficient.

  \ the time period Td of the damped oscillator is given by

   Td =   
2p

 ___ wd
   =   

2p
 ________ 

 ÷ 
______

 w2 – b2  
  

  whereas the time period of an undamped oscillator is given by

   T =   
2p

 ___ w  

  From the values of Td and T

   Td > T [   ÷ 
______

 w2 – b2   < w]

Example 2.4  Show that in case of damped vibrator, the rate of loss of energy of the vibrator is equal to 

the rate of work done by the vibrator against the resisting force.

Sol.  For a damped vibrator, the equation of motion is given by

   m   
d2y

 ___ 
dt2

   + k¢   
dy

 ___ 
dt

   + ky = 0

or,   m   
d2y

 ___ 
dt2

   + ky = – k¢   
dy

 ___ 
dt

   = resisting force = Fres (say)

  The total energy of the vibrator is given by

   E = Ek + Ep

or,   E =   
1
 __ 

2
   m   (   dy

 ___ 
dt

   )  
2

  +   
1
 __ 

2
   ky2

  \   
dE

 ___ 
dt

   =   
m

 __ 
2
  . 2 .  (   dy

 ___ 
dt

   )  .   d
2y
 ___ 

dt2
   +   

k
 __ 

2
   . 2y .   

dy
 ___ 

dt
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or,     
dE

 ___ 
dt

   =  ( m   
d2y

 ___ 
dt2

   + ky )    dy
 ___ 

dt
  

    =  ( – k¢   
dy

 ___ 
dt

   )   (   dy
 ___ 

dt
   )  = Fres   

dy
 ___ 

dt
  

or,     
dE

 ___ 
dt

   =   
d
 __ 

dt
   (Fres . y) =   

d
 __ 

dt
   (W)

  where W is the work done against the resistive force.

  So,   
dE

 ___ 
dt

   =   
dW

 ___ 
dt

  

  i.e., the rate of loss of energy of the damped vibrator is equal to the rate of work done against the 

resisting force.

Example 2.5  The amplitude of an oscillator of 200 cps frequency falls to (1/10)th of its initial value after 

2000 cycles. Calculate its relaxation time, quality factor and time in which its energy falls to (1/10)th of its 

initial value.   [WBUT 2008]

Sol.  Let Q be the quality factor of the oscillator, n be its frequency, m be its mass and b be the damping 

force for per unit velocity.

  The damping constant b is given by

   b =   
b
 ___ 

2m
  

  \ the amplitude at any time t is given by

   A(t) = Ao e
–bt

 where Ao is the initial amplitude.

  \   
A(t)

 ____ 
Ao

   = e–bt …(1)

  The frequency n = 200 s–1

  \ time period T =   
1
 __ 

n 
   =   

1
 ____ 

200
   s

  Time taken for 2000 cycles is given by

   t = 10 T =   
10

 ____ 
200

   s =   
1
 ___ 

20
   s

  \ from Eq. (1), we can write

   e–bt =   
A(t)

 ____ 
Ao

   =   
1
 ___ 

10
   = 10–1

or,   log10(e
–bt) = –1

or,   – bt log10
e = –1

or,   b =   
1
 ________ 

t × log10
e   =   

1
 __________ 

  
1
 ___ 

20
   × log10

e
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or,   b =   
20
 _____ 

log10
e   = 20 ln 10

or,   b = 20 × 2.3 = 4.6

  \ the quality factor Q is given by

   Q =   
w

 ___ 
2b

   =   
2p × 200

 ________ 
2 × 4.6

   = 136.6

  The relaxation time tr is given by

   tr =   
1
 __ 

b
  

or,   tr =   
1
 ___ 

4.6
  

or,   tr = 0.217 s

  We know, for a damping system, that the energy at time t is given by

   Et = Eo e
–2bt

  Let Ei and Ef be energies at t = 0 and t = tf.

  \ Ef = Ei e
–2b t 

f
  [  Ei = E0 e

–2b.0 = Eo]

or,   e–2b t 
f
  =   

Ef
 __ 

Ei

   =   
1
 ___ 

10
  

or,   e–2b t 
f
  = 10–1

or,   – 2btf = – ln 10

or,   2btf = ln 10

or,   tf =   
1
 ___ 

2b
   × ln 10

or,   tf =   
1
 ______ 

2 × 4.6
   × 2.3

   tf =   
1
 __ 

4
   = 0.25 s

 

Example 2.6  In damped harmonic motion, calculate the time in which the energy of the system falls to 

e–1 times of its initial value.   [WBUT 2007].

Sol.  The energy at time t in damping motion is given by

   E(t) = Eo e
–2bt

  Let Ef be the energy at time tf when Ef /Ei =   
1
 __ e   where Ei = Eo

  \   
Ef

 __ 
Ei

   = e–2b t 
f
  =   

1
 __ e  

or,   e–2b t 
f
  = e–1

  \ 2btf = 1
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  \ tf =   
1
 ___ 

2b
   …(1)

  Here, b is the damping constant. So, if value of b is given then value of time tf can be numerically 

calculated.

Example 2.7  Write down the differential equation of a series LCR circuit driven by a sinusoidal voltage. 

Identify the natural frequency of this circuit. Find out the condition that this circuit will show an oscillatory 

decay and find out the relaxation time. [WBUT 2007].

Sol.  Refer to subsection 2.5.2 for the first part. 

  The natural frequency of the circuit is given by

   w =   
1
 ____ 

 ÷ 
___

 LC  
   = 2pn

 where w is the angular frequency and n is the frequency.

  \ n =   
1
 ______ 

2p ÷ 
___

 LC  
  

  The damping constant b is given by

   2b =   
R

 __ 
L

   fi b =   
R

 ___ 
2L

  

  The condition for the circuit to be oscillatory damping is that b must be small. So the circuit should 

have low resistance or high inductance.

  The relaxation time tr is given by

   tr =   
1
 __ 

b
   =   

2L
 ___ 

R
  

Example 2.8  The damped frequency of vibration of a body is 200 Hz. The amplitude of vibration 

becomes   
1
 __ e   of the initial amplitude after 1 second. Calculate the frequency of free vibration.

Sol.  For vibration to occur, the damping frequency must be low.

  \ the amplitude at any time t is given by

   A(t) = Aoe
–bt

  And the amplitude after 1 second is

   A(t + 1) = Ao e
–b(t + 1)

  \ according to the given condition,

   A(t + 1) =   
1
 __ e   A(t)

or,   Aoe
–b(t + 1) =   

1
 __ e   Ao e

–bt

or,   e–b(t + 1) = e–bt – 1

or,   bt + b = bt + 1

  \ b = 1

  For low damping, the displacement can be written as

   y = Ao e
–bt sin ( ÷ 

______

 w2 – b2   t – d)
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  So, we can write

    ÷ 
______

 w2 – b2   = 2p × vd where vd is the frequency of damped oscillation.

or,    ÷ 
______

 w2 – b2   = 2p × 200

or,   w2 – b2 = (400 p)2

or,   w2 = (400 p)2 + 12 [  b = 1]

or,   w =  ÷ 
________

 1579201  

  \ the frequency of free vibration is given by

   n =   
w

 ___ 
2p

   =   
 ÷ 

________

 1579201  
 _________ 

2p
   ª 200 Hz

Example 2.9  In a series LCR circuit driven by a dc source of emf, the values of L = 1 mH, C = 5 mF and 

R = 0.5 ohm. Calculate the frequency, the relaxation time and Q-factor of the circuit.

Sol.  The angular frequency w ¢ of the driven oscillator is given by

   w ¢ =   (   1
 ___ 

LC
   –   

R2

 ___ 
4L2

   )    
1
 __ 

2
  

 

where  L = 1 mH = 10–3 H,

  C  = 5 mF = 5 × 10–6 F

and  R = 0.5 ohm

  Putting the above-mentioned values in the expression for w ¢, we get

   w ¢ =   [   1
 _____________  

10–3 × 5 × 10–6
   –   

(0.5)2

 _______ 
4 × 10–6

   ]    
1
 __ 

2
  

 

  \ w ¢ = 1.414 × 104 rad s–1

  Again, w ¢ = 2p v¢ where v¢ is the frequency.

  \ v¢ =   
w ¢ ___ 
2p

   =   
1.414 × 104

 __________ 
2p

   = 0.225 × 104 Hz

  Now, the relaxation time tr is given by

   tr =   
1
 __ 

b
   =   

2L
 ___ 

R
   = 4 × 10–3 s

  and the quality factor Q is given by

   Q =   
w ¢ ___ 
2b

   =   
w ¢ ____ 
R/L

   =   
w ¢L

 ____ 
R

  

  or, Q =   
1.414 × 104 × 10–3

  ________________ 
0.5

   =   
1.414 × 100

 __________ 
5
  

  \ Q = 28.3

Example 2.10  A mechanical oscillator has initial energy Eo = 50 J having a damping coefficient b = 1 s–1. 

Calculate the time required to decrease to Et = Eo/e.

Sol.  If Eo and Et be the energies of the oscillator at t = 0 and t = t respectively then,

   Et = Eo e
–2bt
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or,     
Et

 ___ 
Eo

   = e–2bt

  But according to the condition given,

   Et = Eo/e fi   
Et

 ___ 
Eo

   =   
1
 __ e  

  \ e–2bt = e–1

or,   2bt = 1

or,   2 × 1 × t = 1 [  b = 1s–1]

or,   t = 0.5 s

  \ it will take 0.5 second for the energy to decrease to Eo/e.

Review Exercises

Part 1: Multiple Choice Questions

 1. w is the natural frequency of an oscillator and b is the damping factor (b = b/(2m)) where b = force 

per unit velocity, the quality factor of the oscillator is given by

 (a) w/b (b) w/(2b) (c)   
2w

 ___ 
b
   (d)   

b
 __ w  

 2. Relaxation time is the time in which the amplitude Ai of the damped oscillator falls to 

 (a)   
Ai

 __ 
3
   (b)   

Ai
 __ 

b
   (c)   

Ai
 __ e   (d) Aie

 3. The quality factor of a series LCR circuit is

 (a)   
1
 ______ 

R  ÷ 
___

 LC  
   (b)   

1
 __ 

R
    ÷ 

__

   
L

 __ 
C

     (c)  ÷ 
___

   
RL

 ___ 
C

     (d)  ÷ 
____

 RLC  

 4. The relaxation time is defined as the time during which the amplitude of a damped oscillator

 (a) grows to e times the initial value

 (b) decays to 1/e times the initial value

 (c) grows to e2 times the initial value

 (d) decays to 1/e2 times the initial value

 5. Which of the following relation is true for logarithmic decrement?

 (a) l = b2 T (b) l =  ÷ 
___

 bT   (c) l = bT (d) l = bT2

 6. The quality factor of an electrical oscillator is

 (a)   
wR

 ___ 
L

   (b)   
LR

 ___ w   (c)   
Lw

 ___ 
R

   (d)   
L
 ___ 

Rw
  

 7. For a small value of the damping constant, the quality factor

 (a) decreases (b) remains constant (c) increases (d) None of these

 8. Decay of the oscillations caused by frictional resistive forces is called

 (a) rarefactions (b) forced vibration (c) damping (d) decay of oscillation

 9. When the frequency of the driving force is equal to that of a driven vibrator, the phase difference 

between the duo is
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 (a) 0 (b)   
p

 __ 
2
   (c)   

–p
 ___ 

2
   (d) p

 10. Select the correct statement from the following:

 (a) The higher the damping, the higher the quality factor.

 (b) The lower the damping, the higher the quality factor.

 (c) Damping is not related to quality factor.

 (d) None of these

 11. In case of critical damping, the motion of a system is

 (a) oscillatory (b) vibratory (c) harmonic (d) non-oscillatory

 12. If Fo be the amplitude of the driving force and k be the restoring force per unit displacement then the 

amplitude of the forced oscillator for w = 0 is

 (a)   
k
 ___ 

Fo

   (b)   
Fo

 ___ 
k
   (c) kFo (d)   

1
 ___ 

kFo

  

 13. The sharpness of a velocity resonance curve is high if the damping constant

 (a) b is medium (b) b is small (c) b Æ μ (d) None of these

 14. The amplitude of a damped oscillator with a damping factor b varies as

 (a) e2bt (b) ebt (c) e–bt (d)  e 
  
2
 __ 

bt
  
 

 15. If tr be the relaxation time and b be the damping constant then

 (a) tr =   
2
 __ 

b
   (b) tr =   

1
 __ 

b
   (c) tr = b (d) trb = constant

  [Ans. 1(b), 2(c), 3(b), 4(b), 5(c), 6(c), 7(c), 8(c), 9(a), 10 (b), 11(d), 12 (b), 13(a), 14(c), 15(b)]

Short Questions with Answers

 1. What is the physical significance of the logarithmic decrement of a damped oscillatory 

system?

 Ans. The logarithmic decrement in case of a damped oscillator gives the measure of the rate at which the 

amplitude of oscillation decays. Since the logarithmic decrement is the damping factor multiplied by 

time period, it gives a method of evaluation of the damping coefficient.

 2. Define free vibration. Can a real vibrator vibrate completely freely. If not, why?

 Ans. A free vibrator is such a vibrator which keeps on vibrating with the same amplitude for an indefinite 

time after it is set into vibration. The concept of a free vibrator is an ideal case. In reality, no vibrator 

can vibrate for a long time with the same amplitude. Any real vibrator faces some resisting forces 

due to which its amplitude of vibration keeps on decreasing slowly and it ceases to vibrate after some 

time.

 3. What are the sources of damping force?

 Ans. The various sources of damping are recorded below:

 (i) The loss of energy by radiation of an oscillator

 (ii) The loss of energy by mechanical friction (i.e., viscosity, etc.)

 (iii) The transfer of heat energy from a layer at higher temperature to a layer at lower temperature

 (iv) The intermolecular exchange of energy
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 4. What is critical damping?

 Ans. Critical damping is a border line case. If the damping constant of such an oscillating system is 

increased a bit, it will stop oscillating and if the damping constant is decreased a bit, it will start 

oscillating. In its critical damping stage, the system neither behaves as an oscillator nor as a non-

oscillator. And in case of critical damping the amplitude dies very quickly to zero.

 5. Distinguish between free and damped oscillation.

 Ans.

  Free oscillation  Damped oscillation

 (i) It persists indefinitely without loss of energy. (i) It cannot persist for long time and the energy

     decreases gradually.

 (ii) It is an ideal case; usually it is not seen in nature. (ii) It is a real case. It is very frequently seen.

 (iii) Once started it continues for ever with same (iii) Its amplitude and frequency dies with time.

  amplitude and frequency.

 (iv) It is a conservative system in which the energy (iv) It is a non-conservative system so its energy is

  is conserved.  not conserved.

 (v) Example: Oscillation of a simple pendulum in (v) Example: Oscillation of a simple pendulum in

  absolute vacuum  air.

Part 2: Descriptive Questions

 1. What is meant by damping? Show that for small damping, the average fractional loss of energy of 

a particle executing damped simple harmonic motion in one cycle is four times of the logarithmic 

decrement.

 2. What are the conditions for overdamped, critically damped and underdamped motions? Write the 

displacement–time relationship in each case.

 3. Write down the differential equation for a damped oscillations of a system from the energy principle. 

Solve this differential equation.

 4. What are the similarities and dissimilarities of critically damped and overdamped motion? Show that 

the ratio of the successive amplitudes of damped oscillatory motion is constant.

 5. Define the following terms in connection with the damped simple harmonic motion of a particle: 

(a) decay constant, (b) logarithmic decrement, and (c) quality factor.

 6. (a) What is meant by critical damping? [WBUT 2004]

 (b) Establish the differential equation of a damped harmonic motion and explain the different terms 

in the expression of the equation.

 7. (a) Prove that the vertical motion of a loaded spring immersed in water is damped simple harmonic 

and hence find out an expression for the time period of its oscillation if it is underdamped.

 8. Write down the differential equation of an LCR circuit. Make a comparison between mechanical 

parameters and electrical parameters in relation to vibration.

Part 3: Numerical Problems

 1. A mass of 1 kg is suspended from a spring with a stiffness constant of 24 Nm–1. If the undamped 

frequency is   
2
 ___ 

 ÷ 
__

 3  
   times the damped frequency, calculate the damping factor.
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 2. A damped vibrating system, starting from rest, reaches a first amplitude of 500 mm which reduces to 

50 mm in that direction after 100 oscillations, each of period 2.3 seconds. Find the damping constant 

and correction for the first displacement for damping.

 3. A simple pendulum has a period of 1 second and an amplitude of 10 mm. After 10 complete oscil-

lations, its amplitude is reduced to 5 mm. What is the relaxation time of the pendulum and quality 

factor?

 4. The motion of a particle of mass m = 0.1 kg, subjected to a restoring force of 0.1 Nm–1, is critically 

damped. While at rest, its motion is started by an initial velocity of 0.5 m s–1. Find the maximum 

displacement of the particle.

 5. A body of 10 g mass executes one-dimensional motion. It is acted upon by a restoring force per unit 

displacement of 10 dyne/cm and a restoring force per unit velocity of 2 dyne/(cms–1). Find the value 

of the resisting force which will make the motion critically damping. Also, find the value of mass for 

which the given forces will make the motion critically damping.

 6. The motion of an oscillatory system of 100 g mass, subjected to a restoring force of 100 dyne/cm, is 

critically damped. When it remains at rest, its motion is started by an initial velocity of 50 cm/s. Find 

the maximum displacement of the oscillator.

 7. A vibrating system of 1g mass is displaced from its mean position of rest and released. If it is acted 

upon by a restoring force of 5 dyne/cm and a damping force of 1 dyne/(cm s–1), check if the motion is 

a periodic or oscillatory. If the initial displacement of the system is 5 cm, what would be the displace-

ment after a time duration of 5 seconds?



CHAPTER

3
Forced Vibrations

 3.1 INTRODUCTION 

When a vibrating system is acted upon by an external periodic force, it is assumed to be in a state of forced 

vibrations (or forced oscillations). Initially, the body tends to vibrate with its own natural frequency, while 

the applied force tries to make the body vibrate with the frequency of itself (i.e., the frequency of the periodic 

force). The natural vibration of the forced body dies away quickly due to the influence of the applied force 

and ultimately it vibrates with a frequency which is same as that of the applied force. Such vibrations are 

known as forced vibrations. 

 Examples of forced vibrations are (i) vibration of the couple of a tuning fork and a table, and (ii) the 

coupled vibrations of soldiers and a bridge when they (the soldiers) march on the bridge.

 When the tuning fork forces the table to vibrate in the fork’s own natural frequency, the table vibrates with 

small amplitude. But if both the natural frequencies are equal to each other, the table vibrates with a large 

amplitude. This phenomenon is called resonance. The vibration of the tuning fork continues for a longer 

time if it is not put in contact with the table, whereas if it is held upon the table, the vibration dies out quickly. 

The energy of the tuning fork is drained very quickly to set the table as well as the larger volume of the air in 

contact of it to vibrate.

 If the forced system cannot modify (by its reaction) the forcing system (i.e., the energy of the forcing sys-

tem remains unchanged) then the vibration is called forced vibration. And if the mass of the forcing system 

is very large (as compared to that of the forced system) then only forced vibration is possible. 

 On the other hand, when the forcing system is modified by the forced system it becomes a coupled system 

and the oscillation is called coupled oscillation.

 3.2 SYMPATHETIC VIBRATION OR RESONANCE

If the frequencies of the forcing and the forced systems become equal then these systems vibrate 

with a large amplitude of vibration. The aforesaid phenomenon is called resonance or sympathetic 

vibration. 

 Let us try to understand the forced vibration with the help of an example, given as follows:
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3.2.1 Barton’s Experiment of Forced Vibration

Barton’s experimental set-up has been shown in Fig. 3.1. A thick and several feet long cord AB has been 

stretched between two rigid supports at A and B, but not stretched too much tightly. Six pendulums of dif-

ferent lengths are hanging from it. The pendulums CD and EF 

have the same length. CD has a heavy brass bob while the other 

bobs, including EF, consist of light small paper cones so that 

these pendulums are heavily damped when they vibrate. As 

the lengths of CD and EF are equal and they are intermediate 

between the lengths of the shortest and the longest of the light 

pendulums, whenever the heavy pendulum CD is set into vibra-

tion, its motion is communicated through the thick cord and the 

other pendulums vibrate with the same frequency as that of the 

pendulum CD. But as they are of different lengths (excluding 

EF) and hence of different natural frequencies, they show different amplitudes of vibration. Initially, the 

amplitude of EF is equal to that of CD, but after some time it becomes small as compared to that of CD as it is 

highly damped. The pendulum EF picks up the vibration immediately. Now brass rings are slipped on to each 

of the paper cones for making them heavier. As their masses considerably increase while the resistive forces 

remain unaltered, the damping factor will be much reduced. This time initial natural vibration will last for a 

longer time to reach the steady-state vibration and also the resonance effect will be much pronounced.

 3.3 ANALYSIS OF FORCED VIBRATION

Let us represent the external simple harmonic force acting on a particle of mass m by F cos w ¢t where F is its 

magnitude and w ¢ is its angular velocity. Let y be the displacement of the particle executing damping oscil-

latory motion. Let us assume that at t = 0 it is at rest at the mean position. The forces acting on the particle 

are

 (i) The restoring or restitution force Fr where Fr μ y

 (ii) The retarding or resistive force Fres  μ   
dy

 ___ 
dt

  

 (iii) The inertial force Fi where Fi = m   
d2y

 ___ 
dt2

  

 (iv) The external periodic force Fp = F cos w ¢t
 So the equation of motion of the particle is given by

  m   
d2y

 ___ 
dt2

   = Fp – Fr – Fres 

or,  m   
d2y

 ___ 
dt2

   = F cos w ¢t – ky – k¢   
dy

 ___ 
dt

  

or,    
d2y

 ___ 
dt2

   +   
k¢ __ m     

dy
 ___ 

dt
   +   

k
 __ m   y =   

F
 __ m   cos w ¢t

or,    
d2y

 ___ 
dt2

   + 2b   
dy

 ___ 
dt

   + w2y = f cos w ¢t ...(3.1)

Fig. 3.1 Barton’s experiment of forced  
 vibrations. 

F

D

A

E

C

B
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where 2b =   
k¢ __ m  , w2 =   

k
 __ m   and f =   

F
 __ m  

 In the steady-state condition, the system will oscillate with the same frequency as that of the external 

periodic force F cos w ¢t.
 Hence, from the physical point of view, let us consider the solution of Eq. (3.1) to be of the following 

form:

  y = A cos (w ¢t – a) ...(3.2)

 Equation (3.2) represents an SHM of amplitude A and frequency n ¢ =   
w ¢ ___ 
2p

   and phase lagging behind that of 

the forcing system by an angle a.

 Now, differentiating Eq. (3.2) with respect to t, we get 

    
dy

 ___ 
dt

   = – Aw ¢ sin (w ¢t – a)

 Differentiating again with respect to t, we get

    
d2y

 ___ 
dt2

   = – Aw ¢2 cos (w ¢t – a)

 Now, substituting the values of   
dy

 ___ 
dt

   and   
d2y

 ___ 
dt2

   in Eq. (3.1), we obtain 

  – Aw ¢2 cos (w ¢t – a) – 2 b Aw ¢ sin (w ¢t – a) + w2 A cos (w ¢t – a) = f cos (w ¢t)
or,  – Aw ¢2 cos (w ¢t – a) – 2 b Aw ¢ sin (w ¢t – a) + w2 A cos (w ¢t – a) = f cos ( 

______

 w ¢t – a  + a)

or,  – Aw ¢2 cos (w ¢t – a) – 2 b Aw ¢ sin (w ¢t – a) + w2A cos (w ¢t – a)

  = f cos (w ¢t – a) cos a – f sin (w ¢t – a) sin a

 As this equation is true for all values of t, the coefficients of cos (w ¢t – a) and that of sin (w ¢t – a) on both 

sides must be separately equal.

 Hence, we can write

  – Aw ¢2 + w2A = f cos a

or,  f cos a = A (w2 – w ¢2) ...(3.3)

and – 2b Aw ¢ = – f sin a

or,  f sin a = 2 b Aw ¢ ...(3.4)

 Now, squaring and adding Eqs. (3.3) and (3.4), we get

  f 2 = A2 (w2 – w ¢2)2 + 4 A2b2w ¢2

 Hence the amplitude,

or,  A =   
f
 ___________________  

 ÷ 
__________________

  (w2 – w ¢2)2 + 4b2 w ¢2  
   ...(3.5)

 Again dividing Eq. (3.4) by Eq. (3.3), we get

  tan a =   
2bw ¢ ________ 

w2 – w ¢2
    ...(3.6)

 Now, considering Eqs. (3.2), (3.5) and (3.6), we get, the solution of Eq. (3.1) in the following form:

  y =    
f
 ___________________  

 ÷ 
_________________

  (w2 – w ¢2)2 + 4b2w ¢2  
   cos (w ¢t – a) ...(3.7)
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where a = tan–1  (   2bw ¢ ________ 
w2 – w ¢2

   ) 
 The aforeshown solution of Eq. (3.1) given by Eq. (3.7) is for the steady-state condition. But at the start-

ing, as the force sets the particle into vibration, the particle will keep on vibrating with its natural frequency 

along with the frequency of the forcing system. So the applied sinusoidal force will be acting as damping 

force and hence the solution for displacement will be given by

  y = pe–bt cos  {  (  ÷ 
______

 w2 – b2   )   t – q }  ... (3.8)

where p and q are constants [vide Eq. (2.8) of damping vibration in Chapter 2].

 So, the complete solution at the starting is given by

 y = pe–bt cos  {  (  ÷ 
______

 w2 – b2   )  t – q }  +   
f
 _____________________  

 ÷ 
___________________

  {(w2 – w ¢2)2 + 4b2w ¢2}  
   cos  { w ¢t – tan–1  (   2bw ¢ ________ 

w2 – w ¢2
   )  }  ...(3.9)

 Thus, as seen above in Eq. (3.9), the solution is made up of two components.

 (a) The first component (term) of the solution represents a free vibration with natural frequency set up in 

a damped system created by the influencing force which has been applied externally. The amplitude 

is decaying exponentially at a rate which is determined by the damping factor b.

 (b) The second component (term) represents a simple harmonic motion of a constant amplitude having 

the same period T =   
2p

 ___ 
w ¢

   as the applied periodic force and lagging behind the forcing system by a 

phase angle of a.

 Following the lapse of sufficient time, when the steady state is reached, the first damping term of the solu-

tion reduces to zero. If the damping factor is very small, then the natural vibration of the system will persist 

for a longer period of time since e–bt will fall very slowly. It is only the large damping which prevents the first 

term from persisting indefinitely.

 3.4 ENERGY OF A FORCED VIBRATOR

In the steady state under the influence of a periodic force, the motion of a particle is obtained in Eqs. (3.2) 

as given below:

  y = A cos (w ¢t – a) [Eqn. (3.2)]

where A =  (   
f
 __________________  

 ÷ 
_________________

  w2 – w ¢2)2 + 4b2w ¢2  
   )  

and a = tan–1  (   2bw ¢ ________ 
w2 – w ¢2

   ) 
 So,   

dy
 ___ 

dt
   = – Aw ¢ sin (w ¢t – a)

 Hence, the kinetic energy of the forced system at any instant is given by 

  T =   
1
 __ 

2
   m   (   dy

 ___ 
dt

   )  
2

  =   
1
 __ 

2
   m A2w ¢2 sin2 (w ¢t – a)

or,  T =   
1
 __ 

2
   .   

mw ¢2f 2
  _________________  

(w2 – w ¢2)2 + 4b2w ¢2
   sin2 (w ¢t – a)  ...(3.10)



Forced Vibrations 3.5

 Since, the motion of the particle is steady SHM, the total energy of the system at any instant is equal to the 

maximum kinetic energy Tmax.

\  Etotal = Tmax =   
1
 __ 

2
     

mw ¢2f 2
  _________________  

(w2 – w ¢2)2 + 4b2w ¢2
   ... (3.11)

Equation (3.11) is the expression for total energy

3.4.1 Enegry or Velocity Resonance

We can rewrite Eq. (3.11) as follows: 

  Etotal =   
1
 __ 

2
     

mf 2

 ______________  

  (   w
2

 ___ 
w¢

   – w¢ )  
2

  + 4b2

  or,  Etotal =   
1
 __ 

2
     

mf 2

 _________________  

w2  (   w ___ 
w ¢

   –   
w ¢ ___ 
w

   )  
2

  + 4b2

  or,  Etotal =   
1
 __ 

2
     

 mf 2

 __________ 
D2w2 + 4b2

   ...(3.12)

where D =   
w

 ___ 
w ¢

   –   
w ¢ ___ 
w

  

 If w = w ¢, then D = 0, and the energy of the system is maximum for a given (i.e., particular) value of 

b. Thus we observe that when the frequency of the forcing system coincides with that of the natural 

frequency of the forced system, the energy of vibration of the forced system is maximum. This phe-

nomenon is known as energy resonance or velocity resonance or simply resonance. And the energy at 

resonance, Er, is given by

  Er = Emax =   
1
 __ 

2
     

mf2 
 _____ 

 (4b2)
   ...(3.13)

 Now, from Eq. (3.12) it is clear that the decrease in the energy due to mistuning between the two frequen-

cies n =  (   w ___ 
2p

   )  and n ¢ =  (   w ¢ ___ 
2p

   )  is same for a given ratio (n : n ¢) of the frequencies and it is independent of their 

sign.

 3.5 SHARPNESS OF RESONANCE

Since the frequency of the influencing applied periodic force differs from the natural frequency of the forced 

system, the response of the forced system diminishes. The energy of response of the forced system falls off 

rapidly for slight deviation from the resonance. The Etotal versus D graph has been plotted in Fig. 3.2. The 

graph shows that for slight variation of w ¢ from w, the total energy gets reduced rapidly.
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 The sharpness of the resonance curve is a measure 

of the rate of fall of energy of resonance with depar-

ture from equality between the frequencies. From Eqs. 

(3.12) and (3.13), we obtain

    
Emax

 ____ 
Etotal

   =   
D2w2 + 4b2

 __________ 
4b2

   = 1 +   
w2D2

 _____ 
4b2

   ...(3.14)

 Now, dropping the suffix of Etotal, we get 

    
Emax

 ____ 
E

   = 1 +   
D2w2

 _____ 
4b2

     ... (3.15)

 The rate of decrease of total energy E with respect to 

D is greater, the smaller the value of b. The sharpness of 

resonance can be quantitatively defined as the recipro-

cal of D when E reduces to half of its resonance value. 

 Let us assume that D = D1 for which E =   
1
 __ 

2
   Emax. 

Then from Eq. (3.15), we get

  2 = 1 +   
w2  D 1  

2 
 _____ 

4b2
  

or,  4b2 =  D 1  
2 w2  fi D1 = ±   

2b
 ___ 

w
  

 So, the sharpness of resonance (S) is given by

  S =   
1
 ___ 

D1

   =   
w

 ___ 
2b

    ...(3.16)

 The sharpness of the resonance is important in connection with a radio receiver.

 3.6 AMPLITUDE RESONANCE

In case of forced vibration the amplitude is given by

  A =   
f
 ___________________  

 ÷ 
__________________

  (w2 – w ¢2)2 + 4b2w ¢2   
   fi A2 =   

f 2

 _________________  
(w2 – w¢ 2)2 + 4b2w¢ 2

   ...(3.17)

 A will be maximum when the denominator becomes minimum. For a given system, b and w are constants. 

And for the denominator to be minimum, we must have the first derivative of it with respect to w ¢ to be equal 

to zero, i.e.,

    
d
 ____ 

dw ¢
   {(w2 – w ¢2)2 + 4b2 w ¢2} = 0

or,    
d
 ____ 

dw ¢
   (w2 – w ¢2)2 + 4b2   

dw ¢2
 _____ 

dw ¢
   = 0

or,  – 4w ¢ (w2 – w ¢2) + 8w ¢b2 = 0

or,  – 4w ¢{(w2 – w ¢2) – 2b2} = 0

Fig. 3.2 The energy resonance curve sharpness 
of E versus D graph changes rapidly for 
small change in the damping factor b.
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or,  w2 – w ¢2 – 2b2 = 0

or,  w ¢2 = w2 – 2b2

or,  w ¢ =  ÷ 
_______

 w2 – 2b2    

or,  2p n ¢ =  ÷ 
_______

 w2 – 2b2   [  w ¢ = 2pn ¢] ...(3.18)

or,  n ¢ =    
 ÷ 

_______

 w2 – 2b2  
 _________ 

2p
   ...(3.19)

 Thus, for the amplitude to be maximum, the frequency must be   
( ÷ 

_______

 w2 – 2b2  ) 
 __________ 

2p
  .

 This is called amplitude resonance. This frequency is neither equal to the natural frequency of the system  

( n  =   
w

 ___ 
2p

   )  nor equal to the frequency of the damped vibrator  [ nd =   
 ÷ 

_______

 (w2 – b2  
 ________ 

2p
   ] .

 But it is slightly lower than nd.

 The maximum amplitude at resonance is given by

  Ar = A max =   
f
  ______________________________   

 ÷ 
____________________________

   (w2 – (w2 – 2b2))2 + 4b2 (w2 – 2b2)  
   [by Eqs. (3.18) and (3.19)]

or,  Ar =   
f
 _________________  

 ÷ 
________________

  (4b4 + 4b2w2 – 8b4  
   =   

f
 __________ 

2b ÷ 
______

 w2 – b2  
  

or,  Ar =   
f
 ___________  

2b  ÷ 
_______

 w ¢2 + b2  
    ...(3.20)

[  w ¢2 = w2 – 2b2]

 Hence the maximum amplitude is the greater, the lower is the value of the damping factor b. The sharpness 

is greater if the damping factor b is smaller.

 3.7 QUALITY FACTOR

If the driving force Fp = F cos w ¢t produces an infinitesimal displacement dy in time dt, then the work done 

or energy supplied by the driving force during the time dt is given by 

  dW = Fp (t) dy

 So, the power supplied is given by

  p(t) =   
dW

 ___ 
dt

   = Fp (t)   
dy

 ___ 
dt

  

or,  p(t) = F cos w ¢t. v
or,  p(t) = – F cos w ¢t. Aw ¢ sin (w ¢t – a)

or,  p(t) = – FAw ¢ cos w ¢t sin (w ¢t – a) [  y = A cos (w ¢t – a)]

\  Pav = < p(t) > = < – FAw ¢ cos w ¢t sin (w ¢t – a)>

or,  Pav = – FAw ¢ <cos w ¢t (sin w ¢t cos a – cos w ¢t sin a)>

or,  Pav = – FAw ¢ cos a < cos w ¢t sin w ¢t > + FAw ¢ sin a < cos2 w ¢t >
 But, we know that 

  < cos2 w ¢t > =   
1
 __ 

T ¢
     Ú 

0

   

T ¢

   cos2 w ¢t dt 
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or,  < cos2 w ¢t > =   
1
 __ 

T ¢
     Ú 

0

   

T ¢

    cos2.  (   2p
 ___ 

T ¢
   t )  dt 

or,  < cos2 (w ¢t) > =   
1
 __ 

2
  

where T¢ =   
2p

 ___ 
w ¢

   =  the time period of the steady-state oscillation.

 Similarly,

  < cos (w ¢t) sin (w ¢t) > =   
1
 __ 

2
   < sin (2w ¢t) >

or,  < cos (w ¢t) sin (w ¢t) > =   
1
 ____ 

2T ¢
    Ú 
0

   

T ¢

  sin  (   4pt
 ___ 

T ¢
   )  dt 

or,  < cos (w ¢t) sin (w ¢t) > = 0

 Hence, the average power supplied over one cycle is given by 

  Pav =   
1
 __ 

2
   FAw ¢ sin a

\  Pav =   
1
 __ 

2
   F w ¢ sin(a)  (   

f
 ___________________  

 ÷ 
_________________

  (w2 – w ¢2)2 + 4b2w ¢2  
   ) . [After the value of A is put]

\ the maximum value of Pav occurs at the frequency w ¢ by satisfying the following conditions:

    
d
 ____ 

dw ¢
    [   w ¢ sin a

  ___________________  
 ÷ 
_________________

  (w2 – w ¢2)2 + 4b2w ¢2  
   ]  = 0

and   
d2

 _____ 
dw ¢2

    [   w ¢ sin a
  ___________________  

 ÷ 
_________________

  (w2 – w ¢2)2 + 4b2w ¢2  
   ]  £ 0  [  tan a =   

2bw ¢ ________ 
w2 – w ¢2

    \ sin a =   
2bw ¢  ___________________  

 ÷ 
_________________

  (w2 – w ¢2)2 + 4b2w ¢2  
   ] 

i.e.,   
d
 ____ 

dw ¢
    (   2bw ¢2

  _________________  
(w2 – w ¢2)2 + 4b2w ¢2

   )  = 0

and   
d2

 _____ 
dw ¢2

    (   2bw ¢2
  _________________  

(w2 – w ¢2)2 + 4b2w ¢2
   )   £ 0

 It is easy to see that these conditions are satisfied for w = w ¢. In other words, the maximum value of Pav 

(i.e., Pmax) occurs at resonance.

 So, Pmax =   
1
 __ 

2
   F . f .   

1
 ___ 

2b
   =   

1
 __ 

2
     
F2

 ___ m     
1
 ___ 

2b
  

or,  Pmax =   
F2

 ____ 
4mb

    ...(3.21)

\  Pav =   
1
 __ 

2
   ×   

F2

 ___ m   ×   
2bw ¢2

  _________________  
(w2 – w ¢2)2 + 4b2w ¢2

  

or,  Pav =   
F2b

 ____ m      
w ¢2
 _________________  

(w2 – w ¢2) + 4b2w ¢2
  

or,  Pav =   
F2

 ____ 
4mb

    4b2.   
w ¢2 __________________  

(w2 – w ¢2)2 + 4b2w ¢2
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or,  Pav = Pmax   
4b2w ¢2

  _________________  
(w2 – w ¢2)2 + 4b2w ¢2

   ...(3.22)

 Figure 3.3 depicts the variation of Pav as a function of w ¢.

Fig. 3.3 Variation of power Pav (at power resonance) as a function of angular frequency (w¢) of the
 driving force.

 The values of w ¢ at which Pav is half of its maximum value are called half power points.

 From Eq. (3.22) the half power points are the values of w ¢ satisfying the equation given below.

    
Pav

 ____ 
Pmax

   =   
1
 __ 

2
   =   

4b2w ¢2
  _________________  

(w2 – w ¢2)2 + 4b2w2
  

or,  w ¢2 = w 2 ± 2bw ¢
 These are two quadratic equations in w ¢ namely,

  w ¢2 + 2bw ¢ – w2 = 0

and w ¢2 – 2bw ¢ – w2 = 0

 Each of these two equations has one positive root and one negative root. Since the angular frequency w ¢ 
cannot be negative, we retain only the positive roots, which are as follows. 

  w1
 = – b + (w2 + b 2) 

  
1
 __ 

2
  

 

and w2 = + b + (w2 + b 2) 
  
1
 __ 

2
  

 

 The frequency interval between the two half-power points is given by 

  Dw = w2 – w1 = 2b

 The frequency interval Dw between the two half-power-points is called full frequency with at half-

maximum power or simply bandwidth.

 The sharpness of resonance can also be measured in terms of quality factor, or Q-factor, which is defined 

as follows:

  Q =   
w
 _______ 

w2 – w1
   =   

w
 ____ 

Dw
   = resonant frequency/bandwidth

or,  Q =   
w

 ___ 
2b

   = S

where S is the sharpness.
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 3.8 FORCED VIBRATION IN AN LCR CIRCUIT

Let us consider an LCR circuit as shown in Fig. 3.4 which  can exhibit forced vibration if it is set to do so. 

Intially

 The key K2 is colsed keeping the key K1 open. The d.c. source E1 charges the capacitor C. When the capac-

itor C gets fully charged, the key K1 is closed and the key K2 is opened. At this stage the circuit consisting of 

the componement K1(key), R (resistance), L (inductance), E (a.c. source) and C (capacitor) becomes active 

and through the process of discharging of the capacitor, the LCR circuit starts oscillating. The presence of the 

resistance R in the circuit causes it to lose electrical energy. This loss of energy is compensated by the energy 

supplied by the a.c. source E [= E0 cos (w ¢t)]. Thus the LCR circuit acts as a forced oscillator. At an instant of 

tine t, V =   
q
 __ 

C
   is the potential across the capacitor C, L   

di
 __ 

dt
   = L   

d2q
 ___ 

dt2
   is the induced emf across the inductor L, iR 

is the potential across, the resistance R and E = E0 cos(w¢t) is the emf of the a.c. source. So, by analyzing the 

LCR circuit, we can write the following differential equation:

  L   
d2q

 ___ 
dt2

   + R   
dq

 ___ 
dt

   +   
q
 __ c   = E0 cos(w¢t) º(3.23)

where w¢ is the angular frequency of the a.c. source.

Dividing throughout by L, we get 

    
d2q

 ___ 
dt2

   +   
R

 __ 
L

     
dq

 ___ 
dt

   +   
q
 ___ 

LC
   =   

E0
 ___ 

L
   cos(w¢t)

or,    
d2q

 ___ 
dt2

   + 2b¢  
dq

 ___ 
dt

   + w2q = f ¢cos(w¢t) º(3.24)

where    
R

 __ 
L

   = 2b¢,   1
 ___ 

LC
   = w2 and   

E0
 ___ 

L
   = f ¢

 Now, we can compare this equation [(i.e., Eq. 3.24)] with the Eq. (3.1) which is rewritten below:

    
d2y

 ___ 
dt2

   + 2b   
dy

 ___ 
dt 

   + w2y = f cos(w ¢t) º(3.1)

 Both the equations, i.e., Eq. (3.1) and Eq. (3.24) are exactly similar. We have already solved Eq. (3.1) in 

Section 3.3. Using the same method, we can solve the differential equation of the LCR circuit [i.e., Eq. (3.24)] 

for forced vibration.
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Worked-out Examples

Example 3.1  The differential equations that represent the forced vibrations of one mechanical system and 

one electrical system (electrical circuit) are given below respectively by Eqs. (1) and (2):

  m   
d2y

 ___ 
dt2

   + k¢   
dy

 ___ 
dt

   + ky = Foe
iw ¢t ...(1)

and L   
d2q

 ___ 
dt2

   + R   
dq

 ___ 
dt

   +   
q
 __ 

C
   = Voe

iw ¢t ...(2)

where w ¢ is the angular frequency of the applied force, i =  ÷ 
___

  –1   and k¢ is resistive force per unit velocity. Make 

a table of two columns by listing the analogous parameters of the two systems.

Sol.  Table of analog 

 Mechanical quantities Electrical quantities

 Force (F) Voltage (V)

 Displacement (y) Charge (q)

 Velocity (v) Current (i)

 Mass (m) Inductance (L)

 Mechanical resistance (k¢) Resistance (R)

 Compliance (1/k) Capacitance (C)

 Mechanical impedance (zm) Impedance (Z)

 Mechanical reactance (Xm) Reactance (X)

 Internal reactance (w ¢m) Inductive reactance (w ¢L)

 Reactance of compliance (k ¢/w ¢) Capacitive reactance (1/w ¢C)

Example 3.2  Show that for a system of forced vibration, the total energy of vibrating system is not con-

stant and that, in such a case,

    
Average potential energy

  _____________________  
Average kinetic energy

   =   
w2

 ___ 
w ¢2

  

where w = natural angular frequency =  ÷ 
__

   
k
 __ m     and w ¢ is the angular frequency of the external periodic force.

Sol.  The displacement y of the particle of mass m in forced vibration is given by 

   y = a sin (w ¢t – f)

and  velocity v =  = aw ¢cos (w ¢t – f)

  \ the kinetic energy of the particle Ek is given by 

   Ek =   
1
 __ 

2
   mv

2 =   
1
 __ 

2
   m a2w ¢2 cos2 (w ¢t – f)

and the potential energy of the particle EP is given by

   EP =   
1
 __ 

2
   ky2 =   

1
 __ 

2
   k a2 sin2 (w ¢t – f)



Basic Engineering Physics3.12

  Sum of the kinetic and the potential energies ES is given by

   Es = Ek + EP 

or,   Es =   
1
 __ 

2
   ma2w ¢2 cos2 (w ¢t – f) +   

1
 __ 

2
   ka2 sin2 (w ¢t – f)

or,   Es =   
1
 __ 

2
   ma2w ¢2 cos2 (w ¢t – f) +   

1
 __ 

2
   mw2a2 sin2 (w ¢t – f)  [  w =  ÷ 

__

   
k
 __ m     ] 

or,   Es =   
1
 __ 

2
   ma2 [w ¢2 cos2 (w ¢t – f) + w2 sin2 (w ¢t – f)]

  Hence, Es π constant [  w π w ¢]

  Now,  
__

 E k
 = (Ek)av =   

1
 __ 

2
   ma2w ¢2   1 __ 

2
   

   [  over a full cycle, the average value of cos2 (w ¢t – f) is   
1
 __ 

2
   ] 

  So,  
__

 E k =   
1
 __ 

4
   ma2w ¢2 ... (1)

  Similarly,  
__

 E p =   
1
 __ 

4
   ma2w2 ...(2)

   [  over a full cycle, the average value of sin2 (w ¢t – f) is   
1
 __ 

2
   ] 

  Hence, the ratio of  
__

 E P to  
__

 E K (demoted by Rpk) is given by

   Rpk =   
 
__

 E p
 ___ 

 
__

 E k
   =   

  
1
 __ 

4
   ma2w2

 ________ 

  
1
 __ 

4
   ma2w ¢2

   =   
w2

 ____ 
w ¢2

    

  Hence proved.

Example 3.3  Find an expression for the fractional change in natural frequency of a damped (simple) 

harmonic oscillator in terms of the quality factor Q.

Sol.  Let w ¢ and w be the angular frequencies of the damped and the undamped oscillator respectively. 

Then, we have

   w ¢ =  ÷ 
______

 w2 – b2  

where   b =   
k¢ ___ 

2m
   

and   k¢ = resistive force per unit velocity 

or,   w ¢ =  ÷ 
__________

 w2 –   (   k¢ ___ 
2m

   )  
2

   

or,   w ¢ = w   ( 1 –   
k¢2
 ______ 

4 m2w2
   )    

1
 __ 

2
   

 

  Now, if k¢ is small then   
k¢2
 ______ 

4m2w2
   is also very small.
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  So, by using binomial expansion and neglecting higher terms, we can write

   w ¢ = w  ( 1 –   
k¢2
 ______ 

8 m2w2
   ) 

  \   
w ¢ ___ 
w

   = 1 –   
k¢2
 ______ 

8 m2w2
   

or,   1 –   
w ¢ ___ 
w

   =   
k¢2
 ______ 

8 m2w2
  

or,     
w – w ¢ ______ 

w
   =   

k ¢2
 ______ 

8 m2w2
  

or,     
Dw

 ___ 
w

   =   
k¢2
 ______ 

8 m2w2
  

or,     
Dw

 ___ 
w

   =   
1
 ____ 

8w2
      (   k¢ __ m   )  

2

  =   
1
 ____ 

8w2
    (2b)2  [    

k¢ __ m   = 2b ] 

or,     
Dw

 ___ 
w

   =   
1
 __ 

8
   .   (   2b

 ___ 
w

   )  
2
  =   

1
 __ 

8
   .   

1
 _____ 

  (   w ___ 
2b

   )  
2
 
  

or,     
Dw

 ___ 
w

   =   
1
 ____ 

8Q2
    [  Q =   

w
 ___ 

2b
   ] 

  \ fractional change in natural frequency (fc) is given by

   fc =   
1
 ____ 

8Q2
  

Example 3.4  A voltage having root mean square value Vrms = 100 volts is applied to a series resonant 

circuit with resistance R = 10 ohms, inductance L = 10 mH and capacitance C = 1mF. Calculate the natural 

frequency and current at resonance in the circuit.

Sol.  From the table of analog of Example 3.1, we can write the following table of analogs:

 Mechanical quality Electrical quality

 Mass (m) Inductance (L)

 Compliance (1/k) Capacitance (C)

 Mechanical resistance (k¢) Resistance (R)

  In case of a mechanical system, the natural frequency is given by

   n =   
w

 ___ 
2p

   =   
1
 ___ 

2p
     ÷ 

___

   
k
 __ m     =   

1
 ___ 

2p
     ÷ 

_________

  (   1 __ m   )   (   1
 ___ 

1/k
   )   

  \ in case of the electrical circuit the natural frequency is given by 

   n =   
1
 ___ 

2p
     ÷ 

___

   
1
 ___ 

LC
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or,   n =   
1
  ___________________________   

2 × 3.14 ×  ÷ 
_________________

  10 × 10–3 × 1 × 10–6  
  

or,   n = 1592 Hz

  The current at resonance is given by 

   Imax =   
Vmax

 ____ 
R

   =   
 ÷ 

__

 2   Vrms
 _______ 

R
   [  Vmax =  ÷ 

__

 2   Vrms]

or,   Imax =   
 ÷ 

__

 2   × 100
 ________ 

10
   = 14.14 A

Example 3.5  An object of mass m = 1 g hangs from a spring of spring constant k = 106 dyne cm–1. A 

resistive force k¢v acts on it where v is the velocity in cm s–1 and k¢ = 104 g s–1. If the object be subjected to 

a driving force, F = Fp cos w ¢t with Fp = 2 × 106 dyne and w ¢ = 5000 rad s–1, then calculate the amplitude of 

oscillation and phase, relative to the applied resistive force, in the steady state.

Sol.  The spring constant k = 104 = dyne cm–1, mass m = 1g

  \ natural angular frequency of the object is given by,

   w =  ÷ 
___

   
k
 __ m     =  ÷ 

_____

    
106

 ___ 
1.0

     = 1000 rad s–1

  \ the force acting per unit mass is given by, 

   fp =   
Fp

 ___ m   =   
2 × 106

 _______ 
1
   = 2 × 106 dyne g–1

and   b =   
k¢ ___ 

2m
   =   

104

 _____ 
2 × 1

   = 5 × 103 s–1

  \ in the steady state, the amplitude of oscillation is given by

   A =   
fp
 ___________________  

 ÷ 
_________________

  4b2 w¢2 + (w ¢2 – w2)2  
   =   

2 × 106 

   ____________________________________    
 ÷ 

___________________________________

    4 × 25 × 106 × 25 × 106 + (25 × 106 – 106)2  
  

or,   A =   
2 × 106

  ____________________  
 ÷ 

___________________

  25 × 1014 + 576 × 1012  
   =   

2 × 106

 ______________  
107 ×  ÷ 

________

 25 + 5.76

  
  or,   A =   

2 × 10–1

 _______ 
 ÷ 

_____

 30.76  
   = 3.606 × 10–2 cm

  If a be the phase by which the oscillations of the driven system lag behind the force then 

   tan a =   
2bw ¢ _______ 

w ¢2 – w2
   =   

2 × 5 × 103 × 5 × 103

  __________________  
25 × 106 – 1.0 × 106

  

or,   tan a =   
50 × 106

 ________ 
24 × 106

   =   
25

 ___ 
12

   = tan–1 64.35°

  \ a = 64.35°

Example 3.6  Compare the phase of the driven system with respect to that of the driving force.
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Sol.  From Eq. (3.6),we have

   tan a =   
2bw¢ _________ 

(w2 – w ¢2)
   ...(1)

  Let us now observe the variation of the phase a of the driven system (i.e., phase lag) with respect to 

the angular frequency w ¢ of the applied external force. Let us vary w ¢ from zero to infinity, in a few 

steps, and observe the impact on the phase a. 

 (i) If we put w ¢ = 0 in the equation, we get, tan a = 0 which implies a = 0.

  Thus, there is no plase difference between the driving force and the driven system.

 (ii) When w ¢ < w, from Eq. (1), we get, tan a > 0.

  Thus, the phase difference a has a value which lies between 0 and   
p

 __ 
2
  .

 (iii) If we put w ¢ = w in Eq. (1), we get, tan a = •. This implies a =   
p

 __ 
2
  

  Thus, at resonance, the driven system lags behind the driving force by an angle of   
p

 __ 
2
  

 (iv) When w ¢ > w, we can observe from Eq. (1), we get, tan a < 0.

  Thus, the phase difference a has a value which lies between   
p

 __ 
2
   and p and a lies in the second 

quadrant.

 (v) When w ¢ Æ, • we can observe from Eq. (1) that tan a Æ 0.

  Thus when w ¢ = •, a = p

  Now, from the above discussion, we find that for all values of w ¢, the phase difference a lies between 

0 and p and it becomes equal to   
p

 __ 
2
   at resonance, i.e., when w ¢ = w, a =   

p
 __ 

2
  .

Example 3.7  Show that at the resonance frequency, the rate of change of phase angle (with respect to 

natural frequency of the driven system) is inversely proportional to b where b =   
k¢ ____ 

2 m
   and k¢ is damping force 

per unit velocity of the driven system. And m is the mass of the system.

Sol.  From Equation (3.6), we get

   tan a =   
2bw ¢ _________ 

(w2 – w ¢2)
   ...(1)

or,   a = tan–1  (   2bw ¢ ________ 
w2 – w ¢2

   ) 

or,     
da

 ___ 
dw

   =   
– 4bw ¢ w  _________________  

4b2w ¢2 + (w2 – w ¢2)2
    ...(2)

  When w ¢ = w, resonance takes place.

  \ at resonance,   
da

 ___ 
dw

   = –   
1
 __ 

b
  

or,     
da
 _______ 

d (2pn)
   = –   

1
 __ 

b
   where w = 2pn
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or,     
da

 ___ 
dn

   = –   
2p

 ___ 
b
  

  \   
da

 ___ 
dn

   μ   
1
 __ 

b
  

  Hence, the rate of change of phase angle with respect to frequency (n) of the driven system is inversely 

proportional to b.

Part 1: Multiple Choice Questions

 1. Which of the following statements is the case of a forced vibration?

 (a) Vibrations produced in the string of a piano.

 (b) Vibrations produced in a telephone transmitter during conversation.

 (c) Sound produced in an organ pipe.

 (d) None of these

 2. Two vibrating systems are said to be in resonance if 

 (a) their amplitudes are equal (b) their frequencies are equal

 (c) they are in same phase  (d) None of these

 3. The resonant frequency of an electrical oscillator is given by

 (a) n = 2p  ÷ 
___

 LC     (b) n =   
1
 _______ 

2p  ÷ 
___

 LC  
   

 (c) n =   
2p

 ____ 
 ÷ 

___
 LC  
      (d) None of these

 4. A damped harmonic oscillator of frequency w is acted upon by an external force F = Fo sin w t. If the 

natural frequency of free oscillations be wo, the frequency of oscillations of the forced oscillations is 

in steady state will be 

 (a) wo (b) w – wo (c) w (d)   
w + wo

 ______ 
2
  

 5. For small value of damping constant, the resonance is

 (a) flat (b) sharp (c) remains same (d) None of these

 6. In a forced oscillator at very low and high frequencies the value of which of the following variables 

tends to zero.

 (a) Phase (b) Charge (c) Driving emf (d) None of these

 7. What is the phase difference between the driving force and the velocity of the forced oscillator?

 (a) f (b)   
p

 __ 
2
   + f (c) – f +   

p
 __ 

2
   (d) f + p

 8. For a large value of the damping constant, the resonance is 

 (a) sharp (b) flat (c) remains same (d) None of these
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 9. Which of the following is the phase (f) relationship between the displacement y of the forced oscil-

lator and the applied force F?

 (a) y lags behind F by f   (b) y leads F by f

 (c) y lags behind F by p/2  (d) y leads F by p/2

 10. Considering the equation of the forced vibrations as m   
d2y

 ___ 
dt2

   + k¢   
dy

 ___ 
dt

   + ky = Fo sin w ¢t

  which one of the following statements is correct? 

 (a) k¢ is a resistive force per unit velocity

 (b) k¢ is the stiffness factor

 (c) k¢ is the angular frequency of the applied external force

 (d) None of these

 11. The maximum amplitude in forced vibration is given by

 (a)   
 f
 _________ 

 ÷ 
_______

 w ¢2 + b2  
     (b)   

f
 ___________ 

2b  ÷ 
_______

 w ¢2 + b2  
  

 (c)   
f
 ___________ 

2b  ÷ 
_______

 w ¢2 – b2  
     (d)   

f
 __________ 

2b (w ¢ – b)
  

 12. When the frequency (w ¢) of the applied force and the natural frequency of vibration (w) are equal, 

the value of maximum amplitude is given by 

 (a)   
 f
 ______ 

 ÷ 
_____

 2bw ¢  
   (b)   

f
 _____ 

2bw ¢
   (c)   

f
 ___ 

2b
    (d) none of these

 13. In amplitude resonance, the frequency of the applied external force is given by

 (a) v¢ =   
 ÷ 

______

 w2 – b2  
 ________ 

2p
     (b) v =  

   ÷ 
________

  b2 – 2w2  
 __________ 

2p
  

 (c) v¢ =   
 ÷ 

_______

 w2 – 2b2  
 _________ 

2p
     (d) none of these

 14. In amplitude resonance, the relation between natural frequency of forced system (w) and the fre-

quency of the applied force (w ¢) is given by

 (a) w ¢ =  ÷ 
________

  w2 + 2b2     (b) w ¢ =  ÷ 
_______

 w2 – 2b2  

 (c) w ¢ =  ÷ 
______

 w2 – b2     (d) none of these

 15. The relation between the sharpness (S) and the quality factor (Q) in case of forced vibration is given 

by

 (a) Q = 2S (b) Q =   
1
 __ 

S
   (c) Q =   

1
 ___ 

2S
   (d) Q = S

  [Ans. 1(b), 2(c), 3(b), 4(c), 5(b), 6(d), 7(a), 8(b), 9(a), 10(a), 11(b), 12(b), 13(c), 14(b), 15(d)]

Short Questions with Answers

 1. What do you mean by forced vibration?

 Ans. By forced vibration we mean a phenomenon in which a body is set into vibration with the help of a 

strong external periodic force having a frequency different from the natural frequency of the body 

itself.
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 2. Why is a large amplitude produced when frequency of the applied external periodic force is 

equal to the natural frequency of the forced body?

 Ans. If the frequency of the external periodic force applied is equal to the natural frequency of the body, 

then the external applied force increases the amplitude of vibration of the body as the external applied 

force is always in phase with the velocity of vibration of the body. Each new impulse adds to the 

effect of all the previous impulses because the successive impulses always arrive in phase and the 

resultant effect makes the amplitude of vibration large.

 3. What is meant by velocity resonance?

 Ans. In the case of forced vibration, at a certain frequency of the external driving force, the ampli-

tude of velocity of the forced vibrator becomes maximum. By velocity resonance, we mean this 

phenomenon.

 4. What is meant by amplitude resonance?

 Ans. In case of forced vibration, at a certain frequency of the driving force, the amplitude of the forced 

vibrator becomes maximum. This is meant by amplitude resonance.

 5. Is the energy supplied by the driving force stored in the forced vibrator? Explain.

 Ans. No, the energy supplied by the driving force is not stored in the forced vibrator. The energy in each 

cycle of the vibrator gets lost due to damping offered by the medium in which it vibrates. The energy 

which is supplied by the external periodic applied force is exactly equal to the aforesaid loss of the 

energy. The externally supplied energy is used to maintain the vibrations of the forced vibrator. And 

in the steady state, the amplitude and period of vibration of the vibrator are so adjusted that the power 

supplied by the external periodic applied force is exactly equal to the energy dissipated against the 

frictional forces offered by the medium.

 6. Why are soldiers usually ordered to break their steps when they march over a suspension 

bridge?

 Ans. While marching over a suspension bridge, the soldiers are prohibited to step in unison, because in 

such a situation, the bridge will vibrate violently due to resonance and it will collapse. The resonance 

will take place when the frequency of marching of the soldiers will be equal to the natural frequency 

of the bridge.

 7.  State the physical significance of the quality factor (Q) of a forced vibrator.

 Ans. The quality factor (Q) gives the measure of sharpness of the resonance. The higher the quality factor 

(Q), the smaller is the bandwidh of resonance and accordingly the tuning will be sharper. This fact is 

used to increase the selectivity of the radio sets. The sharpness of response of a circuit allows one to 

reproduce the radio signals without any interference from the signals of frequencies which are close 

to it. It also accounts for the amplification factor of the signal. And at displacement resonance, the 

displacement at low frequencies is amplified by a factor of Q.

 8. What is the difference between amplitude resonance and velocity resonance?

 Ans. Both the amplitude resonance and velocity (or energy) resonance gives the indication that the driven 

system is vibrating at its natural frequency and the frequency of the driver system. But in case of 

amplitude resonance, one considers the maximum value of the amplitude while in the other case, one 

considers the maximum value of the velocity of the vibrator (i.e., the  driver system).

 9. What is the Q-factor (quality factor) of a forced oscillator? [WBUT 2008]

 Ans. It is such a factor which can give the exact idea regarding the sharpness of the resonance peak. It is 

defined as follows:
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   Q =   
w
 _______ 

w2 – w1
   =   

w
 ___ 

Dw
   =   

w
 ___ 

2b
  

  where w is the natural angular frequency of the driven system. And w1 and w2 are the two values of 

the angular frequency at which the power dissipation becomes half of its maximum value. w1 ~ w2 is 

known as bandwidth. In short, the quality factor gives an idea regarding the quality or sharpness of 

the resonance peak.

 10. Show that at velocity resonance the velocity is in phase with the driving force [WBUT 2008]

 Ans. In the steady state under the influence of a periodic applied force, the displacement of the vibrating 

system is given by 

   y = A cos (w ¢t – a)

  where A =   
f
 __________________  

 ÷ 
_________________

  (w2 – w ¢2) + 4b2 w ¢2  
   and a = tan–1  (   2bw

 _______ 
w2 –w ¢2

   ) .
  And a being the phase difference between the applied force F and the displacement y, w and  w ¢ are 

respectively the angular frequency of the vibrating system and that of the applied force.

  The velocity of the vibrating system is given by

   v =   
dy

 ___ 
dt

   = – Aw ¢ sin (w ¢t – a)

  or, v = Aw ¢ cos  (   p __ 
2
   + w ¢t – a ) 

  or, v = Aw ¢ cos (w ¢t + f)

  where f =   
p

 __ 
2
   – a. f is the phase difference between the applied force and the velocity of the 

vibrator.

  At velocity resonance, the velocity of the vibrating system becomes maximum.

  \ vmax =   (   dy
 ___ 

dt
   )  

max
  = [Aw ¢ cos (w ¢t + f)] max

  or, vmax = [Aw ¢] max × [cos (w ¢t + f)] max

  or, vmax = (Aw ¢]max 

  or, vmax =   [   fw ¢
 __________________  

 ÷ 
_________________

  (w2 – w ¢2)2 + 4b2w ¢2  
   ]  

max

 

  or, vmax =   
fw ¢

 _____ 
2bw ¢

   =   
f
 ___ 

2b
  

  Thus, we get the maximum value of v (i.e., vmax) only when w ¢ = w.

  So, at velocity resonance, the phase difference between the applied periodic force and the velocity of 

the vibrating system is given by

   f =   
p

 __ 
2
   – a =   

p
 __ 

2
   – tan–1  (   2bw ¢ ________ 

w2 – w ¢2
   ) 

  or, f =   
p

 __ 
2
   – tan–1 (•) [  w = w ¢]
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  or, f =   
p

 __ 
2
   –   

p
 __ 

2
   = 0

  Hence, at velocity resonance, the velocity of the vibrating system and applied periodic force are in 

phase.

Part 2: Descriptive Questions

 1. What is the difference between forced oscillation and resonance? Explain what is meant by sharpness 

of resonance.

 2. What is resonance? Draw the graphs of displacement amplitude and velocity amplitude against the 

frequency of the sinusoidal force driving a  mechanical oscillator for different values of damping.

 3. Derive an expression for the velocity of a forced oscillator. Discuss the variation of velocity ampli-

tude with driving force frequency and show its behaviour graphically.

 4. Distinguish between amplitude resonance and velocity resonance. Show that at velocity resonance, 

the maximum velocity is inversely proportional to damping and the velocity of the oscillator is in 

phase with the periodic external force in the steady state.

 5. Discuss the behavior of displacement frequency versus driving force frequency in case of a forced 

oscillator. Prove that the resultant frequency of the driving force is slightly less than the natural fre-

quency of the displacement.

 6. What is the difference between natural vibration and forced vibration? An oscillator can have more 

than one frequencies of forced vibration but it can have only one frequency of natural vibration. 

Explain. 

 7. Distinguish between free and forced vibrations. Write down the equation of forced vibration and 

solve it. Explain what is meant by Q-factor.

 8. Establish the condition for amplitude resonance and explain the sharpness of amplitude resonance.

 9. Draw the variation of velocity amplitude against the applied frequency w ¢ for different damping 

constants. Prove that the maximum power intake by the oscillator is observed at velocity resonance.

 10. Define sharpness of resonance. Find the energy dissipated per unit time per unit mass for forced 

vibration.

Part 3: Numerical Problems

 1. A body of 10 g mass is acted upon by a restoring force per unit displacement of 107 dyne/(cm s–1) 

and a driving force per unit velocity of 4 × 103 dyne/(cm s–1) and a driving force of 105cos (w t) dyne. 

Find the value of maximum amplitude. 

 2. A particle of 0.01 kg mass is subjected to a restoring force of 0.5 Nm–1, a damping force of 10–4 kg s–1 

and an external sinusoidal force of constant amplitude. Find the frequency of the driving force for 

which there will be velocity resonance.

 3. The forced harmonic oscillations have displacement amplitudes at frequencies w1 = 400 rad s–1 and 

w2 = 600 rad s–1. Find the resonant frequency at which the displacement amplitude is maximum. 

 4. An object of 0.1 kg mass hangs from a spring of spring constant of 100 Nm–1. A resistive force rv 

acts on it where v is the velocity in m s–1 and r = 1 kg s–1. If the object be subjected to a driving force 

F = Fo cos w ¢t with Fo = 2 N and w ¢ = 50 rad s–1, then calculate the amplitude of oscillation and 

phase, relative to the force, in the steady state.
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 5. To the lower end of a massless spring of spring-constant of 200 Nm–1 and hanging vertically from 

a rigid support, is connected a particle of 0.1 kg mass. A resistive force –kv acts on the oscillating 

mass where v is the particle velocity and k is a constant. Find (a) the value of k, (b) The Q-value of 

the oscillator, and (c) the percentage change in frequency of oscillation due to damping.

 6. A particle of 2 g mass is subjected to an elastic force of 0.03 Nm–1 and frictional force of 

0.0005 N/(cm s–1). If the particle is displaced through 2 cm and then released find whether the result-

ing motion is oscillatory or not. If so, find its time period.   





CHAPTER

4
Interference of Light

 4.1 INTRODUCTION

Light is a form of energy and it is regarded as the transfer of energy from luminous sources to the eye, either 
directly or through the object seen. Energy can be transferred from one point to the other either by means of 
wave disturbance traveling through the intervening medium or by the motion of material particles between 
the two points. Accordingly, two different theories about the nature of light wave were brought forward in the 
seventeenth century; these theories were the corpuscular theory and wave theory. The corpuscular theory is 
perhaps the simplest theory of light which assumes light to be tiny particles of matter. The corpuscular theory 
of light was first given by Newton in 1642. According to him, a light source emits tiny corpuscles of light 
and these corpuscles travel in straight lines in a transparent medium when not acted upon by external forces. 
It explaining the reflection and refraction of light, the theory says that when light corpuscles approach the 
exposed surface of material medium, they feel a force of repulsion and attraction. In the case of refraction, the 
corpuscles are attracted by the refracting surface and enter into the second medium and in the case of reflec-
tion, the corpuscles are repelled by the reflecting surface into the first medium. We know that when a beam of 
light is incident on the surface of a medium, the beam is partly reflected and partly refracted simultaneously. 
To explain this phenomenon according to the corpuscular theory, it was assumed that some corpuscles are 
under the action of repulsive force favourable to reflection, others in the same condition are under the action 
of attractive force favourable to refraction. The arguments put forward by Newton in solving the problem 
were not very convincing. Further, a large number of experimental observations (like interference, diffraction 
and polarization) could not be explained on the basis of the corpuscular theory of light.

 A Dutch physicist, Christian Huygens (1629 – 1695), who was a contemporary of Newton, suggested that 
a satisfactory explanation of interference and diffraction phenomena can only be given if one assumes light 
as a wave. Using the wave theory, Huygens explained the laws of reflection, refraction and the phenomenon 
of double refraction. However, no one really believed in Huygens’wave theory until 1801 when Thomas 
Young (1773 – 1829) performed the famous interference experiment which only could have explained the 
phenomenon of interference satisfactorily on the basis of wave theory of light. The corpuscular theory was 
found to be totally inadequate to explain the experimental results.

 Interference is the most general phenomenon in wave motion. Many kinds of waves exhibit interference: 
such as light waves, sound waves, water waves and so on. The region in which two or more waves are incident 
on each other is known as the region of superposition. The principle of optical interference is based on linear 
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superposition of electromagnetic waves. In this case, there is no medium like in the case of sound waves. The 
modification of intensity due to superposition of two or more beams of light is known as interference 
of light. In this chapter, we shall consider the interference pattern produced by two waves emanating from 
two sources. It may be mentioned here that with sound waves the interference pattern can be obtained easily 
because the two superposing waves maintain a constant phase relationship. However for light waves, due to 
the very process of emission, interference is not observed between the waves from two independent sources. 
For permanent interference pattern, the two light sources must have constant phase relationship.

 The method of achieving these sources and their applications will be discussed below.

 4.2 WAVE PROPAGATION AND THE WAVE EQUATION

A wave is the propagation of a disturbance. For exam-
ple, when a stone is dropped in a calm pool of water at 
the point P [Fig. 4.1], waves start moving from the point. 
In this propagation of wave, water goes up and then goes 
down from the initial level of water. In Fig. 4.1, XY rep-
resents the level of water when it is not disturbed. At A 
and B a portion of water goes up from XY. These are 
called crests whereas at C and D a portion of water goes 
down from XY. These are called troughs. The distance 
between two crests or two consecutive troughs is called 
wavelength (l). The distance of crest or trough from the 
initial horizontal water level is called amplitude of the 
wave and it is denoted by a. When a wave is propagat-
ing through the medium the displacement of the water 
molecule is at right angles to the direction of propagation. This type of wave is known as transverse wave. 
When a transverse wave propagates, particles of water execute simple harmonic motion (S.H.M.) about their 
equilibrium position and associated with this motion is a certain amount of energy. The state of vibration of 
the vibrating particle is called phase of the wave.

Wave Equation The equation of motion of the particle in SHM is given by

  y = a sin w t   [    
where a = amplitude

    
w = angular and frequency

 
 
  ] 

 At a distance x from the first particle, another particle also execute SHM. The phase difference between 

these two particles having path differences x is given by f =   2p
 ___ 

l
   x.

[Since phase difference is 2p when path difference is l]

 So, the equation of motion of the second particle is

  y = a sin  ( w t –   2p
 ___ 

l
   x )  = a sin  (   2p

 ___ 
T

   t –   2p
 ___ 

l
   x ) 

   = a sin   2p
 ___ 

l
   (vt – x)  [ where phase vel. v =   l __ 

T
   ] 

 This is the general equation of wave motion.

l

lA B

C D

a

X Y
P

P A C B D

Fig. 4.1 Wave propagation with crests and 
troughs. 
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 4.3 PRINCIPLE OF SUPERPOSITION OF WAVES

The explanation of the phenomenon of interference of light is based on the principle of superposition of 
wave motion. The principle states that when two or more waves simultaneously pass through a point of 
a medium, the resultant displacement at any instant at the point concerned is the algebraic sum of the 
displacements produced by the individual waves provided the displacements are small. For example, 
if two similar waves are oscillating in phase then the net wave amplitude is just double (Fig. 4.2a) and the 
waves interfere constructively. On the other hand, if two waves are exactly 180° out of phase, the net wave 
amplitude is zero (Fig. 4.2b) and the waves interfere destructively. 

+ = + =

(a) (b)

Fig. 4.2 Superposition of waves: (a) The two waves are in phase. (b) The two waves are 180° out of phase.

[Note Light is an electromagnetic wave of transverse nature consisting of one electric and one magnetic 
field vector. The electric field vector characterizes the nature of light. In most of the cases, one deals with 
the situations in which the electric field vector vibrates in a fixed plane. This fixed plane is considered as the 
plane of vibration and the light is considered to be plane polarized. While analyzing interference and dif-
fraction, it is usually considered as the interaction of coplanar waves. In the discussion of interference and 
diffraction, we will also assume light to be plane polarized.]

 4.4 HUYGENS’ WAVE THEORY

 (a) Wave front According to the wave theory, a source of light sends out disturbances in all direc-
tions. In a homogeneous medium, the points that are situated at equal distance from the source of 
light will vibrate in the same phase. The locus of all particles vibrating in the same phase at any time 
is called the wave front of the wave produced by the vibration of the particles.

  For example, if we drop a small stone in a calm pool of water, circular ripples spread out from the 
point of impact, each point of the circumference of the circle oscillates with the same amplitude and 
same phase and thus we get a circular wave front.

  Depending upon the shape of the source of light, wave front are classified into three categories:

 (i) Spherical wave front If we have a point source producing waves in an isotropic homoge-
neous medium, the locus of points which are in phase is a sphere. In this case, we have spherical 
wave fronts as shown in Fig. 4.3(a).

 (ii) Plane wave front At a large distance from the source, a small portion of the sphere can be 
considered as a plane and a plane wave front is shown in Fig. 4.3(b).
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 (iii) Cylindrical wave front When the source of light is linear in shape, a cylindrical wave front 
is produced. The curved surface of the cylinder indicates the position of the wave front at a par-
ticular instant [Fig. 4.3(c)].

Trough

Crest

(a) (b) (c)

Source

Fig. 4.3 (a) Spherical wave front. (b) Plane wave front. (c) Cylindrical wave front.

 (b) Huygens’ principle Huygens’ principle gives a geometrical interpretation of finding the shape 
and position of the wave front at a certain instant of time has compared to its earlier shape and 
position. According to Huygens’ prin-

ciple, each point on a given primary 
wave front acts as a source of second-
ary wavelets, sending out disturbances 
in all directions in a similar manner 
as the original source does. The posi-
tion of the wave front at the later time 
(called secondary wave front) is the 
envelope of the secondary wavelets at 
that instant.

 In Fig. 4.4(a) PQ represents the shape of the 
wavefront (originating from the points source S) 
at t = 0. The medium is assumed to be homoge-
neous and isotropic. Let us now determine the 
shape of the wavefront after a time interval of 
Dt. With each point on the wave front as center, 
let us draw spheres of radius u Dt, where u is the 
speed of the wave in that medium. The common 
tangent to all these spheres gives the forward 
envelope which is again a sphere centered at S. 
Thus the shape of the new wave front after a time 
Dt is the sphere P ¢Q ¢. At a large distance from the 
source, the radius of wave front will be very large 
and a part of the wavefront will appear as plane 
[Fig. 4.4(b)]. We also obtain a backward envelope 
P ¢¢Q¢¢. In Huygens’ theory, the presence of the 
backward is avoided by assuming that the ampli-
tude of the secondary wavelets is not uniform in 

Fig. 4.4 Shape of the wave front (a) PQ is a spherical 
wave front centered at S at a time say, t = 0. 
After Dt time P ¢Q¢ is the forward envelope and 
P ¢¢Q¢¢ is the backward envelope. (b) After a large 
interval of time the distance of the wave from 
the source S will be very large and consequently 
the wave front will be a plane wave front.

S

P ¢¢
P

P ¢

Q ¢¢
Q

Q ¢

P ¢¢ P P ¢

Q ¢¢ Q Q ¢

(a) (b)
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all directions; it is maximum in the forward direction and zero in the backward direction. The absence of the 
backward wave is really explained by Fresnel and Kirchhoff. They showed that the intensity at each point of 
the secondary wave is proportional to (1 + cos q) where q is the angle between the wave normal and the line 
joining the point of the secondary wavelets and the sources S. For the point of the secondary wavelet, which is 
directly behind the wave, the value of q = p and hence (1 + cos q) is zero. Thus the intensity of the secondary 
waves in the backward direction is zero.

 4.5 INTERFERENCE OF MECHANICAL WAVES

In order to understand the phenomenon of interference of light waves clearly, let us first take an illustration 
of mechanical wave.

 Suppose, mechanical disturbances of identical nature 
are being made at A and B on the surface of water in a still 
pond. It is shown in Fig. 4.5. Waves consisting of circular 
crests and troughs will move over the surface of water from 
A and B. Crests have been shown by circles of solid curves 
and trough by circles of dotted curves. From the principle 
of superposition, we know that the resultant displacement at 
a point on the surface of water is obtained by algebraically 
summing up the displacements produced by the two waves 
separately at that point. The points shown by circles in the 
diagram will have zero displacement. The waves are said to 
have interfered destructively with each other at those points. 
Intensity of wave there is also zero. On the other hand, the 
points shown by cross in the diagram will have maximum 
displacement because, at these points either  the crest of one 
will combine with the crest of the other or the trough of one 
will combine with the trough of the other. In such a case, 
the amplitude of the resultant wave is twice the amplitude 
of either wave and the intensity is quadrupled. The waves, at 
those points are said to be interfere constructively with each 
other.

 The same thing happens in the case of light. Instead of the surface of water if we suppose that A and B are 
two optical sources continuously sending out identical waves in the surrounding optical medium and GEC is 
a screen, then we find very bright points at G, E, C, etc., and dark points at F, D, etc. (Fig. 4.5). It means that 
the screen will be intersected by alternate bright and dark points, known as interference fringes.

 4.6 YOUNG’S EXPERIMENT ON INTERFERENCE OF LIGHT WAVES 
(DOUBLE SLIT EXPERIMENT)

The phenomenon of interference of light was first discovered by Thomas Young in 1801.

 Young allowed the sun light to pass through a pin hole S Fig. (4.6) and then at some distance through 
two sufficiently close pin holes S1 and S2 in an opaque screen. Finally, the light was received on a screen on 
which he observed an uneven distribution of light intensity. Young found that the illumination on the screen 
consisted of many alternate bright and dark bands. In accordance with the modern laboratory technique, 

C

D

E

F

G
Screen

Crest

Trough

A

B

Fig. 4.5 Interference of two waves from two 
sources A and B.
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narrow parallel slits replace pinholes and the slit S is illuminated with monochromatic light (Fig. 4.7). Light is 
received on a screen placed at a certain distance to the right and parallel to the plane containing the slits S1 and 
S2. According to Huygens’ principle, cylindrical wavelets spread out from the slit S and as the path SS1 = SS2 
the wavelets reach slits S1 and S2 at the same instant. Spherical waves emanating from S1 and S2 are coherent 
[see Section Art. 4.9 …] and on the screen permanent interference fringes are produced. Figure 4.7 shows the 
section of the wave front on the plane containing S, S1 and S2. On the screen a number of alternate bright and 
dark bands of equal width, called interference fringes, are observed parallel to the slits. At the center of the 
screen, the intensity of light is maximum.

y

z x

D

y

xd

S1

S2S
z

O

Q
Source S1

S2

Light

Dark

Light

Dark

Light

Dark

Light

Dark

Light

Central
maximum

 Fig. 4.6 Young’s experimental arrangement. Fig. 4.7 Section of the spherical wavefront.

 Young observed some  characteristics of the dark and bright bands:

 (i) The interference pattern disappears, if one of the slits is closed. It shows that the interference pattern 
is due to superposition of waves from the two slits.

 (ii) As the separation between the two slits is gradually diminished the spacing between the bands 
increases and as the separation is increased the bands becomes narrow and ultimately disappears.

 (iii) If light is allowed to enter directly through S1 and S2 and the slit S is removed, the bands disappear 
producing a general illumination on the screen.

[Note Young’s double slit experiment is an example of interference by division of wave front. Here the 
wave front from S is divided at S1 and S2. Young explained the interference pattern by considering the prin-
ciple of superposition.]

 4.7  THEORY OF INTERFERENCE (ANALYTICAL TREATMENT)

Let S1 and S2 be two sources of monochromatic light of wavelength 
l. Let two light rays from S1 and S2 proceed along S1P and S2P 
respectively and superpose at the point P of the medium (Fig. 4.8). 
From the principle of superposition, we know that the resultant 
displacement at P at any instant is the algebraic sum of the dis-
placements at P due to the individual waves.

 If the waves coming from sources S1 and S2 produce displace-
ments y1 and y2 at P at an instant t, then

  y1 = a1 sin w t …(4.1)

and y2 = a2 sin (w t + d) …(4.2)

where a1 and a2 are the amplitudes of the waves and d is the phase difference between the two waves. The 
resultant displacement at P is given by

P

S1

S2

Fig. 4.8 Superposition of two mono-
chromatic light waves
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  y = y1 + y2 = a1 sin w t + a2 sin (w t + d)

   = a1 sin w t + a2 (sin w t cos d + cos w t sin d)

   = (a1 + a2 cos d) sin w t + (a2 sin d) cos w t

 Substituting (a1 + a2 cos d) = A cos j ...(4.3)

and a2 sin d = A sin j …(4.4)

 We have y = A cos j sin w t + A sin j cos w t

   = A sin (w t + j) …(4.5)

where A and j are new constants.

 Hence, the resultant displacement at point P is a simple harmonic wave of amplitude A and phase difference 
j. The amplitude A can be obtained by squaring Eqs. (4.3) and (4.4) and then adding, we get

  (a1 + a2 cos d)2 + (a2 sin d)2 = A2 (cos2 j + sin2 j)

or,  A2 = a1
2 + a2

2 cos2 d + 2a1 a2 cos d + a2
2 sin2 d

or,  A2 = a1
2 + a2

2 + 2a1 a2 cos d …(4.6)

 The phase difference j can be obtained by dividing Eq. (4.4) by Eq. (4.3), and we get

  tan j =   
a2 sin d

 ___________ 
a1 + a2 cos d

   …(4.7)

 The resultant intensity at P is proportional to square of the amplitude, hence we write I μ A2.

 Generally in arbitrary units, I = A2.

 So, from Eq. (4.6) the resultant intensity is given by

  I = a1
2 + a2

2 + 2a1 a2 cos d …(4.8)

4.7.1 Condition for Constructive Interference

When d = 0, 2p, 4p, etc., cos d = 1 which is the maximum value of the cosine function. Hence Imax = a1
2 + a2

2 
+ 2a1 a2 = (a1 + a2)

2. The two waves reinforce each other completely and the resultant is thus maximum; in 
general when

  d = 2np …(4.9)

(where n = 0, 1, 2, 3 …etc.) the resultant intensity becomes maximum.

 In terms of optical path difference, the condition for maximum intensity is

  S2 P – S1 P = 2n ×   l __ 
2
    [  d =   2p

 ___ 
l

   × path difference ]  …(4.10)

 So, at all points where the path difference is an even multiple of   l __ 
2
  , the waves will interfere constructively 

producing very bright points and their interference is known as constructive interference.

4.7.2 Condition for Destructive Interference

When d = p, 3p, 5p, etc., cos d = – 1 which is the least value of the cosine function. Hence Imin = a1
2 + a2

2 – 
2a1a2 = (a1 – a2)

2. This is the minimum value of the intensity. Here the two waves interfere destructively. In 
general, when

  d = (2n + 1) p …(4.11)

(where n  = 0, 1, 2, 3, ...etc.) The resultant intensity becomes minimum. In terms of the optical path difference, 
the condition for minimum intensity is
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  S2 P – S1P = (2n + 1)   l __ 
2
   …(4.12)

 So, at all points where the path difference is an odd multiple of   l __ 
2
  , the waves will interfere destructively 

producing dark points and their interference is known as destructive interference.

 4.8 INTENSITY DISTRIBUTION CURVE AND ENERGY CONSERVATION

A curve showing the variation of intensity with phase is called the intensity distribution curve. The same is  
shown in Fig. (4.9).

Fig. 4.9 Intensity distribution curve of interference.

 When two light waves interfere, darkness is produced at some points. It appears that energy is destroyed 
at the points of destructive interference and created at the points of constructive interference. So, the con-
servation principle of energy appears to be violated. But this not correct. The energy is merely redistributed 
between maxima and minima. The energy is only transferred from the region of destructive interference to the 
region of constructive interference. The average value of the energy over any number of fringes is the same  
as it would be if the interference effects were absent. For example, the average value of the intensity on the 
screen over the range, d = 0 to d = 2p is given by

  Iaverage =   

 Ú 
0
   

2p

  I  dd

 _____ 

 Ú 
0
   

2p

  d d

   =   

 Ú 
0
   

2p

  ( a1
2 + a2

2 + 2a1a2 cos d) dd

   _______________________  

 Ú 
0
   

2p

  d d

  

   =   
  [ a1

2 d + a2
2 d + 2a1 a2 sin d ]  0  2p 

   ________________________  
[d ] 0  

2p 
  

   =   
(a1

2 + a2
2) 2p
 __________ 

2p
   = a1

2 + a2
2 = I1 + I2

 This means that the energy of the maxima is increased at the expense of the energy of the minima. And the 
averaged value of the intensity equals the sum of saperate intensities. Thus, in the phenomena of interference 
the energy is conserved.
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 4.9 CONDITIONS FOR PERMANENT INTERFERENCE:
COHERENT SOURCES

The interference pattern in which the positions of maximum and minimum intensity of light remain fixed 
along the screen is called sustained or permanent interference pattern.

 For producing sustained interference, following conditions must be satisfied:

 (i) The two sources must be coherent. It means that the two sources should emit waves in the same phase 
or should have a constant phase difference between them. Two completely independent sources will 
not form coherent sources because their individual phases change in a completely arbitrary way.

 (ii) The sources should emit light of same wavelength and same or nearly same amplitude.

 (iii) The sources should be narrow and close to each other to observe distinct fringes.

 (iv) At maxima, the path difference between the waves should be even multiple of   l __ 
2
   and at minima odd 

multiple of   l __ 
2
  .

 (v) The two light waves must be in the same state of polarization.

 (vi) The two waves must propagate along the same direction to get coincidence.

 4.10 CLASSIFICATION OF INTERFERENCE PHENOMENA

There are two practical methods of obtaining two coherent sources from a single source.

 (a) Division of wavefront In this method, we require a point source or a line source, from which 
light waves spread out as spherical or cylindrical waves. Any two points on such a spherical or cylin-
drical wave front are taken as the interfering sources, which is evidently coherent. Fresnel’s bi-prism, 
Lloyd’s mirror, Billet’s split produce two coherent sources by the above method. 

 (b) Division of amplitude In this method, we require an extended source. Devices which divide the 
amplitude of the incoming wave of light into two or more parts by partial reflection and refraction 
and thereby give rise to two or more beams which are later made to reunite to produce the interfer-
ence effects, come under this class. Some of the examples of this class are Michelson’s interfero-
meter, Newton’s ring experimental set up, Fabry – Perot interferometer, etc.

 4.11 CALCULATION OF FRINGE WIDTH

Suppose A and B are two monochromatic coherent sources of light originating from S sending out waves of 
same amplitude and same wavelength keeping same phase relationship between them (Fig. 4.10). Let AB = 
2d and O is the midpoint of AB. The distance of the screen from O is OC = D. Now C is equidistant from A 
and B.  So the waves from A and B will meet in same phase at C. So the light intensity will be maximum at 
C. It is called central maximum point.
 Now, let us take another point P on the screen at a distance x from C. Join AP and BP. Since the paths are 
unequal, the phase of the waves arriving at P from A and B will be different. So, whether the intensity at P 
will be maximum or minimum that depends on the path difference (BP – AP).
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 Now, BP2 = D2 + (x + d)2 …(4.13)

and AP2 = D2 + (x – d)2 …(4.14)

 \ BP2 – AP2 = (x + d)2 – (x – d)2 = 4xd

or,  (BP + AP) (BP – AP) = 4x◊d

  BP – AP =   4xd
 ________ 

BP + AP
   =   4xd

 ____ 
2D

   =   2xd
 ____ 

D
  

 [The point P lies very close to C and D is very large compared to 
2d. So BP  AP  D]

 The path difference of the waves arriving at P is given by

  BP – AP =   2xd
 ____ 

D
   …(4.15)

 (a) Bright fringes Now, if P is the position of nth bright 

fringe then path difference is   
2xnd

 ____ 
D

   where xn is the distance of the nth bright fringe from central 

maximum.

  Now for bright fringe, the path difference should be equal to even integral multiple of   l __ 
2
  . So

     
2xnd

 ____ 
D

   = 2n   l __ 
2
  

or,   xn =   Dnl
 ____ 

2d
   …(4.16)

  Now for (n + 1)th bright fringe, from Eq. (4.16), we can express the distance of that point from cen-
tral maximum as

   xn + 1 =   
D(n + 1)l

 _________ 
2d

   …(4.17)

  Therefore, the width of the fringe in case of bright bands, i.e., the distance between two consecutive 
bright bands is

  b =   
D(n + 1)l

 _________ 
2d

   –   Dnl
 ____ 

2d
   =   Dl ___ 

2d
   …(4.18)

 (b) Dark fringes If P is the position of nth dark fringe, then path difference should be equal  to odd 
multiple of l/2. So

     
2xnd

 ____ 
D

   = (2n + 1)   l __ 
2

  

  or, xn =   
(2n + 1)Dl

 __________ 
4d

   …(4.19)

 Now for (n + 1)th dark fringe, from Eqs. (4.19), the distance of that point from central maximum is

  xn + 1 =   
D[2(n + 1) + 1] l

  _______________ 
4d

   …(4.20)

 Therefore, the fringe width in case of dark bands, i.e., the distance between two consecutive dark is

  b ¢ =   
D[2(n + 1) + 1]l

  ______________ 
4d

   –   Dl
 ___ 

4d
   (2n + 1) =   Dl

 ___ 
2d

   …(4.21)
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Fig. 4.10 Diagram of double slit 
experiment
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 So from Eqs. (4.18) and (4.21) we see that the distance between two consecutive bright or dark bands is 
independent of the order of the fringe (i.e., n). Hence all bright bands and all dark bands have equal width. 
The fringe width (b), varies directly with D the slit screen separation, inversely with the separation of slits 2d 
and directly with the wave length l of light employed.

 4.12 SHAPE OF INTERFERENCE FRINGES

In the preceding article, we have seen BP2 = D2 + (x + d)2 and AP2 = D2 + (x – d)2.

 So the path difference  D  = BP – AP = [D2 + (x + d)2]1/2 – [D2 + (x – d)2]1/2

or,  D + [D2 + (x – d)2]1/2 = [D2 + (x + d)2]1/2

 On squaring both sides,

  D2 + 2D [D2 + (x – d)2]1/2 + D2 + (x – d)2 = D2 + (x + d)2

or,  2D [D2 + (x – d)2]1/2 = 4xd – D2

 On squaring both sides, this equation easily reduces to

  4 (4d 2 – D2) x2 – 4D2D2 = D2 (4d 2 – D2)

or,    x2

 ____ 
D2/4

   –   D2
 __________ 

(4d 2 – D2)/4
   = 1 …(4.22)

 This is the equation of hyperbola in a standard form. The eccentricity (e) equal to

  e =  
 
   [   D2

 ___ 
4
   +   4d2 – D2

 _______ 
4
   ]  1/2

  /   (   D __ 
2
   )     2d

 ___ 
D

   …(4.23)

 Since D is very small, the eccentricity is very large. Hence the fringes appear as straight lines in the region 
of observation.

 4.13 COHERENCE

The coherence of a wave describes the accuracy with which it can be represented by a pure sine wave. If a 
wave appears to be pure sine wave for an infinitely extended time or an infinitely extended space, it is 
called a perfectly coherent wave. The characteristic of such a wave is that a definite relationship between the 
phases of the wave at a certain time and at a given time later, or at a certain space point and at another given 
space-point exists. A perfect coherence is however, an idealization. A real light source always emits light in 
short pulses. Light waves that are pure sine waves only in a limited space or for a limited time are only par-
tially coherent waves. There are two different criteria of coherence. The first criterion is related to the concept 
of temporal coherence which expresses the correlation to be expected between a wave at a given time and a 
certain time later. The second criterion is related to the concept of spatial coherence which expresses the cor-
relation to be expected between a wave at a given point in space and a point at a certain distance away. Laser 
light is characterized by a high degree of ordering of the light field than the other sources. Due to its coher-
ence only, it is possible to create high power (1013 W) in space with laser beam only 1 m m in diameter. 

4.13.1 Temporal Coherence

Temporal coherence refers to the correlation between the light field at a space point at a time and that at 
the same space point at a later time. The oscillating electric field E of a perfectly coherent light wave has a 
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constant amplitude at any point in space, but its phase will vary with time linearly. As a function of t, the field 
E will appear as illustrated in Fig. (4.11). The displacement of the ideal electric field E remains sinusoidal 
for – μ < t < + μ and does not agree with the real cases.

T =
2p
w0

t

E

Fig.  4.11 A wave train of infinite length. Displacement remains sinusoidal for  – μ < t <+ μ.

 An actual source (real source) can never produce an ideal sinusoidal field for all time. When an excited 
atom makes a transition back to its initial state, it emits a light pulse of extremely short duration ~10–10 s. 
The field therefore is sinusoidal for an interval of ~10–10 s. The light pulse due to this transition is not a 
continuous wave of infinite extent but a wave of finite extent. It is known as wave packet. The light from a 
source is a bundle of such wave packet originating from different atoms. Different atoms of the source emit 
radiation in a random fashion. Every wave packet propagates with a sustainable phase for time duration of 
10–10 s after which it has a random phase. Figure 4.12 illustrates the field due to a real source of light. In 
Fig. (4.12), tc represents the average duration of the wave trains, i.e., the electric field remains sinusoidal for 
times of the order of tc. The average time-interval for which the ‘field’ of light vector remains sinusoidal, and 

therefore a definite phase relationship exists, is termed as coherence time, tc (or Dt).

tc

t

E

Fig. 4.12 Coherent time for an actual source.

 The distance over which the field is sinusoidal is termed the coherent length lc of the light beam and is 
given by,
  lc = tc × c …(4.24)

where c is the speed of light in free space. For example, for the Ne line (l = 6328 Å), tc ~ 10–10 s and for the 
red Cd line (l = 6438 Å) tc ~ 10–9 s; the corresponding coherence lengths are 3 cm and 30 cm respectively. 

 The temporal coherence tc of the light beam is related to the spectral width Dl given  by

  tc =   l
2

 ___ 
Dl

   …(4.25)

and coherence length lc =   l
2

 ___ 
Dl

   c …(4.26)

 In terms of frequency, coherent length lc can be expressed as

  lc =   c ___ 
Dv

   …(4.27)
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where Dv is the line width.

 The light emitted by a laser is more monochromatic (ideal harmomic wave of infinite extent because Dv is 
equal to zero) than that of any conventional monochromatic source. The degree of non-monochromaticity (x) 

of a wave may be defined as its relative band width and is given by x =   Dv
 ___ v  

 For a highly stable gas laser Dv = 500 Hz

and v = 5 × 1014 Hz

\  the degree of non-monochromacity =   500 _______ 
5 × 1014

   = 10–12

 But for conventional monochromatic source, the degree of non-monochromacity =   109

 ____ 
1014

   = 10–5

 Therefore laser source is more monochromatic than conventional source.

4.13.2 Spatial Coherence

The spatial coherence refers to the correlation between two light fields at two different space points at 
an instant of time on a wave front of a given light wave. If two light fields at two different points in space 
preserve a constant phase difference over any time t then they are said to have spatial coherence.

 Let the light waves be emitted from the source S (Fig. 4.13) and A and B be two space points on a line 
joining them with S. The phase relationship between the points A and B depends on (i) the distance AB and 
(ii) the temporal coherence of the beam.

 If AB << lc , the coherent length, then there will be a definite phase relation-
ship between A and B. So, there will be a high degree of coherence between 
the points A and B. Conversely, if the distance AB >> lc the coherent length, 
then there will be no coherence between the points A and B.

 We now consider the points A and C which are equidistant from the source 
S, but unlike the previous case, not on the same line joining with S. If S is 
true point source, light waves will reach A and C exactly in the same phase. 
In other words, the two space points will be in perfect spatial coherence. In 
case the source is an extended one, the two points A and C will no longer be 
in coherence. For extended source, it is  not necessary that phase at two points at equal optical path distance 
would be equal because optical path for different waves emitted from different parts of the source would be 
different. Therefore, spatial coherence depends also on size of the source. The lateral coherence width (lw) 
of  an extended incoherent source represents the distance over which the beam may be assumed to be spatially 
coherent; it is given by

  lw =   l __ 
q

   …(4.28)

where q is the angle substanded by the source at the point of observation.

 In the case of interference of light, the degree of contrast of fringes depends on the degree of spatial 
coherence of interfering waves. The contrast of interference fringes varies as the optical path difference (D) 
is varied, beginning from an extremely good contrast for D << lc to a very poor contrast for D >> lc.

 The spatial coherence is directly related to the degree of directionality of light waves. For higher degree of 
spatial coherence, higher would be the directionality. Since laser beam is highly directional one, so it is more 
spatially coherent than ordinary light.

S

A
B

C

Fig. 4.13 Spatial coherence.
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 So we may conclude that degree of contrast of fringe pattern is a measure of degree of spatial coherence 
and monochromaticity is a measure of temporal coherence.

 4.14 CHANGE OF PHASE DUE TO REFLECTION: STOKES’ LAW

Stokes’ law states that if waves are reflected at a rarer to denser medium interface (for example air-

glass interface), the reflected waves suffer a phase change of   ( or path difference    __ 
2
   )  compared to 

incident waves.
 But if reflection takes place at a denser to rarer medium interface, then no change of phase or path dif-
ference takes place. In Fig. (4.14) AB is the surface separating the denser medium below it from a rarer 
medium above it. A light wave of amplitude a is incident at O in 
the direction PO on the surface of separation. A part of the light 
is reflected along OR and the remaining part is refracted into the 
denser medium along OT. If r and t be the reflection and trans-
mission coefficients respectively, then the amplitude of reflected 
wave OR is ar and the amplitude of the refracted wave along OT is 
at. If there be no loss of energy, then r + t = 1. Now if the reflected 
and refracted rays OR and OT be made to retrace their path, then 
they should combine along OP to yield the original amplitude a.

 If the ray OR of amplitude ar is made to retrace its path along 
RO, it is partly reflected along OP with amplitude ar2 and partly 
refracted along OS of amplitude art.

 Similarly, when the ray TO of amplitude at is reversed, it is partly refracted along OP with amplitude att ¢ 
(t ¢ being the co-efficient of transmission in the rarer medium) and partly reflected along OS with amplitude 
atr ¢ (r ¢ being the coefficent of reflection in the denser medium). Since originally we had an incident wave 
PO of amplitude a and no wave along OS, we must have

  ar2 + att ¢ = a …(4.29)

  art + atr ¢ = 0 …(4.30)

\ from Eq. (4.29), we get tt ¢ = 1 – r2 

 From Eq. (4.30), we get r ¢ = – r

 The negative sign implies a displacement in opposite direction that is equivalent to a phase change of p or 

a path difference of   l __ 
2
  .

 Hence, the two rays one reflected from a denser medium and the other reflected from a rare medium differ 
in phase by p from each other.

 4.15 INTERFERENCE IN A THIN FILM (REFLECTED LIGHT)

When white light is reflected by thin films like soap bubbles, oil layers on water and oxide layers on metal 
surfaces a variety of colours can be seen. This is due to interference between light reflected by the front and 
back surfaces of these films.

RP a
ar

2 ar

att ¢
Rarer

A B

Denser

S T

atatr ¢
a tr

O

Fig. 4.14 Stoke ‘s’ treatment.
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 Here we, consider a thin film of thickness t and refractive index 
m bounded by two plane surfaces AB and A¢ B ¢ (Fig. 4.15]. Let, 
the light wave from point source P be incident at O at an angle 
i. A part of the light is reflected along OT and the other part OQ 
is refracted into the film towards Q making angle of refraction. 
At Q, it is again partly reflected along QR inside the medium and 
partly refracted out of the medium along QC. The ray QR finally 
emerges out along RS.

 The rays OT and RS are originated from the same source. So, 
if they meet at a point will produce interference. But there is a 
path difference between the two rays.

 To calculate the additional path traveled by RS inside the film, 
drop a perpendicular RN on OT. Hence, the path difference between the rays RS and NT is

  d ¢ = optical path OQR inside the film – ON

   = m (OQ + QR) – ON …(4.31) 

   = 2m OQ – ON [  OQ = QR]

   = 2m OQ – OR sin i

 Now t = OQ cos r or, OQ =   t
 _____ cos r   and OR = 2t tan r

\  d ¢ = 2m   t
 _____ cos r   – 2t tan r sin i

   =   
2m t

 _____ cos r   (1 – sin2 r) = 2m t cos r …(4.32)

 Now, an additional path difference of   l __ 
2
   is introduced in the path of the ray OT as it is reflected from the 

surface of an optically denser medium.

 Hence, the effective path difference between the two reflected rays

  d = 2m t cos r ±   l __ 
2
   …(4.33)

 If the path difference be d = nl where n = 0, 1, 2, 3 …

 Then constructive interference takes place and the film appears bright.

\  2m t cos r ±   l __ 
2
   = nl

or,  2m t cos r = (2n  1)   l __ 
2
   ...(4.34)

 If the path difference be d = (2n ± 1)   l __ 
2
   where n = 0, 1, 2, ... destructive interference takes place and the 

film appears dark.

\  2m t cos r ±   l __ 
2
   = (2n ± 1)   l __ 

2
  

or,  2m t cos r = nl …(4.35)
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Fig. 4.15 Waves reflected and 
transmitted by a thin film.
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4.15.1 Transmitted Light

For transmitted light, the film will appear bright (constructive interference) when

  2m t cos r = nl …(4.36)

and the film will appear dark (destructive interference) when

  2m t cos r = (2n ± 1)   l __ 
2
   …(4.37)

 Thus, the interference pattern in the reflected and transmitted system are complementary to each other.

Extremely thin film appears dark When the thickness of the film is very small compared to the wave 

length (t << l), so that 2m t cos r is negligible, the two rays will be out of phase  ( path difference =   l __ 
2
   )  and 

therefore the film will appear dark.

4.15.2 Coloring Effect in Thin Film

If white light (e.g., sunlight) is incident on the film (oil film floating on water) instead of monochromatic 
light, a beautiful coloring effect is observed on the film. White light contains seven visible colors of different 
wavelengths. As a result, if destructive interference occurs for one color, it will not be true for all colors. 
Hence excepting one color, all other colors will be seen by the eyes. Consequently, the oil film floating on 
water will show a variety of colors.

4.15.3 No Coloring Effect in Thick Film

If a film has large thickness, then at a given point, the condition of brightness will be satisfied for large 
number of wave lengths. Hence no particular color will finally appear at the given point. Thus, a thick film 
exhibits no color effect.

4.15.4 Necessity of Broad Source of Light in Thin Film

To produce coherent sources by the method of division of wave front (Fresnel bipsipm, Lloyd’s mirror) the 
source of light is taken in the form of narrow slit. But to produce coherent sources by the method of division 
of amplitude, we require extended source.

 When a thin film is illuminated with light from a point source and it is observed with a lens of small apper-
ture such as the eye, the ray that can enter the eye are confined to a small range of directions. But in case of 
broad source the rays incident at different angles on the film are accommodated by the eye and the field of 
view is large. Due to this reason, to observe interference phenomena in thin film, a broad source is required.

 4.16 INTERFERENCE IN A WEDGE-SHAPED FILM

A wedge-shaped air film is enclosed by two plane surfaces inclined at an angle a. If the film is illuminated 
by a monochromatic light PO, then the reflected ray OT from the front surface and the other emergent ray ST 
reflected from the back surface BC of the film will interfere (Fig. 4.16). There two rays are originated from 
the same source P and hence they will produce interference pattern. Let m be the refrective index of the mate-
rial of the film. The path difference between the two rays OT and ST is given by
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  d ¢ = optical path ODS inside the film – ON

   = m (OD + DS) – ON

   = m (OD ¢ + D ¢D + DS) – ON

   = m (D ¢D + DS) [  ON = m OD ¢] …(4.38)

 Draw SME ^ BC. Produce OD and SM to meet at E. From 
the geometry of  Fig. (4.16) DE = DS and SM = ME = t = the 
thickness of the film at S.

\  d ¢ = m (D ¢D + DE) = m D ¢E = 2 m t cos (r – a)
…(4.39)

 In addition to this path difference, there is an extra phase 

difference of p, or path difference ±   l __ 
2
   caused by reflection at 

O, from the surface backed by denser medium. The reflection 

at D, from the surface backed by rarer medium, will not cause 
any change of phase.

 Hence the total path difference between the two reflected rays is,

  d = d ¢ ±   l __ 
2
   = 2m t cos (r – a) ±   l __ 

2
   …(4.40)

(a) For constructive interference

  2m t cos (r – a) ±   l __ 
2
   = even multiple of   l __ 

2
  

or,  2m t cos (r – a) = odd multiple of   l __ 
2
  

   = (2n  1)   l __ 
2
   where n = 0, 1, 2, 3, …(4.41)

(b) For destructive interference

  2m t cos (r – a) ±   l __ 
2
   = odd multiple of   l __ 

2
  

or,  2m t cos (r – a) = even multiple of   l __ 
2
  

or,  2m t cos (r – a) = nl where n = 0, 1, 2, 3 …(4.42)

4.16.1 Fringe Width

We take a point at a distance x1 from O, where thickness of the 
film t (Fig. 4.17). For normal  incidence (i.e., r = 0), we have

  2m t cos q = (2n + 1)   l __ 
2
  

for constructive interference …(4.43)
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Fig. 4.16 Interference in wedge-shaped 
film.
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Fig. 4.17 Fringe width.
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 Since q is very small cos q = 1 and t = x1 q. Equation (4.43) reduced to 2m x1 q = (2n + 1)   l __ 
2
  . …(4.44)

 Similarly, if x2 be the distance for (n + m) bright band, then

  2m x2 q = [2 (n + m) + 1]   l __ 
2
   …(4.45)

 From Eqs. (4.44) and (4.45)

  2m q (x2 – x1) = ml …(4.46)

 Fringe width b =   
x2 – x1 ______ m   =   l

 ____ 
2m q

   …(4.47)

 This equation is also true for dark fringe

 Again (x2 – x1) q =   ml
 ___ 

2m
  

or,  t2 – t1 =   ml
 ___ 

2m
   …(4.48)

 It gives the difference of film thickness between two points.

4.16.2 Discussions

 (i) When the thickness of the film is very small compared to the wavelength, i.e., t << l then 2m t cos r 
is negligible in comparison to l and we have d ª 0. This condition corresponds to zero intensity in 
the reflected part but maximum intensity for transmitted part.

 (ii) Classification of fringes: We have d = 2m t cos r, from this we see that d depends upon (i) l, (ii) m t 
and (iii) r.

 Therefore, for variation of each of them there are different types of fringes:

 (a) When m t and r are kept constant the fringe system depends upon l, i.e., on the color of the light. 
These are known as the fringes of equal chromatic order (FECO).

 (b) When l and r are kept constant, we have fringe system dependent upon m t. These are called fringes 
of equal thickness or iso-pachic fringes. These are localized fringes.

 (c) When l and m t are kept constant, the fringe system depends upon r. These are known as fringes of 
equal inclination or iso-clinic fringes. These fringes are localised at infinity. The fringes of equal 
inclination is sometimes also called Haidinger’s fringes.

4.16.3 Color of Thin Wedge-Shaped Film

At the edge the thickness of the film is negligible. Therefore, the edge will appear dark under reflected light. 
When t increases, for a particular value of t brightness condition will be satisfied first by the violet light. 
Hence violet color of the fringes will be the first one. Then the fringe of other color follow, i.e., blue, green, 
yellow with increasing thickness. But at certain thickness, the condition for constructive interference for two 
or more wavelengths at different orders may be satisfied. Hence the regions of greater thickness will have 
mixed coloration. This will ultimately terminate into uniform coloration.
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 4.17 NEWTON’S RING

An air film of gradually increasing thickness outward is formed between an optically plane glass plate and 
curve surface of a plano-convex lens. The thickness of the film at the point of contact is zero. If this film 
is illuminated by a broad-source of monochromatic light a ring system alternately bright and bark are seen 
around the point of contact. These rings were first discovered by Newton, that is why they are called Newton’s 
rings. In general, in the reflected light the ring system starts with dark ring at the center and for transmitted 
light it starts with bright ring at the center. Typical Newton’s rings are shown in Fig. 4.18[(a) and (b)]

(a) (b)

Fig. 4.18 (a) Newton’s rings in reflected light. (b) Newton’s rings in transmitted light.

 The adjoining diagram (Fig 4.19) shows a sectional view of 
the Newton’s ring apparatus. A light ray AB falls on the film 
surface and a portion gets reflected along BD.

 Another portion BC is transmitted through the film and par-
tially reflected from the glass plate along CB1 and ultimately 
follows the path B1 D1. There is transmitted ray CT. It is obvious 
that there is reflection also at B1 which produces the next trans-
mitted ray C1 T1. Thus, BD and B1D1 are two coherent beams 
which may interfere. Similarly, transmitted rays CT and C1 T1 
may also interfere. This is because all the rays are obtained from 
the same incident beam by the division of amplitude. Therefore 
they are coherent beams.

 For reflected light the condition of interference are as follows:

  2mt cos (r – a) = 2n   l __ 
2
   for darkness.

  2mt cos (r – a) = (2n + 1)   l __ 
2
   for brightness

 Here m is refractive index of the thin film, t is the thickness of the film at the point under consideration and 
a is the angle between the surfaces at the same point. Here we have also considered the phase change p for 
the ray B1 D1 due to reflection from the denser medium, i.e., the glass plate.

 Generally light is made to fall normally and the radius of curvature of the lens is very large and hence we 
can rewrite the above conditions as

A

Glass plate O C C1

B1

T T1

D1D

B

Fig. 4.19 A sectional view of the Newton’s 
rings apparatus.
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  2m t = nl for minima …(4.49)

  2m t = (2n + 1)   l __ 
2
   for maxima …(4.50)

 For transmitted light as there is no extra phase change p, the conditions for maxima and minima are just 
the reverse.

 As the shape of the film is symmetrical with respect to the touching point it is obvious that a constant 
thickness (t) will be on the circumference of a particular circle with center at the touching point. Therefore, 
the ring system will be concentric circles. When t = 0, i.e., at the center, the reflected interfering beams will be 
out of phase and hence the center will be dark. Obviously, next ring will be bright due to the relation for the 
condition of brightness. This will be repeated and hence the ring system will be alternately bright and dark.

 The ring system with the transmitted beam will be complementary to that of reflected system due to 
absence of extra phase difference p.

4.17.1 Working Formula for Newton’s Rings

Figure 4.20 shows that the thickness t of the film at any point is related 
to the radius of the circular ring BD on which it lies and the radius of 
the curvature of the lens R. If the point of observation is dark and the 
radius of the nth dark ring is rn (say) [Note: The dark ring is the nth 
dark ring excluding the central dark spot]. Then from the diagram, we 
have

  rn
2 = R2 – (R – t)2

   = (2R – t)t …(4.51)

 Now t is very small compared to R (R is the order of 100 cm and t is 
almost 1 cm). Therefore R >> t. Hence,

  rn
2 = 2 Rt …(4.52)

 But we know from Eq. (4.49), 2m t = nl for dark fringe

\    
rn

2 m
 ____ 

R
   = nl or, rn

2 =   Rnl
 ____ m   …(4.53)

 This shows that the radius of the dark ring is proportional to the square root of natural number.

 The corresponding diameter is obviously given by

  dn
2 = (2rn)

2 =   4Rnl
 _____ m   …(4.54)

 This is the expression for the diameter of any nth dark ring. Similarly, we can show the diameter of any 
nth bright ring is given by

  dn
2 =   

2(2n + 1) Rl
 ___________ m   …(4.55)

 Obviously, the expression for the diameter of the (n + p)th dark ring is given by

  d 2n + p =   
4(n + p) Rl

 __________ m   …(4.56)

t

O

R

BD

rn

Fig. 4.20 Determination of radii 
of Newton’s rings.
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 So, from Eqs. (4.54) and (4.56), we have

  l =   
(d 2n + p – dn

2) m
  ____________ 

4pR
   …(4.57)

 Thus we can find out l, i.e., the wavelength of a monochromatic light if we can measure the diameters 
of different rings. Same result can be obtained for bright rings by considering dn + p and dn the diameters of 
(n + p)th and nth rings.

4.17.2 Newton’s Rings in Transmitted Light

For transmitted light the central spot is bright and for nth bright rings

  2m t = nl

 Again, t =   
rn

2

 ___ 
2R

   where rn is the radius of the nth bright ring.

 Hence, for nth bright ring

  2m  (   rn
2

 ___ 
2R

   )  = nl

or,  rn
2 =   n l R

 ____ m  

 For nth dark ring rn
2 = (2n + 1)   lR

 ___ 
2m

   …(4.58)

 When n = 0, for bright ring rn = 0

 Therefore, in the case of Newton’s rings for transmitted light, the central ring is bright (Fig. 4.18b) which 
is just opposite to the rings pattern produced by reflected light.

4.17.3 Refractive Index (R.I.) Calculation of Transparent Liquid by 
Newton’s Rings Method

A liquid film can be produced instead of air film by putting few drops of experimental liquid between the 
plano-convex lens and the glass plate. Then by using a monochromatic light of known wavelength, the dia-
meters of nth and (n + p)th dark rings can be measured by the traveling microscope.

 If d ¢n and d ¢n + p be the diameters of nth and (n + p)th dark rings respectively then from Eq. (4.57)

  d ¢n + p – d ¢n
2 =   

4pRl
 _____ m   …(4.59)

and for air film (m = 1)

  d 2n + p – dn
2 = 4pRl …(4.60)

 So, m =   
d 2n + p – d 2n

 _________ 
d ¢2n + p – d ¢n

2
   …(4.61)

4.17.4 Experimental Arrangement

To observe the Newton’s ring, the experimental arrangement is made as shown in Fig. (4.21).
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 An air film is illuminated by sending light of single 
wavelength from a broad source. The light is made par-
allel with the help of a lens and then directed normal to 
the surface of the Newton’s ring apparatus by the help of 
a plane glass plate held at 45° to the rays from the lens. 
The reflected light is seen by a traveling microscope held 
over the glass plate. The diameters of the ring system can 
be measured with this travelling microscope. Using Eq. 
(4.57) [m = 1 for air], one can easily determine the value 
of R for a light of known wavelength, say sodium light. 
Then with this determined value of R, the wavelength (l) 
of any unknown light can be determined by the relation 
(4.57)

4.17.5 A Few Points in Connection with Newton’s Rings 

 (a) Newton’s rings with bright center due to reflected light If we place a liquid of refractive 
index m between the plano-convex lens and glass plate such the m1 > m > m2 where m1 and m2 are 
the refractive indices of lens and glass plate respectively. Then the glass plate is no longer a denser 
medium with respect to the transparent liquid. Hence, there is no extra phase change p between the 
reflected interfering rays. Therefore  the center of the ring system will be bright.

  The central spot will also be bright under reflected ray if m1 < m < m2. In this case, path differ-

ence   l __ 
2
   take place at both surfaces.

 (b) Disappearance of Newton’s ring Newton’s rings will disappear if the glass plate is replaced 
by a plane mirror because the intensity of light reflected by the plane mirror will be much more com-
pared to the intensity of light reflected by the curved surface of the lens. Under this condition, the 
two reflected beams will produce no interference fringe.

 (c) White light effect For monochromatic light, Newton’s rings are alternately dark and bright with 
dark centre. With white light the central spot will be dark because the condition of darkness is inde-
pendent of wavelength of light. This dark center would be surrounded by few color rings close to 
it and only the first few rings will be clear and after that there will be general illumination due to 
overlapping of different colored rings.

 (d) Newton’s rings for lens in contact with a concave surface If R1 and R2 are the radii of 
curvature of the convex surface of plano-convex lens L1 and the concave surface of the concave glass 
plate L2, then it can be easily shown that

   l =   
m (d 2n + p – dn

2)
  ____________ 

4p
    (   1 ___ 

R1
   –   1 ___ 

R2
   )  …(4.62)

  where l is the wavelength of incident light and dn + p and dn are diameters 
of (n + p)th ring and nth ring. This relation is true for both dark and bright 
rings.

45°

Light
source

Glass
plate

Microscope

Plane convex lens

Air film

Glass plate

Lens

Fig. 4.21 Experimental set-up to observe 
Newton’s rings.

L2

L1

Fig. 4.22 Lens in contact 
with concave 
surface.
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 (e) Newton’s rings for lens in contact with convex surface If 
R1 and R2 are radii of curvature of the convex surface of plano-convex 
lens L1 and convex surface of plano-convex lens L2 then it can be easily 
shown that

   l =   
m (d 2n + p – dn

2)
  ____________ 

4p
    (   1 ___ 

R1
   +   1 ___ 

R2
   )  …(4.63)

  where l is the wave length of incident light and dn + p and dn are diam-
eters of (n + p)th ring and nth ring. This relation is true for both dark 
and bright rings.

 (f) Calculation of fringe width For two successive rings of diameters dn and dn + 1, the fringe width 
b is given by

   b =   
dn + 1 – dn

 ________ 
2
  

  Again, from Eq. (4.57) for p = 1

   d 2n + 1 – d 2n =   4l R
 ____ m  

or,   (dn + 1 – dn) (dn + 1 + dn) =   4 l R
 ____ m  

or,   dn + 1 – dn =   4l R
 ___________  

m (dn + 1 + dn)
       4l R

 _____ 
2dn m

   [Since dn + 1 + dn  2 dn]

  So, b =   
dn + 1 – dn

 ________ 
2
   =   l R

 ____ 
m dn

   …(4.64)

Example 4.1  The path difference between the two interfering rays at a point on the screen is 1/8th of a 
wavelength. Find the ratio of the intensity at this point to that at the center of a bright fringe.

Sol.  The intensity at any point is given by

   I = a1
2 + a2

2 + 2a1 a2 cos d

  Here a1 = a2 = a (say)

  Therefore I = 2a2 (1 + cos d )

  At the center, phase difference d = 0

  \ I0 = 2a2 (1 + cos 0) = 2a2 (1 + 1) = 4a2

  At the point, where the path difference is   l __ 
8
  

   phase difference =   2p
 ___ 

l
   × path difference

    =   2p
 ___ 

l
   ×   l __ 

8
   =   p __ 

4
  

Fig. 4.23 Lens in contact 
with convex 
surface.

L2

L1

Worked-out Examples
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  \ I1 = 2a2  ( 1 + cos   p __ 
4
   )  = 2a2  ( 1 +   1 ___ 

 ÷ 
__

 2  
   ) 

  Therefore   
I1 __ 
I0

   =   

2a2  ( 1 +   1 ___ 
 ÷ 

__
 2  
   ) 
  ___________ 

4a2
   =   1 __ 

2
    ( 1 +   1 ___ 

 ÷ 
__

 2  
   )  = 0.85

Example 4.2  Two coherent sources whose intensity ratio is 100 :1 produce interference fringes. Find the 
ratio of maximum intensity to the minimum intensity.

Sol.  The ratio of maximum intensity to the minimum intensity is given by

     
Imax ____ 
Imin

   =   
(a1 + a2)

2

 ________ 
(a1 – a2)

2
   …(1)

  Here   
I1 __ 
I2

   =   
a1

2

 ___ 
a2

2
   =   100 ____ 

1
  

or,     
a1 __ a2

   =   10 ___ 
1
   or, a1 = 10 a2 …(2)

  Substituting the value of a1 from Eq. (2) in Eq. (1), we get

     
Imax ____ 
Imin

   =   
(10 a2 + a2)

2

 ___________ 
(10 a2 – a2)

2
   =   121 ____ 

81
  

Example 4.3  If the intensity at a point due to a light wave is 0.8 W/m2, what would the intensity at that 
point when two such waves interfere at that point?

Sol.  If they are in opposite phase, the resultant intensity (Imin) at the point of superposition would be equal 
to zero. But if they are in phase, then resultant intensity (Imax) at the point of superposition would be 
equal to

   Imax = (a1 + a1)
2 = 4 a1

2 = 4 × 0.8 = 3.2 W/m2

Example 4.4  In Young’s double slit experiment, red light of 620 nm wavelength is used and the two slits 
are 0.3 mm apart. Interference fringes observed on a screen are 1.3 mm apart. Calculate the distance of the 
slits from the screen.

Sol.  Fringe width b =   Dl
 ___ 

2d
   

  Here l = 620 nm = 620 × 10–9 m

   2d = distance between the two slits

    = 0.3 mm = 0.3 × 10–3 m

  \ b =   Dl
 ___ 

2d
  

or,   D =   
b × 2d

 ______ 
l

   =   1.3 × 10–3 × 0.3 × 10–3

  ___________________  
620 × 10–9

  

    = 0.629 m
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Example 4.5  In an experiment using Young’s double slits, the distance between the center of the interfer-
ence pattern and tenth bright fringe on either side is 3.44 cm and the distance between the slits and the screen 
is 200 cm. If the wavelength of the light used is 5.89 × 10–5 cm, determine the separation between the slits.

[Question Bank, WBUT]

Sol.  The distance of the nth bright fringe from the central maximum, 

   xn =   nDl
 ____ 

2d
  

  Here n = 10, D = 200 cm

   l = 5.89 × 10–5 cm, xn = 3.44 cm

  \ 2d =   nDl
 ____ xn

   =   10 × 200 × 5.89 × 10–5

  ___________________  
3.44

  

    = 0.0342 cm

  So the diatance between the slits is 0.0342 cm.

Example 4.6  In a Young’s double slit experiment the distance between the two coherent sources is 
1.15 mm. Calculate the fringe width that would be observed on a screen place at a distance of 85 cm from the 
sources. The wavelength of light used is 5893 Å (WBUT 2005, 2008)

Sol.  Fringe width b =   Dl
 ___ 

2d
  

  Here l = 5893 Å = 5893 × 10–8 cm

   2d = 1.15 mm = 0.115 cm

   D = 85 cm

  \ b =   Dl
 ___ 

2d
   =   85 × 5893 × 10–8

  ______________ 
0.115

  

    = 0.43 cm

Example 4.7  In a Young’s double slit experiment, the fringes are formed at a distance of 1 m from the 
double-slit of separation 0.12 mm. Calculate the distance of 3rd dark band from the center of the screen. 
Given wavelength of light l = 6000 Å.

Sol.  For (n + 1)th dark rings xn + 1 =  ( n +   1 __ 
2
   )    Dl

 ___ 
2d

  

  For third dark fringe, n = 2

  Also, 2d = 0.012 cm, D = 100 cm, l = 6 × 10–5 cm

  So, x3 =  ( 2 +   1 __ 
2
   )    100 × 6 × 10–5

  ____________ 
0.012

  

    = 1.25 cm
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Example 4.8  In a Young’s double slit experiment, the angular width of a fringe found on a distant screen 
is 0.1°. The wavelength of light used is 6000 Å. What is the spacing between the slits?

Sol.  The angular fringe width (Wq ) is given by

   Wq =   l ___ 
2d

  

  \ spacing between the slits (2d) is

   2d =   l ___ 
Wq

  

  Here l = 6000 Å = 6000 × 10–8 cm

   Wq = 0.1° =   0.1 × p
 ______ 

180
   radian

   2d =   6000 × 10–8 × 180  _______________ 
0.1 × p

   = 3.44 × 10–2 cm

Example 4.9  A beam of light consisting of two wavelengths of 6500 Å and 5200 Å is used to obtain inter-
ference fringes in the Young’s double slit experiment. What is the least distance from the central maximum 
when the bright fringes due to both the wavelengths coincide?

 The distance between the slits is 2 mm and the distance between the plane of the slits and the screen is 
120 cm.

Sol.  The condition for least distance when the bright fringes due to two wavelengths to coincide is that the 
difference between their order of fringe width should be one.

   xn =   
Dnl1 _____ 

2d
   =   

D(n + 1)l2 _________ 
2d

  

or,   nl1 = (n + 1) l2 …(1)

  Here l1 = 6500 Å = 6.5 × 10–5 cm and l2 = 5200 Å = 5.2 × 10–5 cm

  So from the Eq. (1)

   6.5 n = 5.2 (n + 1)

or,   n = 4

  Now from the equation

   xn =   
Dn l1 _____ 

2d
  , we have

   xn =   120 × 4 × 6.5 × 10–5

  _________________ 
0.2

   = 0.156 cm.

Example 4.10  In a double slit interference pattern at a point, the 10th order maximum is observed for light 
of wavelength 7000 Å. What order will be visible if the source of light is replaced by light of wavelength 
5000 Å.

Sol.  The condition of maxima in interference is given by

  Path difference = nl

  Here l = 7000 Å; n = 10
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  So path difference  = 7000 × 10–8 × 10 …(1)

  For light of wavelength 5000 Å

   path difference = n × 5000 × 10–8 …(2)

  Equating Eqs. (1) and (2) for path difference at the same point

   n × 5000 × 10–8 = 10 × 7000 × 10–8

   n =   10 × 7000 × 10–8

  ______________  
5000 × 10–8

  

    = 14

  Hence, the 14th order of maximum will be observed.

Example 4.11  In a Newton’s ring experiment, the diameter of 5th dark ring is 0.336 cm and the diameter 

of the 15th dark ring is 0.590 cm. Find the radius of the plano-convex lens if the wavelength  of the light used 
is 5890 Å.   [WBUT 2004]

Sol.  Radius R =   
D 2n + p – Dn

2

 _________ 
4pl

   =   
D2

15 – D2
5 _________ 

4 × 10 × l
  

  Here p = 10, D5 = 0.336 cm D15 = 0.590 cm

   l = 5890 × 10–8 cm

  \ R =   
(0.590)2 – (0.336)2

  _________________  
4 × 10 × 5890 × 10–8

  

    = 99.83 cm

Example 4.12  Light of wavelength 6000 Å falls normally on a thin wedge-shaped film of refractive index 
1.4 forming fringes that are 2 mm apart. Find the angle of the wedge.

Sol.  Given l = 6000 × 10–10 m

   m = 1.4, b = 2 mm = 2.0 × 10–3 m

  The fringe width in the case of wedge-shaped film for normal incidence is given by

   b =   l
 ____ 

2m q
  

or  angle of wedge, q =   l
 ____ 

2m b
  

    =   6000 × 10–10

  _______________  
2 × 1.4 × 2 × 10–3

   = 1.07 × 10–4 rad.

Example 4.13  Newton’s rings are observed in reflected light of wavelength 5900 Å. The diameter of the 

10th dark ring is 0.5 cm. Find the radius of curvature of the lens and the thickness of the air film.

Sol.  Here l = 5900 × 10–10 m

   n = 10, Dn = 0.5 cm = 5 × 10–3 m

 (a) The diameter of the dark ring is given by

   Dn
2 = 4 nl R
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   R =   
D2

n
 ____ 

4nl
   =   

(5 × 10–3)2

  __________________  
4 × 10 × 5900 × 10–10

   = 1.059 m

  The thickness of the air film is given by

   2t = nl

  or, t =   nl 
 ___ 

2
   =   10 × 5900 × 10–10

  _______________ 
2
   = 2.95 × 10–6 m

Example 4.14  A Newton’s ring experiment is performed with a source of light having two wavelengths, 
l1 = 6 × 10–5 cm and l2 = 4.5 × 10–5 cm. It is found that the nth dark ring due to l1 coincides with (n + 1)
th dark ring due to l2. If the radius of curvature of the curved surface is 90 cm, find the diameter of the nth 
dark ring for l1.

Sol.  The diameter of the nth ring is given by

   Dn
2 = 4 nRl1 …(1)

  For (n + 1)th ring

   D2
n + 1 = 4 (n + 1) Rl2 …(2)

  The nth dark ring due to l1 coincides with (n + 1)th dark ring due to l2. Hence from Eqs. 
(1) and (2)

   4nRl1 = 4 (n + 1) Rl2

or,   nl1 – nl2 = l2

or,   n(l1 – l2) = l2

  \ n =   
l2 ______ 

l1 – l2

  

  Here l1 = 6 × 10–5 cm and l2 = 4.5 × 10–5 cm; R = 90 cm

  \ n =   4.5 × 10–5

  _________________  
6 × 10–5 – 4.5 × 10–5

   =   4.5 ___ 
1.5

   = 3

  So the diameter of the nth dark ring for l1 is

   D =  ÷ 
__________________

  4 × 3 × 90 × 6 × 10–5  

    = 0.254 cm

Example 4.15  A soap film of refractive index 1.33 is illuminated with light of different wavelengths at an 

angle of 45°. There is complete destructive interference for l = 5890 Å. Find the thickness of the film.

Sol.  Given m = 1.33, i = 45°, m =   sin i
 ____ 

sin r
   or, sin r =   sin 45° ______ 

1.33
   =   1 _________ 

 ÷ 
__

 2   × 1.33
   = 0.5317

  \ cos r =  ÷ 
________

 1 – sin2r  

    =  ÷ 
___________

  1 – (0.5317)2   = 0.8469

  For destructive interference

   2m t cos r = nl

  or, 2 × 1.33 × t × 0.8469 = 1 × 5890 × 10–10
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  \ t =   5890 × 10–10

  _______________  
2 × 1.33 × 0.8469

   = 2.614 × 10–7 m

Example 4.16  In a Newton’s ring experiment, the diameter of a dark ring is measured to be 2 mm. The 
medium in between plano-convex lens and glass plate is air. What would be the diameter of the same ring 
when the air film is replaced by a liquid of refractive index of 1.6?

Sol.  The diameter of the dark ring is given by (for air)

   Dn
2 = 4nl R …(1)

  For liquid, the diameter of the dark ring is

   Dn¢
2 =   4nlR

 _____ m   …(2)

 where m is the refractive index of the liquid.

  Now from Eqs. (1) and (2)

     
D2

n
 ___ 

Dn¢
2
   = m

or,   D¢2n =   
Dn

2

 ___ m  

or,  D¢n =  ÷ 
___

   
D2

n
 ___ m     =   

Dn
 ___ 

 ÷ 
__

 m  
  

  Here Dn = 2 mm = 0.2 cm, m = 1.6

  \ D¢n =   0.2 ____ 
 ÷ 

___
 1.6  
   = 0.158 cm

  So the diameter of the ring is 0.158 cm.

Example 4.17  In a Newton’s ring experiment, the diameter of the 25th bright ring is 7.5 mm and the 
radius of curvature of the plano-convex lens is 110 cm. Calculate the wave length of light used.

Sol.  Given n = 25, Dn = 7.5 mm = 0.75 cm, R = 110 cm, m = 1

  The diameter of the nth bright ring is given by

   D2
n =   

2(2n – 1)l R
 ___________ m  

or,   l =   
D2

n m
 _________ 

2(2n – 1)R
   =   

(0.75)2 × 1
  ________________  

2(2 × 25 – 1) × 110
  

    = 5217.99 × 10–8 cm

    = 5218 Å

Example 4.18  In a Newton’s rings experiment, the diameter of the 4th and 12th rings are 0.4 cm and 
0.7 cm respectively. Find the diameter of the 20th dark ring.

Sol.  Here D4 = 0.4 cm D12 = 0.7 cm

  Now l =   
D2

m – D2
n
 _________ 

4R(m – n)
   =   

D2
12 – D4

2

 ________ 
4 × R × 8

   =   
(0.7)2 – (0.4)2

  ____________ 
4 × 8 × R
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or,   l R =   0.49 – 0.16 __________ 
32

   = 1.031 × 10–2

  Now D20 =  ÷ 
______

 4R l m   =  ÷ 
__________________

  4 × 20 × 1.031 × 10–2  

    = 0.908 cm.

Example 4.19  A film of oil of R.I. 1.70 is placed between a plane glass plate and an equi-convex lens. 
The local length of the lens is 1 meter. Determine the radius of the 10th dark ring when light of wavelength  
6000 Å is used.   [WBUT 2008]

Sol.  For equi-convex lens

     1 __ 
f
   = (m – 1)  (   1 __ 

R
   +   1 __ 

R
   )  [Herer R is the radius of the lens. m is refractive index of

     oil. f is the focal length of the lens]

     1 ____ 
100

   = (1.70 – 1)   2 __ 
R

  

    = 0.70 ×   2 __ 
R

  

or,   R = 70 × 2 = 140 cm

  Now the radius of the 10th dark ring is rn =  ÷ 
____

   nl R
 ____ m    

   r10 =  ÷ 
____________________

    10 × 6000 × 10–8 × 140  ___________________  
1.70

    

    =  ÷ 
_________

   8.4 × 10–2

 _________ 
1.70

     =   2.22 ____ 
10

   = 0.22 cm

    = 2.2 mm

Example 4.20  The coherence length for sodium light is 2.945 × 10–2 m. Calculate coherence time.

Sol.   Coherence time (tc) =   L __ c   =   2.945 × 10–2

 ___________ 
3 × 108

  

    = 9.82 × 10–11 s

Part 1: Multiple Choice Questions

 1. Interference phenomena indicates

 (a) light is electromagnetic wave (b) rectilinear propagation of light

 (c) the wave nature of light (d) None of these

 2. For a linear-shaped source of light, the nature of wave front is

 (a) plane (b) cylindrical (c) spherical (d) None of these
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 3. The nature of the wave front due to a point source of light is

 (a) spherical (b) plane (c) cylindrical (d) None of these

 4. For interference of light, the two sources should be

 (a) spherical (b) non-coherent (c) coherent (d) cylindirical

 5. Two sources will be coherent if they

 (a) have a constant wavelength (b) have a constant phase difference

 (c) have a constant amplitude (d) None of these

 6. In interference, the law of conservation of energy is

 (a) violated (b) not violated (c) partly violated (d) None of these

 7. The relation between the path difference and phase difference is

 (a) path difference =   l ___ 
2p

   × phase difference (b) path difference =   2p
 ___ 

l
   × phase difference

 (c) path difference = 2p × phase difference (d) None of these

 8. For constructive interference, the phase difference is an even multiple of

 (a)   p __ 
2
   (b) 2p (c) p (d) None of these

 9. In Young’s double slit experiment, coherent waves are produced by means of

 (a) division of wave front  (b) division of amplitude

 (c) refraction   (d) None of these

 10. The fringes in Young’s double slit experiment are

 (a) equally spaced   (b) not equally spaced

 (c) partially equally spaced (d) None of these

 11. Two waves having intensities in the ratio of 9:1 produce interference. 
  The ratio of maximum intensity to minimum intensity is equal to

 (a) 4:1 (b) 4:9 (c) 10:8 (d) None of these

 12. The fringe width of interference pattern of Young’s double slit experiment is

 (a)   Dl
 ___ 

d
   (b)   2d

 ___ 
Dl

   (c)   Dl
 ___ 

2d
   (d)   D ___ 

l d
  

  [where l is the wavelength of light, 2d is the distance between sources and D is the distance between 
source and screen]

 13. The distance (xn) of nth dark fringe from the central maximum is given by

 (a)   Dl
 ___ 

2d
   (b)   2nDl

 _____ 
d
   (c)   nDl

 ____ 
2d

   (d) (2n + 1)   Dl
 ____ 

4d
  

 14. In Newton’s ring experiment, coherent waves are produced by means of

 (a) division of wave front  (b) diffraction

 (c) division of amplitude   (d) None of these

 15. The center of the Newton’s rings for the reflected system of a monochromatic source of light is

 (a) dark (b) bright (c) partially dark (d) None of these
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 16. The center of the Newton’s rings for the transmitted system of a monochromatic source of light is

 (a) dark (b) partially dark (c) bright (d) None of these

 17. Newton’s rings are formed

 (a) in a glass plate   (b) in between plano-convex lens and glass plate

 (c) above the plano-convex lens (d) below the glass plate

 18. The diameter of the Newton’s ring is proportional to the

 (a) square of the radius of curvature of plano-convex lens

 (b) square root of the wavelength of the monochromatic light

 (c) wavelength of the monochromatic light

 (d) None of these

 19. In Newton’s ring experiment, rings are

 (a) of equal inclination and unequal thickness

 (b) of equal thickness and equal inclination

 (c) unequal inclination and unequal thickness

 (d) None of these

 20. Radii of Newton’s rings are proportional to

 (a) square root of natural numbers (b) square of the natural number

 (c) natural number   (d) None of these

 21. In Newton’s rings experiment, the coherent sources are

 (a) spatial coherence   (b) temporal coherence

 (c) partially spatial coherence (d) None of these

 22. Stoke’s law states that

 (a) the light wave reflecting from the surface of denser medium suffers a phase change of   p __ 
2
  

 (b) the light wave reflecting form the surface of denser medium suffers a phase change of p

 (c) the light wave reflecting form the surface of rearer medium suffers a phase change of   p __ 
2
  

 (d) None of these

 23. If white light is used in Newton’s ring experiment, then

 (a) a number of colored rings will be observed

 (b) no rings will be observed

 (c) black and white rings will be observed

 (d) None of these

 24. Two coherent sources of different intensities interfere with each other. The ratio of maximum inten-
sity to the minimum intensity is 25. The intensities of the sources are in the ratio

 (a) 25:1 (b) 5:1 (c) 9:4 (d) 625:1

 25. If interference takes place at some region, the light energy is

 (a) redistributed (b) created (c) destroyed (d) None of these
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 26. If Young’s double slit experiment with one source of light and two slits be performed in water instead 
of air

 (a) the fringes will be smaller in number (b) the fringes will be narrower

 (c) the fringes will be broader (d) no fringes will be obtained

 27. In Young’s experiment with one source and two slits, if one slit is covered with black opaque paper,

 (a) the fringes will be narrower

 (b) the fringes will be darker

 (c) the fringes will be broader

 (d) no fringes will be obtained and the screen will have uniform illumination

 28. A source of light emits light of frequencies between v and v + Dv. If coherence time of the emergent 
light beam is tc , then 

 (a) tc μ Dv (b) tc μ   1 ___ 
Dv

   (c) tc μ v (d) tc μ   1 __ v  

Answers

 1. (c) 2. (b) 3. (a) 4. (c) 5. (b) 6. (b) 7. (a) 8. (c)

 9. (a) 10. (a) 11. (c) 12. (c) 13. (d) 14. (c) 15. (a) 16. (c)

 17. (b) 18. (b) 19. (b) 20. (a) 21. (b) 22. (b) 23. (a) 24. (c)

 25. (a) 26. (b) 27. (d) 28. (b)

Short Questions with Answers

 1. Can we obtain interference pattern if two coherent sources are separated by distance less than 
the wavelength of light? Explain.

  The fringe width b =   D l
 ___ 

2d
  . Now if 2d < l then b will be sufficiently large which will result in uniform 

illumination. Hence, no interference fringe will be visible.

 2. Why are light waves from two different candles not seen to produce interference pattern?
  The vibrations of a particle in the flame of the candle are so much influenced by inconsistent 

collisions of the surrounding particles that the phase of the vibration changes abruptly many time a 
second. Consequently, the waves generated from such vibrations are bound to have abrupt changes 
in phase too. In a flame there are numerous particles having all possible phases and for obvious 
reasons the waves coming from such vibrating particles are incapable of maintaining a constant 
phase relationship among them. So two similar candles or any two parts of the same candle cannot 
be regarded as coherent sources. Due to sudden and continual changes in the phase relation of these 
waves, the position of maxima and minima in the fringe system undergo very rapid charge, with the 
result that the screen is seen informally illuminated.

 3. If the amplitudes of the two interfering waves are different, find out the resultant amplitude 
and intensity?

  When two beams of light of amplitude a1 and a2 from two sources having same frequency fall upon 
a screen, then the resultant amplitude (A) will be given by

   A2 = a1
2 + a2

2 + 2a1 a2 cos d
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  and the resultant intensity will be given by

   I = I1 + I2 + 2 ÷ 
____

 I1 I2   cos d

  where d is the phase difference between the two beams and I1 and I2 are the intensities due to two 
beams.

 4. What is the effect on the fringe pattern if we do not make the simplification S2 P + S1 P  2D

  In this case we have to use the exact expression of the path difference

   S2P – S1P =  ÷ 
___________

 D2 + (x + d)2   –  ÷ 
___________

 D2 + (x – d)2  

  When the path difference equal to nl we get maximum. Obviously, the fringes will not be equally 
spaced.

 5. What happens to fringe width when the double slit set up is immersed in water?

  We know fringe width b =   lD
 ___ 

2d
   . Since l decreases in water so fringe width will decreased.

 6. What would be the nature of interference pattern produced by wide slit?
  Wide slit can be treated as a combination of large number of narrow slits placed side by side. Then 

each of these narrow slits produce own interference pattern that overlaps with interference pattern of 
others. As a result, we have natural illumination without variation in intensity.

 7. A double slit is first illuminated by violet light and then by red light. Which color shows wider 
interference pattern beyond the double slit?

  The fringe width is directly proportional to the wavelength. Since l r > l v, so red light produces 
wider interference pattern.

 8. Do interference phenomena violate the principle of conservation of energy?
  Refer to Section 4.8.

 9. What is the difference between temporal coherence and spatial coherence?
  The temporal coherence of any wavefield implies the possibility of predicting phase and amplitude at 

a point in space at different instants of time. A monochromatic wavefield is temporally coherent. The 
spatial coherence is concerned with phase correlation between two wavefields at two space points at 
the same instant of time.

 10. In Young’s double slit experiment, fringes appear as straight line. Explain.
  Actually, in Young’s double slit experiment, the region in which constructive interference and destruc-

tive interference take place form hyperboloid. But intersections of these hyperboloid and the screen 
forms straight lines. Therefore, fringes come into sight as straight line on the screen.

 11. How does the interference pattern by reflection in thin film differ from that of refraction 
(transmission)?

  In the reflected system there is an additional path difference of   l __ 
2
   between the two rays producing 

interference. Here, one ray suffers reflection at a denser medium, while in the transmitted system it 
is not so.

  Thus, for the same path difference in the reflected system a bright band will correspond to a dark 
band in transmitted system and vice versa. Thus, the two systems are complementary.
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 12. Explain why an excessively thin film appears black in reflected light.

  The effective path difference between the interfering reflected rays is 2m t cos r –   l __ 
2
  . When the film 

is extremely thin, so that t is practically zero, the effective path difference is   l __ 
2
  . This is the condition 

for minimum intensity. Hence the film appears dark.

 13. Why are Newton’s rings formed?
  If the air film is formed between the curved surface of a plano-convex lens and the glass plate, 

the interference take placed between the reflected as well as the transmitted light. The fringes are 
obtained in the form of rings known as Newton rings.

 14. What change will take place in Newton’s ring system if a liquid film is used instead of air 
film.

  let ra be the radius of the nth bright-ring with air-film and rl is the radius of the same ring with liquid 
film, then

   ra
2 = 4 R(2n + 1)   l __ 

2
  , rl =   4R

 ___ m   (2n + 1)   l __ 
2
  

  \ rl
2 =   

ra
2

 ___ m   as m > 1 and rl < ra

Part 2: Descriptive Questions

 1.  (i) What are coherent sources?

 (ii) State the condition to be fulfilled for the production of sustained interference fringes.
[WBUT 2004]

 (iii) Is light energy destroyed in the region of destructive interference?

 (iv) Why are light waves from two different candles not seen to interfere?

 2. What is meant by interference of light?

  Show that the dark and bright fringes produced in Young’s experiment are equally spaced.

 3.   (i) In an interference experiment d is the distance between the two coherent sources of light with 
wavelength l and D is the source-screen distance. Show that the separation between the two 

consecutive dark bands is given by b =   Dl
 ___ 

d
   [WBUT 2004]

 (ii) Interference phenomenon does not violet the principle of conservation of energy. Justify it.
[WBUT 2008]

 4.  (i) What are coherent sources?

 (ii) Show that the law of conservation of energy is not violated in the interference process.

 (iii) Will the radius of the Newton’s ring change if air is replaced by oil between the lens and the 
glass plate? [WBUT 2005]

 5.  (i) Explain briefly with necessary theory how Newton’s rings are formed. [WBUT 2003]

 (ii) Why is the center of Newton’s rings dark? [WBUT 2004]

 (iii) Would you observe Newton’s ring with transmitted light?
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 6.  (i) What are coherent and non-coherent sources of light?

 (ii) Show that the expression of the radius of curvature of the convex lens used in Newton’s ring 

apparatus is R =   
D2

m + n – Dm
2

 __________ 
4 nl

  .

 (iii) What are basic requirements for obtaining permanent interference pattern? [WBUT 2003]

 7.  (i) Explain the color phenomenon exhibited by a thin film.

 (ii) Explain with necessary theory how you can determine the refractive index of a liquid by means 
of Newton’s ring.

 8.   (i) Established the conditions of constructive and destructive interference of light coming out from 
two coherent sources.

 (ii) Show how the energy is conserved in interference phenomena.

 (iii) If the distance between the two coherent sources of light with wavelength l is d and D is the 

source screen distance then show that fringe width separation x =   Dl
 ___ 

d
  . [WBUT 2002]

 9.  (i) Define temporal coherence and spatial coherence?

 (ii) Explain the difference between temporal and spatial coherence.

 10. (i) A double silt is illuminated first by red light and then by violet light. Which color gives the wider 
interference pattern beyond the double slit?

 (ii) Why is laser source more monochromatic than conventional source?

 11. Define lateral coherence width. Explain the term that degree of contrast of fringe pattern is a measure 
of degree of spatial coherence and monochromaticity is a measure of temporal coherence.

Part 3: Numerical Problems

 1. Two coherent sources having intensity in the ratio 81:1 produce interference fringes. Find the ratio of 
the maximum to minimum intensity of fringe system [25:16]

 2. In Young’s double slit experiment with a light of wavelength 589.3 nm separation between the slits 
is 1 mm. Find the fringe width on a screen 1 m away. [0.05893 cm]

 3. Two coherent sources are placed 0.2 mm apart and the fringes are observed on a screen 1 m away. 
It is found that with a certain monochromatic source of light, the fourth bright fringe is situated at a 
distance of 10.0 mm from the central fringe. Find the wavelength of light. [5000 Å]

 4. A double-slit arrangement produces interference fringes for sodium light (l = 5800 Å) that are 0.20° 
apart. For what wavelength would the angular separation be 10 per cent greater? [6479 Å]

 5. Newton’s rings are formed by light reflected normally from a plano-convex lens and a plane glass 
plate with a liquid between them. The diameter of the nth and (n + 10)th bright rings are 2.18 mm 
and 4.51 mm respectively. Calculate the refractive index of the liquid. Radius of curvature of the lens 
is 90 cm and wave length of light employed is 589.3 nm. [1.7]

 6. If the diameters of two consecutive Newton’s rings in reflected light of wavelength 5890 Å are 2.0 
and 2.02 cm respectively, what is the radius of curvature of the lens surface in contact with plane 
glass surface?   [341.2 cm]

 7. In a Newton’s rings experiment, the diameter of 5th dark ring is reduced to half of its value after 
introducing a liquid below the convex surface and glass plate. Calculate the refractive index of the 
liquid.   [1.4]
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 8. Newton’s rings are formed with a source of light containing two wavelengths l1 and l2. If mth order 
dark ring due to l1 coincides with the (m + 1)th order dark ring due to l2, prove that the radius of mth 

dark ring of l1 is equal to  ÷ 
______

   
l1 l2R

 ______ 
l1 – l2

    , where R is the radius of curvature of the lower curved surface.

 9. In a Young’s double slit experiment, the distance between the slits is 0.1 mm and the perpendicular 
distance of the screen from the plane of the slits is 50 cm. Find the separation on the screen between 
maxima for violet light (l = 400 mm) and the red light (l = 700 mm) in the first order.

   [ Hints: xn =   nlD
 ____ 

2d
  ; x ¢1 – x1 =   D ___ 

2d
   (l2 – l1) = 1.5 mm ] 





CHAPTER

5
Diffraction of Light

 5.1 INTRODUCTION

The bending of light around the corner of an obstacle and spreading of light wave into the geometrical 
shadow of that obstacle is called diffraction of light. Fresnel gave a satisfactory explanation of this on the 
basis of wave theory. According to him, the wavelength of light is so small that we cannot see the bending of 
light ray round the corners; so the rectilinear propagation of light is only an approximation. Diffraction also 
occurs in sound and because of this, we can listen to a speaker when we stand behind a pillar, i.e., even when 
we are not in the direct line with the speaker.

 In order to explain the phenomenon of diffraction of light, one can represent a source of smallest possible 
size (the so-called point source) by a point. Let us represent a point source by S which is in front of a screen 
MN [Fig. (5.1a)]. A narrow opaque obstacle AB is placed in between the source and the screen. If one assumes 
rectilinear propagation of light, then AB will cast its shadow on the screen MN which has been shown by CD. 
But, one can observe that dark bright fringes near the edge are present. Similarly, if the light from the source 
S is allowed to pass through an aperture and falls on a screen MN [Fig. 5.1(b)], then it is seen that the intensity 
of the light does not fall exactly to zero outside the area CD, instead some fluctuations are observed in the 
form of dark and bright fringes. Therefore, from the above observations it is evident that the light bends to an 
extent while passing through a small aperture or by the edge of a small obstacle.

S

A

B

N

D

C

M

S

A

B
N

D

C

M

(a) (b)

 Fig. 5.1(a) Narrow opaque obstacle AB in Fig. 5.1(b) Small aperture AB in between
   between the source and the screen.  the source and the screen.
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Definition of diffraction The phenomenon of bending of light round the sharp corners and spreading 
into the region of the geometrical shadow is called diffraction.

 The light waves are diffracted only when the size of the obstacle is comparable to the wavelength of 
light.

 The effects of diffraction increase with the increase of wavelength. Indeed since the light wavelengths are 
very small (~ 5 × 10–7 m), the effects due to diffraction are not readily observed.

 5.2 DIFFERENT TYPES OF DIFFRACTION PHENOMENA

There are two types of diffraction phenomena known as Fresnel diffraction and Fraunhofer diffraction. 
Some important characteristics of these categories of diffraction is as given below.

 (i) In Fresnel’s diffraction, either the source or screen or both are at finite distances from the obstacle 
and thus the distances are important.

  In Fraunhofer’s diffraction, the source of light and the screen are at infinite distances from the obsta-
cle. In this class, the inclination is important.

 (ii) In Fresnel’s diffraction, the incident wave front is either spherical or cylindrical while in Fraunhofer’s 
diffraction, the incident wave front is generally plane.

 (iii) In Fresnel’s diffraction, the centre of diffraction pattern may be bright or dark depending upon the 
number of Fresnel’s zone, while in Fraunhofer’s diffraction the center of the diffraction pattern is 
always bright.

 (iv) In real life, Fresnel’s diffraction is more common. It is however difficult to treat and under-
stand. Fraunhofer’s diffraction is a limiting case of Fresnel’s diffraction and it is easier to handle 
mathematically.

 5.3 DIFFERENCE BETWEEN INTERFERENCE AND DIFFRACTION

Both of interference and diffraction are the resultant of superposition of waves. Both these effects may take 
place simultaneously. The differences between the two phenomena are given in the following table.

  Interference  Diffraction

 1. The interference occurs between two separate 1. It is the interference that occurs between the secondary
  wave fronts originating from two coherent sources.  wavelets originating from the exposed part of the same
    wave front.

 2. The interference fringes may or may not be 2. The diffraction fringes are never equally spaced.
  equally spaced.

 3. Points of minimum intensity are totally dark. 3. Points of minimum intensity are not totally dark.

 4. The maxima are of same intensity. 4. The intensity of central maximum is maximum and
    decreases on either side as the order of maximum
    increases.

 5.4 FRAUNHOFER DIFFRACTION DUE TO A SINGLE SLIT

Fraunhofer diffraction arises when the source of light and screen are effectively at infinite distance from 
diffracting aperture.
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 (a) Single slit A slit is a rectangular aparture whose length is large as compared to its breadth. The 
width of the slit should be at least comparable with the wavelength of the light used but never less 
than the wavelength.

 (b) Principle The study of diffraction pattern is based on the superposition of Huygens’ secondary 
wavelet which are supposed to be generated at every point on the wavefront when it occupies the 
plane of the slit.

  AB is a long narrow slit of width ‘a’ placed perpendicular to 
the plane of the paper and illuminated by a parallel beam of 
monochromatic light of wavelength l. The figure shows a 
cross section of the slit and O is the center of the slit. Let i is the 
angle of incidence with the normal to the plane of the slit. Due 
to the diffraction these rays will generate secondary wavelets in 
all possible directions and are focussed on the focal plane of the 
converging lens L. Here parallel diffracted rays are focussed by 
the lens on the screen at P to form the image of the slit. So the 
point of observation P is also at infinity. Obviously it is a case 
of Fraunhofer class of diffraction.

 (c) Mathematical study of intensity To study the diffraction 
phenomenon, let us consider a diffracting element of width dx 
at C at a distance x from O.

  Through the slit let us draw incident and diffracted rays as shown in the Fig. (5.2). From O draw two 
perpendicular OE and OF on the incident and diffracted rays. Then OE and OF represent incident 
and diffracted wave front. We shall find out the intensity of light at P.

  Let the equation of vibration on the incident wave front OE be represented by y = A e 
i   2p

 ___ 
l

   ct
  where c is 

the velocity of light. So, the equation of vibration on the diffracted wave front OF is given by

   y = A e 
i   2p

 ___ 
l

   (ct – ECF)
  …(5.1)

  But ECE = EC + CF = x sin i + x sin q

    = x (sin i + sin q)

    = x j (say)

  So the Eq. (5.1) reduces to

   y = A e 
i   2p

 ___ 
l

   (ct – x j)
  …(5.2)

  Now neglecting the effects of disturbance due to inclination, the disturbance at P due to element dx 
at C is given by

   ds = ydx = A e 
i   2p

 ___ 
l

   (ct – x j)
  dx …(5.3)

  Hence the total disturbance at P due to entire slit is given by

   S = Ú ds =  Ú 
–a/2

  
a/2

   A e 
i   2p

 ___ 
l

   (ct – x j)
   dx …(5.4)

    = A e 
i   2p

 ___ 
l

   ct
   Ú 

–a/2
  

a/2

    e 
–i   2p

 ___ 
l

   x j
   dx

xE F

dx

i q

P

B

L

A

O

C

Fig. 5.2 Fraunhofer diffraction 
through single slit.
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    =   A e 
i   2p

 ___ 
l

   ct
  ______ 

  
p j

 ___ 
l

  
    [    e 

+ i   
p a j

 ____ 
l

  
  –  e 

– i   
p a j

 ____ 
l

  
   _____________ 

2i
   ] 

    =   Aa e 
i   2p

 ___ 
l

   ct
  _______ 

  
p a j

 ____ 
l

  
    [    e 

+ i   
p a j

 ____ 
l

  
  –  e 

– i   
p a j

 ____ 
l

  
   _____________ 

2i
   ] 

  Let us put   
p a j

 ____ 
l

   = X

   S =   Aa e 
i   2p

 ___ 
l

   ct
  _______ 

X
     e

iX – e–iX

 _______ 
2i

  

    = Aa e 
i   2 p

 ___ 
l

   ct
   [   sin X

 _____ 
X

   ] 
    =  ( Aa   sin X

 _____ 
X

   )   e 
i   2p

 ___ 
l

   ct
  …(5.5)

  Hence the vibration is simple harmonic. The intensity at P is proportional to the square of amplitude. 
Let the constant of proportionality is unity. The intensity at P is given by

   I = A2 a2   sin2 X
 _____ 

X2
   = A2 a2   

sin2   
p a j

 _____ 
l

  
 ________ 

  (   p a j
 ____ 

l
   )  2 

  

    = A2 a2   
sin2  {   p a

 ___ 
l

   (sin i + sin q) } 
  ____________________  

  {   p a
 ___ 

l
   (sin i + sin q) }  

2
 
  

   I = (Aa)2 = sin2   
 {   pa

 ___ 
l

   (sin i + sin q) } 
  _________________  

 {   pa
 ___ 

l
   (sin i + sin q)2 } 

  

   N1I =   
I0 sin2 X

 _______ 
X2

   …(5.6)

where   Io = (aA)2 and X =   pa
 ___ 

l
   (sin i + sin q)

 (d) Conditions for maxima and minima

Sine we have I = Io   
sin2 X

 _____ 
X2

  

  \   dI
 ___ 

dX
   = Io  [   X2 2 sin X cos X – sin2 X ◊ 2X

   ________________________  
X4

   ] 
or     dI

 ___ 
dX

   = Io  [   2X sin X cos X – 2 sin2 X   _____________________  
X3

   ]  …(5.7)
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  For the above Eq. (5.7), we shall get the condition of maxima and minima by putting   dI
 ___ 

dX
   = 0

  i.e.,   d ___ 
dX

    [ Io   
sin2X

 _____ 
X2

   ]  = 0

  or, 2 Io sin X   
[X cos X – sin X]

  ______________ 
X3

   = 0

  We have as conditions

 (a) X = • (b) sin X = 0 (c) X cos X – sin X = 0

  For condition (a), we have X =   
p a j

 ____ 
l

   = μ

  This will be true, when l = 0. As l π 0, so this condition is invalid.

  From condition (b), sin X = 0

  or, sin   
p a j

 ____ 
l

   = 0

  i.e.,   
p a j

 ____ 
l

   = np when n is an integer.

  Hence, j =   nl
 ___ a   …(5.8)

  If we find   d
2I
 ____ 

dX2
   and put the condition in Eq. (5.8) in it then   d

2I
 ____ 

dX2
   = + ve. So the Eq. (5.8) gives the 

condition for minimum and the other successive minima are given by

   j1 = ±   l __ a  , j2 = ±   2l
 ___ a  , j3 = ±   3l

 ___ a   …

  From the above values of j we can conclude that the minima are equidistant.

  From condition (c) tan X = X, this gives the condition for maxima. Now the value of X satisfying the 
above equation is obtained by drawing two curves (i) Y = X and Y = tan X on the same scale. Then 
the point of intersection of the two curves [Fig. 5.3(b)] gives the values of X, satisfy the equation 
tan X = X, the maximum value of intensity occur at

 (i) X0 = 0 giving I0 =   Lt    
X0 Æ 0

    A
2a2 sin2 X

 __________ 
X2

   = A2a2 (central band)

 (ii) X1 = ± 1.43 p giving  I1 = 0.0469 A2 a2 and

   j1 = ± 1.43   l __ a  

 (iii) X2 = ± 2.46 p giving I2 = 0.0168 A2 a2 and

   j2 = ± 2.46   l __ a  

 (iv) X3 = ± 3.47 p giving I3 = 0.0083 A2 a2 and

   j3 = ± 3.47   l __ a  

  Thus, it is obvious from the values of I0, I1, I2, etc., that the diffraction pattern consists of a bright 
central maximum followed by minimum of zero intensity and then secondary maxima of decreasing 
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intensity on either side of it [Fig. 5.3(a)] and the maxima are not equidistant but at higher order these 
are found to be equidistant.

  The angle of diffraction q1 for the 1st minimum on either side of the central maximum is given by 
Eq. (5.8)

   a sin q1 = l    [  
 

 
 j =   nl

 ___ a  , sin i + sin q =   nl
 ___ a  . For normal incidence i = 0

      

and for first minimum n = 1 so sin q1 =   l __ a  
 

 

  ] 
or,   q1 =   l __ a  

  Therefore, the angular width of principal maximum (2q1) is inversely proportional to the width (a) of 
the slit.

 5.5 FRAUNHOFER DIFFRACTION DUE TO A DOUBLE SLIT

The diffraction pattern due to double slit consists of diffraction fringes caused by rays diffracted from two 
slits superimposed on the interference fringes caused by rays coming from each pair of corresponding points 
on the two slits.

(a) Double slit Double slit is an arrangement where two single slits are parallelly placed on the same 
plane. The width of each slit are generally identical and much smaller than their lengths.

 The slits have an opaque space between them and width of both the slits and opaque space should be of 
the order of wavelength used or greater but never less than the wavelength of the light.

 Adjoining diagram [Fig. (5.4)] represents the section of the slit. Here MN and RS are two slits on which 
beams of parallel rays are incident. And a is the width of each slit and b is the width of opaque space. O and 
O1 are midpoint of MN and RS respectively and d is the distance between O and O1 which is equal to (a + b). 
S1 S2, the plane of the slits is perpendicular to the plane of the paper. And i is the angle of incidence with the 

Fig. 5.3 (a) Intensity (solid line)/Amplitude (dotted line) distributions due to single slit (b) Graphical method 
for determining the roots of the equation tan X = X.
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normal to the plane of the slits. The rays are diffracted in all possible directions. Let us consider a beam of 
rays for which the angle of diffraction is q. L is the converging lens which focuses the diffracted rays on its 
focal plane.

 As the source and the point of observation are effectively at infinity, obiviously it is a case of Fraunhofer 
class of diffraction.

(b) Mathematical/Analytical study of intensity To find the intensity on the screen let us consider a 
diffracting element of width dx at P where PO1 = x. From O1 let us draw two perpendiculars O1 A and O1 B 
on the incident and diffracted rays.

a

d dx

b

M

S1

L

P1

S

S2

O1

x
A

P
B

i q
R

N

O
a

Fig. 5.4 Fraunhofer diffraction through double slit.

 Let the equation of vibration of the incident wave front O1 A is represented by y = A e 
i   2p

 ___ 
l

   ct
  where c is the 

velocity of light in free space, A is the amplitude of the wave and l is the wavelength.

 The equation of vibration of diffracted wave front O1B is given by

  y = A  e 
i   2p

 ___ 
l

   (ct – APB)
  …(5.9)

 But APB = AP + PB = x sin i + x sin q

   = x (sin i + sin q)

   = x j [j = sin i + sin q] …(5.10)

 Equation (5.9) reduces to y = A e 
i   2p

 ___ 
l

   (ct – x j)
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 Now, the disturbance at P1 due to the element dx at P is given by

  ds = y dx = A e 
i   2p

 ___ 
l

   (ct – x j)
  dx

 Hence the total disturbance at P due to entire slit RS is given by

  Ú ds =  Ú 
–a/2

  
a/2

   A e 
i   2p

 ___ 
l

   (ct – x j)
  dx  …(5.11)

   = A e 
i   2p

 ___ 
l

   ct
   Ú 
–a/2

  
a/2

    e 
–i   2p

 ___ 
l

   x j
  dx 

 or, S1 = A e 
i   2p

 ___ 
l

   ct
   Ú 
–a/2

  
a/2

    e 
–i   2p

 ___ 
l

   x j
  dx 

 Hence, the disturbance due to the other slit is

  S2 = A e 
i   2p

 ___ 
l

   ct
   Ú 
d – a/2

  
d + a/2

   e 
– i   2p

 ___ 
l

   xj
   dx

 Hence, the disturbance due to both the slits at P1 will be

  S = A e 
i   2p

 ___ 
l

   ct
   [   Ú 

–a/2
  

a/2

    e 
–i   2p

 ___ 
l

   x j
  dx  +  Ú 

d – a/2
  

d + a/2

   e 
–i   2p

 ___ 
l

   x j
  dx  ] 

   = A e 
i   2p

 ___ 
l

   ct
   [   Ú 

–a/2
  

a/2

    e 
–i   2p

 ___ 
l

   xj
  dx  ]   [ 1 +  e 

–i   2p
 ___ 

l
   dj

  ] 

   = A e 
i   2p

 ___ 
l

   ct
    [    e 

–i   2p
 ___ 

l
   x j

  _______ 
–   2p

 ___ 
l

   j i
   ]  

– a/2

  

a/2

    [ 1 +  e 
– i   2p

 ___ 
l

   d j
  ] 

   =   Aa e 
i   2p

 ___ 
l

   ct
  _______ 

  
p a j

 ____ 
l

  
    [   ei p a j /l – e–i p a j/l

  ____________________ 
2i

   ]   [ 1 +  e 
–i   2p

 ___ 
l

   d j
  ] 

 Let us put   
p a j

 ____ 
l

   = X

\  S =   Aa e 
i   2p

 ___ 
l

   ct
  _______ 

X
    [   eiX – e–iX

 ________ 
2i

   ]   [ 1 +  e 
–i   2p

 ___ 
l

   d j
  ] 

   = Aa e 
i   2p

 ___ 
l

   ct
   [   sin X

 _____ 
X

   ]   [ 1 + cos   2p
 ___ 

l
   d j – i sin   2p

 ___ 
l

   d j ] 
 Here we see that the effective amplitude of vibration at P1 due to two slits is

Aa  (   sin X
 _____ 

X
   )   ( 1 + cos   2p

 ___ 
l

   d j – i sin   2p
 ___ 

l
   d j ) 

 Now the resultant intensity at P1 is proportional to the square of the amplitude. Let the constant of propor-
tionality be unity.

\ intensity at P1 is given

  I = Io   
sin2 X

 _____ 
X2

    [   ( 1 + cos   2p
 ___ 

l
   d j )  2  + sin2   2p

 ___ 
l

   d j ] 
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or,  I = 2 Io   
sin2 X

 _____ 
X2

    ( 1 + cos   2p
 ___ 

l
   d j ) 

or,  I = 2 Io   
sin2 X

 _____ 
X2

   ◊ 2 cos2   
p dj

 ____ 
l

  

or,  I = 4 Io   
sin2 X

 _____ 
X2

   cos2   
p d j

 ____ 
l

   

or,  I = 4 I0   
sin2 X

 _____ 
X2

   cos2   
p dj

 ____ 
l

   …(5.12)

or,  I = 4 I0   
sin2 X

 _____ 
X2

   cos2 Y …(5.13)

where Y =   
p dj

 ____ 
l

  

 The factor   sin2 X
 _____ 

X2
   is similar to that for the single slit pattern. The second factor cos2   

p d j
 ____ 

l
   is the charac-

teristic of the interference pattern due to the disturbance coming from the two slits having a phase differ-

ence   2p
 ___ 

l
   dj. The minimum intensity of interference

  cos2   
p dj

 ____ 
l

   = 0

or,    
p d j

 ____ 
l

   = (2n + 1)   p __ 
2
  ,

or,  j (a + b) = (2n + 1)   l __ 
2
    [ d = a + b

   
j = sin i + sin q

 ] 
or,  (sin i + sin q) (a + b) = (2n + 1)   l __ 

2
  

 For normal incidence, i = 0

 Thus (a + b) sin q = (2n + 1)   l __ 
2
  

or,  sin q =   2n + 1 ______ 
(a + b)

     l __ 
2
  

 So we shall get successive minima as

  l
 _______ 

2(a + b)
  ,   3l

 _______ 
2(a + b)

  ,   5l
 _______ 

2(a + b)
  , ….

 From this it is clear that minima are equidistant. The intensity of the interference pattern will be 
maximum

when cos2   
p dj

 ____ 
l

   = ± 1

or,    
p dj

 ____ 
l

   = np
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or,  (a + b) sin q = nl, where n = 0, ± 1, ± 2 … etc. [for normal incidence i = 0 and d = a + b]

or,  sin q =   nl
 _____ 

a + b
  

 Hence the successive maxima are at [taking +ve sign]

  l
 _____ 

a + b
  ,   2l

 _____ 
a + b

  ,   3l
 _____ 

a + b
  , …

 Thus we see that maxima are equidistant. The interference term cos2   
p d j

 ____ 
l

   gives a set of equidistant dark and 

bright fringes as in Young’s double slit interference experiment [Fig. 5.5(a)]. The diffraction term   sin2 X
 _____ 

X2
   gives 

a central maximum at X = 0, i.e., in the direction q = 0. The maxima also occur at values of X approaching 

±   3p
 ___ 

2
  , ±   5p

 ___ 
2
  , … etc. These are secondary diffraction maxima.

 The minima are obtained when   sin2 X
 _____ 

X2
   = 0 or sin X = 0 but X π 0

\  X = mp

or,    p a sin q
 _______ 

l
   = mp [For normal incidence i = 0]

or,  a sin q = ml, m = ± 1, ± 2 … except 0

 These minima are known as diffraction minima. So based on diffraction term, the pattern consists of a cen-
tral maximum in the direction q = 0 with alternate minima and secondary maxima of diminishing intensity on 
either side [Fig. 5.5(b)]. The intensity distribution in the resultant diffraction pattern is shown in Fig. 5.5(c). 
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1
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0.4
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X X
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Fig. 5.5 (a) Double-slit interference pattern. (b) Single-slit diffraction pattern. (c) Intensity distribution of 
the resultant diffractions pattern.



Diffraction of Light 5.11

 Figure 5.5 shows graphs of intensity versus angular position for (a) ideal interference pattern for a double 
slit (b) the diffraction pattern for single slit, and (c) resultant diffraction interference pattern produced by a 
double slit. 

5.5.1 Effect of Various Factors on Double-Slit Diffraction Pattern

A number of factors such as slit-width, slit separation, wavelength, etc., may affect the double-slit diffraction 
pattern.

 (i) If the wavelength l of the incident light is increased, the envelope of the fringe pattern becomes broader 
and the fringes move further apart. The converse effect occurs on decreasing the wavelength.

 (ii) If the slit width is increased the envelope of the fringe pattern so changes that the central peak 
becomes sharper. The spacing between the fringes does not change as it depends on the slit separa-
tion. So within the central maximum, number of interference maxima is less. Decrease in slit-width 
causes the converse effect.

 (iii) If the slit separation is increased, keeping the slit-width constant, the fringe become closer together, 
but the envelope of the pattern remains unaltered. So, more number of interference maxima will now 
fall within the central diffraction maximum.

5.5.2 Missing Order in Double-Slit Diffraction Pattern

For single slit diffraction, the condition for minima of diffraction pattern is a sin q = ± ml.

 On the other hand, the double slit interference pattern has maxima at angle satisfying the condition

  (a + b) sin q = ± nl

 An interesting situation arises when both equations are satisfied for a particular value of q. This happens 
when

    a + b
 _____ a   =   n __ m   [n and m are both integers]

 In this case, nth order interference maximum will have zero intensity and will therefore be missing. In 

Fig. 5.5(c),   a + b
 _____ a   =   0.15 ____ 

0.05
   = 3, or n = 3 m. Hence 3, 6, 9, etc., order of interference maxima are absent which corre-

sponds to 1, 2, 3, etc., order of diffraction dark bands. These are known as ‘missing order’ in the literature.

 Thus, if the condition for maxima of interference pattern and minima of diffraction pattern are simul-

taneously satisfied for a given value of q then the corresponding interference maxima will be missing or 

absent. These orders are called missing orders in double-slit pattern as shown by the X marks in Fig. 5.5(c).

 5.6 DIFFERENCE BETWEEN SINGLE-SLIT AND A DOUBLE-SLIT 
DIFFRACTION PATTERN

 1. The single-slit diffraction pattern consists of a central principal maximum with secondary maxima 
and minima on either side. The intensity of secondary maxima gradually decreases. The double-slit 
pattern, on the other hand, consists of a central maximum which contains equally spaced interference 
maxima and minima. The intensity of central diffraction maximum is four times the intensity of the 
central maximum due to diffraction at single slit.

 2. The spacing of diffraction maxima and minima depends on the slit width a, but the spacing of the 
interference maxima and minima depends on both a and b, where b is the slit separation. The intensity 
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of the interference maxima and minima is not constant, but it decreases to zero on either side of the 
central maximum.

 5.7 DIFFRACTION DUE TO PLANE DIFFRACTION GRATING

(a) Definition Diffraction grating is an arrangement consisting of a large number of parallel slits of the 
same width and separated by equal opaque space. It is thus a structure of alternate transparent and opaque 
space. Grating may be of two types:

 1. Transmission grating

 2. Reflection grating

 A plane transmission diffraction grating is a well-polished thin uniform optically plane transpar-
ent glass plate on which equidistant, exteremely close lines (rulings) are drawn with a sharp diamond 
point.
 When the rullings are made on a polished metal surface, it is called reflection grating. Here, we shall 
deal with a transmission grating.
 On a grating the number of lines may vary usually from 2500 to 8000 per cm. Evidently to draw thousands 
of lines uniformly on a small space, the ruling machine must be very accurate and sensitive. Thus, a ruled 
grating is very costly. For ordinary work in a laboratory, replica gratings (commercial gratings) are used 
which are actually copies of an accurately ruled grating made on celluloid film by casting.

 Grating provides a very valuable means of studying spectra. Each ruled line behaves as an opaque space 
while the transparent portion between two consequative ruled lines behaves as a slit. If a be the width of a 
clear space and b be the width of a ruled line, then the distance (a + b = d) between the corresponding points 
is called grating element or grating constant.

(b) Theory The diffraction pattern is based on the superposition of Huygens’ secondary wavelets which 
are supposed to be generated at every point on the wave front when it occupies the plane of the grating.

 Let a parallel beam of monochromatic light be incident on a grating surface at an angle i. Figure 5.6(a) 
represents the section of the plane diffraction grating. Here S1 S2 is the plane of the grating perpendicular 
to the plane of the paper, a is the width of each slit and b is the width of each opaque space. The rays are 

P

LS2

S1

a

b

d

(a)

i q

dx

x

O

(b)

C

F
E

Fig. 5.6 (a) The section of the plane diffraction grating. (b) Incident and diffracted rays through grating.
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diffracted in all possible directions. Let us consider a beam of rays for which the angles of diffraction q and 
L is a converging lens which focuses the diffracted rays on its focal plane.

 As the source and the point of observation are effectively at infinity, obviously it is a case of Fraunhofer 
class of diffraction.

(c) Analytical/Mathematical study of intensity To study the diffraction phenomenon, let us consider 
a diffracting element of width dx at C a distance x from O, the midpoint of 1st slit (clear space).

 Through grating let us draw incident and diffracted rays as shown in Fig. 5.6 (b). From C draw two 
perpendiculars OE and OF on the incident and corresponding diffracted rays. Then OE and OF represent 
incident and diffracted wave fronts. The equation of vibration on the incident wave front OE be represented 

by y = A e 
i   2p

 ___ 
l

   ct
  where A is amplitude, l is wavelength of the wave and c is the velocity of light.

 So the equation of vibration on the diffracted wave front OF is given by

  y = A e 
i   2p

 ___ 
l

   (ct – ECF)
  …(5.14)

 But path difference ECF = EC + CF = x sin i + x sin q = x j (say)

 So the Eq. (5.14) reduces to y = A e 
i   2p

 ___ 
l

   (ct – x j)
 

 Now the disturbance at P due to element dx at C is given by

  ds = y dx = A e 
i   2p

 ___ 
l

   (ct – x j)
  dx

 Hence the total disturbance at P due to entire clear space is given by

  S1 = Ú ds =  Ú 
– a/2

  
a/2

   A  e 
i   2p

 ___ 
l

   (ct – x j)
  dx  = A e 

i   2p
 ___ 

l
   ct

   Ú 
– a/2

  
a/2

    e 
– i   2p

 ___ 
l

   x j
  dx 

 Since the effect of amplitude is time independent quantity, the effective amplitude due to first clear space 
or slit is represented by

  S ¢1 = A  Ú 
– a/2

  
a/2

    e 
–i   2p

 ___ 
l

   x j
  dx 

 The disturbance due to second slit is given by

  S2 = A e 
i   2p

 ___ 
l

   ct
   Ú 
d – a/2

  
d + a/2

   e 
– i   2p

 ___ 
l

   x j
   dx

 So, the effective amplitude due to second slit is given by

  S ¢2 = A  Ú 
d – a/2

  
d + a/2

   e 
–i   2p

 ___ 
l

   x j
   dx = A e 

– i   2p
 ___ 

l
   d j

   Ú 
–a/2

  
a/2

    e 
– i   2p

 ___ 
l

   x j
   dx

 Similarly, the effective amplitude due to third slit is given by

  S ¢3 = A e 
– i   2p

 ___ 
l

   2d j
   Ú 

–a/2
  

a/2

    e 
– i   2p

 ___ 
l

   x j
   dx

 Proceeding in a similar way, we can show that the effective amplitude due to Nth slit is given by

  S ¢N = A e 
– i   2p

 ___ 
l

   (N – 1) d j
   Ú 

–a/2
  

a/2

    e 
– i   2p

 ___ 
l

   xj
   dx

 Hence the total effective amplitude due to all slits is given by

  S ¢ = S ¢1 + S ¢2 + S ¢3 + … + S ¢N
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\  S ¢ =  [ A  Ú 
– a/2

  
a/2

    e 
– i   2p

 ___ 
l

   x j 
 dx  ]   [ 1 +  e 

– i   2p
 ___ 

l
   d j

  +  e 
– i   2p

 ___ 
l

   2d j
  + … +  e 

– i   2p
 ___ 

l
   (N – 1) d j

  ] 

   =  [   Aa sin X
 _______ 

X
   ]   [   1 –  e 

– i   2p
 ___ 

l
   Nd j

  ___________ 

1 –  e 
– i   2p

 ___ 
l

   d j
 

   ]  where X =   
p a j

 ____ 
l

  

   =  [   Aa sin X
 _______ 

X
   ]   [   1 –  { cos   2p

 ___ 
l

   Nd j – i sin   2p
 ___ 

l
   Nd j } 
   ____________________________   

1 –  { cos   2p
 ___ 

l
   d j – i sin   2p

 ___ 
l

   d j } 
   ] 

 Now the resultant intensity at P is proportional to the square of the amplitude. Let the constant of propor-
tionality to be unity. The intensity at P is given by

  I =  [   A2 a2 sin2 X
 __________ 

X2
   ]   [     ( 1 – cos   2p

 ___ 
l

   Nd j + i sin   2p
 ___ 

l
   Nd j )  2 

   ____________________________   
  ( 1 – cos   2p

 ___ 
l

   d j + i sin   2p
 ___ 

l
   d j )  2 

   ] 
   =   A

2 a2 sin2 X
 __________ 

X2
    [   2 – 2 cos2   2p

 ___ 
l

   Nd j

  ________________  
2 – 2 cos2   2p

 ___ 
l

   d j
   ] 

   =   A
2 a2 sin2 X

 __________ 
X2

    [   sin2   
p Nd j

 ______ 
l

  
 __________ 

sin2   
p d j

 ____ 
l

  

   ] 
 If we put Y =   

p d j
 ____ 

l
  , we can write

  I = I1   
sin2 NY

 _______ 
sin2Y

   …(5.15)

where I1 =   A
2 a2

 _____ 
X2

   sin2 X is the expression obtained due to single slit.

(d) Discussion From the expression (5.15) it is seen that there are two terms   sin2 X
 _____ 

X2
   and   sin2 NY

 _______ 
sin2 Y

   which 

control the intensity of the diffracted pattern. The first expression gives the diffraction pattern produced by 
single slit and the second term gives the effect of interference due to N identical slits.

(e) Conditions for maxima and minima In order to find maxima and minima of the intensity of inter-
ference fringes, we must have

    dI
 ___ 

dY
   = 0

Now,   dI
 ___ 

dY
   = I1  [   sin2 Y ◊ 2 (sin NY) N cos NY – sin2 NY (2 sin Y cos Y)

    __________________________________________   
sin4 Y

   ] 
or,    dI

 ___ 
dY

   = 2I1  [   N sin NY cos NY
  ______________ 

sin2 Y
   –   sin2 NY cos Y

  ___________ 
sin3 Y

   ] 
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or,    dI
 ___ 

dY
   = 2I1  (   sin2 NY

 _______ 
sin2 Y

   )  (N cot NY – cot Y) ...(5.16)

Hence, for maxima or minima,

either,   sin2 NY
 _______ 

sin2 Y
   = 0 or N cot NY – cot Y = 0 fi N cot NY = cot Y

when sin NY = 0 sin Y π 0 and N cot NY π cot Y, one gets   d
2I
 ___ 

dY2
   > 0 (i.e., positive).

 So, sin NY = 0 gives the condition of minimum

when N cot NY = cot Y = 0 and sin Y = 0, one gets   d
2I
 ___ 

dY2
   < 0 (i.e., negative).

 So, N cot NY = cot Y and sin Y = 0 gives the condition of maximum

(f) Principal maxima When N is very large one obtains intensity maxima at

  sin Y = 0 i.e., Y = ± mp [m = 0, 1, 2, …etc.]

i.e.,   
p d j

 ____ 
l

   = ± mp or,   p __ 
l

   (a + b) sin q = ± mp [For normal incidence]

 Hence (a + b) sin q = ± ml

 These are known as the principal maxima.

 For Y = mp,   sin NY
 ______ 

sin Y
   =   0 __ 

0
   = indeterminate. But in limit

  Y Æ mp we get

    lim    
Y Æ mp

    sin NY
 ______ 

sin Y
   =   lim    

Y Æ mp
    N cos NY

 ________ 
cos Y

   [using L. Hospital’s rule]

 Hence the corresponding resultant intensity is given by

  Ip = N2 I1 …(5.17)

 Thus the intensity of principal maxima increases as the number of slits (N) increases, but due to the pres-

ence of the factor   sin2 X
 _____ 

X2
  , whose value decreases with the increase of the angle of diffraction (q), the intensity 

of principal maxima decreases with the increase in the order number of bands.

(g) Secondary minima From the second condition we get zero intensity, i.e., I = 0 when sin NY = 0 
provided sin Y π 0. This gives, NY = ± pp [where p is an integer except O, N, 2N, 3N …etc., in these cases 
sin Y = 0 and we get principal maxima]. So sin NY = 0 gives NY = ± pp.

or,    
Np (a + b) sin q

  _____________ 
l

   = ± pp [for normal incidence i = 0]

or,  (a + b) sin q = ±   
pl

 ___ 
N

  

such that p π sN [where s = 0, 1, 2, 3, …etc.]

 Therefore, (a + b) sin q = ±   l __ 
N

  , ±   2l
 ___ 

N
  , … ±   

(N – 1) l
 ________ 

N
  , ±   

(N + 1) l
 ________ 

N
   

 Omitting the values (a + b) sin q = 0, ±   Nl
 ___ 

N
  , ±   2Nl

 ____ 
N

  , …
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which are principal maxima.

 It is obvious that between two principal maxima there are (N – 1) equally spaced minima. Hence, there 
should be (N – 2) secondary maxima in between these minima.

(h) Secondary maxima These maxima are weak in intensity. Intensity of these maxima are given by

  IS = I1   
sin2 NY

 _______ 
sin2 Y

   =   
I1 ______________  

sin2 Y cosec2 NY
  

   =   
I1 ________________  

sin2 Y [1 + cot2 NY]
  

   =   1 ________________  

sin2 Y  [ 1 +   cot2 Y
 _____ 

N2
   ] 

   [From the condition N cot NY = cot Y]

or,  IS =   
N2 I1 _________________  

sin2 Y  [ N2 +   cos2 Y
 ______ 

sin2 Y
   ] 

   =   
N2 I1 _______________  

N2 sin2 Y + cos2 Y
  

   =   
N2 I1 _______________  

(N2 – 1) sin2 Y + 1
   =   

IP
 _______________  

(N2 – 1) sin2 Y + 1
  

 Therefore,   
IS

 __ 
IP

   =   1 _______________  
1 + (N2 – 1) sin2 Y

   …(5.18)

 Thus greater the N-value, weaker are the secondary maxima. In practice, N is very large in a grating and 
secondary maxima are too weak to be generally visible in grating.

 In Fig (5.7) curves are drawn by plotting   (   sin X
 _____ 

X
   )  2  against X [Fig. 5.7(a)],   sin2 NY

 _______ 
sin2 Y

   against Y [Fig. 5.7 (b)] 

and also by plotting the product of them against q [Fig. 5.7(c)]. The intensities of secondary maxima fall of 
between two adjacent principal maxima and are unequally spaced. They also lack symmetry, the lack being 
greatest adjacent to principal maxima towards which their peaks get shifted. The intensity distribution for 
N = 5 is shown in Fig. 5.7(d).

(d)

(a)

(b)

(c)
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Fig. 5.7 (a) Diffraction pattern due to single slit. (b) Interference effect due to secondary waves from
   the N slits. (c) the resultant intensity parttern. (d) Intensity distribution due to 5 slits.



Diffraction of Light 5.17

 If white light is used, instead of monochromatic light, each wavelength will produce its own maxima. So 
each maxima will consist of a band of seven colours.

 Now, the angle of diffraction q μ l, wavelength of light. So, angle of diffraction for red will be greater 
than for violet. It means that inner edge of each maxima (i.e., the edge facing the central maximum) will be 
violet and the outer edge red.

5.7.1 Condition for Absent Spectra

For the mth order of principal maximum in the direction q, we have the condition

  (a + b) sin q = ml [for normal incidence i = 0] …(5.19)

 If a be such that the pth order diffraction minimum occurs in the same direction q, then

  a sin q = pl …(5.20)

 If these two conditions are satisfied simultaneously then mth order principal maximum will be absent from 
the resulting spectra

 From Eq. (5.19) and (5.20), we get

    a + b
 _____ a   =   m __ p  ...(5.21)

 If b = a then from Eq. (5.21), m = 2p = 2, 4, 6 …(  p = 1, 2, 3…) which implies that the second, 
fourth, sixth … etc. order of principal maxima will be absent corresponding to the diffraction minima 
p = 1, 2, 3, …

5.7.2 Ghost Lines

In case of a perfect (or ideal) grating the rulings must be equi-spaced, but practically no grating is perfect. 
This imperfectness in rulings of a diffraction grating causes some errors. When these errors are random, the 
grating gives a continuous background illumination. On the other hand, if they are progressive in nature, then 
one may get sharper spectral lines in planes other than the local plane of the grating. But most frequently 
the errors repeat themselves periodically because of some defect in the driving mechanism of the machines 
which make rulings in the diffraction gratings. This results in the generation of false lines along with the 
principal maxima of a perfect (ideal) grating. These false lines are called ghost lines.

5.7.3 Overlapping of Spectral Lines

If the incident light has a large range of wavelengths, then the lines of shorter wavelength and higher order 
may overlap on lines of longer wavelength and lower order.

 For a grating, having grating element (a + b), the angle of diffraction q in the mth order spectrum for 
wavelength l is given by

  (a + b) sin q = ml

 Now for a given grating a + b = constant. So q will be the same, i.e., overlapping will occur if ml = con-
stant. For instance, red line of 700 nm in the 3rd order will overlap with green line of 525 nm in 4th order, 
violet line 420 nm in 5th order, etc., since 3 × 700 = 4 × 525 = 5 × 420 = … = constant.

5.7.4 Maximum Number of Orders Formed by Diffraction Grating

The condition for principal maxima is given by

  (a + b) sin q = ml
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or,  m =   
(a + b) sin q

 ___________ 
l

  

 The number of order will be maximum when sin q = 1

\  (m)max =   a + b
 _____ 

l
  

 If (a + b) < 2 l; then (m)max < 2

 This means that for normal incidence, only first order of spectrum will be present, when (a + b) < 2l.

5.7.5 Condition of Minimum Deviation of Rays

For oblique incidence of a parallel beam of light of wavelength l, the grating equation is

  (a + b) (sin i + sin q) = ml …(5.22)

 Rewriting Eq. (5.22)

  2(a + b) sin   i + q
 ____ 

2
   cos   i – q

 ____ 
2
   = ml

 Now, the deviation suffered by the rays is d = i + q, so that

  2(a + b) sin   d __ 
2
   cos   i – q

 ____ 
2
   = ml

 So sin   d __ 
2
   and hence d, will have minimum value when cos   i – q

 ____ 
2
   is maximum

or,  i – q = 0

or,  i = q

which is the required condition.

 Thus, the rays forming spectrum in a grating suffer minimum deviation when the angle of incidence equal 
the angle of diffraction.

5.7.6 Angular Dispersive Power of a Grating

The angular dispersive power of a grating is defined as the rate of change of the angle of diffraction q with 

the change in wavelength l of light. It is thus   dq
 ___ 

dl
  .

 The diffraction of the mth order principal maximum for a wavelength l and angle of diffraction q is given 
by

  (a + b) sin q = ml [For normal incidence i = 0]

 Differentiating it with respect to l, we write

  (a + b) cos q dq = mdl

\    dq
 ___ 

dl
   =   m

 ___________ 
(a + b) cos q

   =   ms
 _____ 

cos q
   …(5.23)

where s =   1 _____ 
a + b

   = number of lines per unit length of grating



Diffraction of Light 5.19

 Equation (5.23) is the expression for the angular dispersive power of a grating

 Here dq is the angular separation between two lines with difference in wavelengths as dl.

 The Eq. (5.23) gives the following conclusions:

 (i) The dispersive power is directly proportional to the order of spectrum (m)

 (ii) The dispersive power is inversely proportional to the grating element (a + b)

 (iii) The dispersive power is inversely proportional to cos q, i.e., the larger the value of q, higher is the 
dispersive power.

 5.8 PRISM AND GRATING SPECTRUM

  Prism Spectrum  Grating Spectrum

 (i) It is formed by dispersion. (i) It is formed by diffraction.

 (ii) The prism spectrum is bright. (ii) The grating spectra are fainter as the order increases.

 (iii) The prism forms one spectrum. (iii) The grating forms spectra of many orders.

 (iv) The prism spectrum depends on the material of (iv) The grating spectra does not depend on the material
  the prism.  of the grating.

 (v) In most cases prism spectrum is not pure. (v) The grating spectra are pure.

 (vi) The resolving power of a prism is small. (vi) The resolving power of the grating is large.

 5.9 RAYLEIGH’S CRITERION OF RESOLUTION

Lord Rayleigh proposed a criterion for the resolution of two near by objects. According to him “The two 
nearby point objects are said to be just resolved by the optical system, if the position of the central maximum 
of diffraction pattern of one coincides with the first minimum of the diffraction pattern of the other”.

 It is also applicable to the resolution of spectral lines of equal intensity formed by prism or grating spec-
trograph. In case of spectral lines, the criterion says, the angular separation between the principal maxima of 
two spectral lines in a given order, should be equal to half angular width of either maximum.

 To illustrate the above criterion, consider the diffraction pattern of the two spectral lines of wavelengths l 
and l + dl and let A and B are the central maximum due to them respectively [Fig. 5.8(a)]. When the differ-
ence in the angle of diffraction is large, the two images are seen as separate.

 In Fig. 5.8(b) the central maxima corresponding to the wavelengths l and l + dl are very close and there-
fore the two images overlap and they cannot be distinguished as separate images.

 In Fig. 5.8(c), the position of central maxima of A corresponding to wavelength l, coincide with the posi-
tion of first minima corresponding to wavelength l + dl. Similarly, the central maxima of B coincides with 
the first minima of A. The resultant intensity curve shows a dip at C in the middle of the central maxima of A 
and B. It is estimated that the intensity at C is about 20 percent less than that at A or B. The position of central 
maxima of A and B coincides with the first minima of the diffraction pattern of each other and it satisfies the 
Rayleigh criterion. The spectral lines are, therefore said to be just resolved.

 The smallest separation (linear or angular) between the two point objects at which they appear just sepa-
rated is called the limit of resolution of an optical instrument and the reciprocal of the limit of resolution is 
called resolving power.
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 5.10 RESOLVING POWER OF A GRATING

The resolving power (RP) of a plane grating is its ability to just distinguish (resolve) two nearby spec-
tral lines with two close wavelengths.
 If the wavelength of two nearby spectral lines be l and l + dl, the resolving power of the grating is defined 

mathematically as   l ___ 
dl

  , dl being the smallest wavelength difference for which the spectral lines can be just 

resolved at wavelength l.

 The mth order principal maximum of a spectral line of wavelength l of a grating for normal incidence is

  (a + b) sin q = ml …(5.24)

where (a + b) is the grating element, q the diffraction angle corresponding to mth order.

 The same for wavelength l + dl will be

  (a + b) sin (q + dq) = m(l + dl) …(5.25)

 According to Rayleigh criterion, these two spectral lines will be just resolved, when the principal maxi-
mum of one falls exactly over the first points of minimum intensity of the other line. This is possible if the 

extra path difference introduced is   l __ 
N

  , where N is the total number of lines of the grating surface.

  (a + b) sin (q + dq) = ml +   l __ 
N

   …(5.26)

 Equating the right-hand sides of the Eqs. (5.25) and (5.26)

Fig. 5.8 Rayleigh criterion of resolution.

l l l+ d
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  m(l + dl) = ml +   l __ 
N

  

\    l ___ 
dl

   = mN …(5.27)

which is required expression for the resolving power of a grating.

 From Eq. (5.24), we have

  m =   
(a + b) sin q

 ___________ 
l

  

\    l ___ 
dl

   = mN =   
N(a + b) sin q

  ____________ 
l

   …(5.28)

   = W   sin q
 _____ 

l
   …(5.29)

where W = N (a + b), the total width of the ruled surface of the grating.

 For maximum resolving power sin q = 1

 Hence maximum, RP =   W __ 
l

  

 The relation   l ___ 
dl

   = Nm shows that RP increases with

 (i) the order of the spectrum

 (ii) increases with total number of lines in the effective part of the grating

 (iii) resolving power does not depend on grating element

 5.11 RESOLVING POWER OF MICROSCOPE

The primary function of a microscope is not to magnify an object but to reveal those finer details in the object 
which are invisible to unaided eye. The limit of resolution of a microscope is measured by the least permis-
sible linear distance between two point objects so that the two images appear just resolved. The reciprocal 
of the limit of resolution is called the resolving power of the microscope.

 Let us consider two point objects are separated by a distance x and they are very close to the objective and 
normal to the axis of the microscope. If a is the semi-vertical angle of the cone of the rays by the objective 
of the microscope then it can be shown that the two image will appear just resolved if,

  2x sin a = 1.22 l …(5.30)

or,  x =   1.22 l
 ______ 

2 sin a
  

which is the required limit of resolution. The high resolving power microscope are generally oil immersion 
type in which the space between the objective of the microscope and the object is filled with an oil of refrac-
tive index m.

 Then x =   1.22 l
 _______ 

2m sin a
   …(5.31)

where m sin a is known as numerical aperture (NA) of the objective.

 Resolving power, RP =   1 __ x   =   
2m sin a

 _______ 
1.22 l

   …(5.32)
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 By using ultraviolet light with smaller l and quartz lenses the resolving power of the microscope can also 
be increased. Such a microscope is called ultra microscope. At present, higher resolving power is obtained in 
electron microscope where electrons are used instead of white light.

Example 5.1  A light of wavelength 6000 Å falls normally on a straight slit of 0.10 mm width. Calculate 
the total angular width of the central maxima.

Sol.  The condition for 1st order diffraction minima is

   a sin q = l [Here q is the half angular width of the central maxima]

  Here a = 0.10 mm = 0.01 cm, l = 6.0 × 10–5 cm

  \ sin q =   l __ a   =   6.0 × 10–5

 _________ 
0.01

   = 6.0 × 10–3

  Since q is very small, then sin q  q = 6.0 × 10–3 radians

  The angular width of the central maxima is

    = 2q

    = 2 × 6 × 10–3 = 1.2 × 10–2 radians.

Example 5.2  Light of wavelength 5000 Å is incident normally on a slit. The first minima of the diffrac-
tion pattern is observed to lie at a distance of 5 mm from the central maxima on a screen placed at a distance 
of 2 m from the slit. Calculate the width of the slit.

Sol.  For 1st order minima a sin q = l

  If q be small, then sin q  q. Hence

   a q = l or, q =   l __ a   =   5000 × 10–8

 __________ a   …(1)

  Further, q is also given by q =   x __ 
D

  

where x is the position of first maximum from the central maximum and D is the distance of screen from the 

slit.

  Here x = 0.5 cm and D = 200 cm.

  So q =   0.5 ____ 
200

   radian …(2)

  From Eqs. (1) and (2), we have   5000 × 10–8

 __________ a   =   0.5 ____ 
200

  

or,   a =   5000 × 10–8 × 200  _______________ 
0.5

   =   5 × 2 × 10–2

 __________ 
5
  

    = 0.02 cm

  So the width of the slit is 0.02 cm.

Worked-out Examples
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Example 5.3  A convex lens of 40 cm focal length is employed to focus the Fraunhofer diffraction pattern 
of a single slit of 0.3 mm width. Calculate the linear distance of the first-order dark band from the central 
band. The wavelength of the light is 589 nm. [WBUT 2008]

Sol.  For nth dark band

   a sin q = nl

  Here a = 0.3 mm = 0.3 × 10–3 m; n = 1; l = 589 × 10–9 m

and   sin q  q for very small q

  So q =   l __ a   =   589 × 10–9

 _________ 
0.3 × 10–3

   rad. = 196.3 × 10–5 radians

  \ linear distance x = q × f = 196.3 × 10–5 × 40 × 10–2 m

     = 0.7852 mm.

Example 5.4  A single slit is illuminated by light composed of two wavelengths, l1 and l2. One observes 
that due to Fraunhofer diffraction, the first minimum obtained for l1 coincides with the second diffraction 
minimum of l2. What is the relation between l1 and l2?

Sol.  For wavelength l1; the position of first minimum (n = 1) is

   a sin q1 = l1 …(1)

  For wavelength l2; the position of second minimum (n = 2) is

   a sin q2 = 2l2 …(2)

  It is given that the direction of first minimum (q1) due to l1 coincides with the second minimum due 
to l2

  i.e., q1 = q2 = q

  So from Eqs. (1) and (2)

   a sin q = l1 = 2l2

  \ l1 = 2l2

Example 5.5  Deduce the missing orders for a double-slit Fraunhofer diffraction pattern if the slit width 
are 0.16 mm and they are 0.8 mm apart. [WBUT 2008]

Sol.  Missing orders are obtained when interference maximum and diffraction minimum corresponds to 
the same value of direction angle q, i.e.,

   (a + b) sin qn = nl [interference maximum]

and   a sin qm = ml [diffraction minimum]

  So,   a + b
 _____ a   =   n __ m  

  Here a = 0.16 mm and b = 0.8 mm

  \   n __ m   =   0.16 + 0.8 _________ 
0.16

   =   0.96 ____ 
0.16

   = 6

  For values of m = 1, 2, 3, etc., or n = 6, 12, 18, etc.

  So, the 6th, 12th, 18th, etc., orders of interference maxima will be missing in the diffraction pattern.
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Example 5.6  In a double-slit Fraunhofer diffraction, calculate the fringe spacing on the screen 50 cm 
away from the slit if they are illuminated with blue light of wavelength 4800 Å. Slit separation b = 0.1 mm 
and slit width a = 0.020 mm.

Sol.  The fringe spacing can be obtained by the formula d =   l D
 ______ 

(a + b)
  

  Here a = 0.02 mm = 0.002 cm, b = 0.1 mm = 0.01 cm

   l = 4800 Å = 4800 × 10–8 cm, D = 50 cm

  \ d =   4800 × 10–8 × 50  ______________ 
0.012

   cm

    = 0.2 cm

  So the fringe spacing is 0.2 cm.

Example 5.7  A parallel beam of light of wavelength (5890 Å) falls normally on a plane transmission grat-
ing having 4250 lines/cm. Find the angle of diffraction for maximum intensity in first order. [WBUT 2006]

Sol.  We known that (a + b) sin q = nl

or,   sin q =   nl
 ______ 

(a + b)
  

  Here n = 1 and   1 ______ 
(a + b)

   = 4250 lines/cm

   l = 5890 Å = 5890 × 10–8 cm

  Therefore, sin q = 5890 × 10–8 × 4250

    = 0.25

  \ q = 14.5°

Example 5.8  Light of wavelength 5000 Å is incident normally on a plane transmission grating. Find the 
difference in deviations in the first and third order spectra. The number of lines per cm on the grating surface 
is 6000.

Sol.  Given l = 5000 Å = 5 × 10–5 cm,   1 _____ 
a + b

   = 6000

  For the first-order spectrum

   (a + b) sin q1 = l [Here n = 1]

or,   sin q1 =   l
 _____ 

a + b
   = 5 × 10–5 × 6,000 = 0.30

or,   q1 = 17.5°

  For the third-order spectrum

   (a + b) sin q3 = 3l [Here n = 3]

   sin q3 =   3l
 _____ 

a + b
   = 3 × 5 × 10–5 × 6000

    = 0.9
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  or, q3 = 64.2°

  Now the difference in deviation is q3 – q1 = 64.2° – 17.5° = 46.7°

Example 5.9  Light of wavelength l = 500 nm falls on grating normally. Two adjacent principal maxima 
occur at sin q = 0.2 and sin q = 0.3 respectively. Calculate the grating element.

Sol.  The position of the principal maximum of order n is given by

   (a + b) sin q = nl

  The two adjacent orders, say n and n + 1 occur at sin q = 0.2 and sin q = 0.3 respectively.

  Thus (a + b) × 0.2 = nl and (a + b) × 0.3 = (n + 1) l

  Subtracting, we get

   (a + b) × 0.1 = l = 500 nm = 500 × 10–9 m

     = 5000 × 10–8 m
  So, the grating element is

   (a + b) = 5 × 10–4 cm.

Example 5.10  How many orders will be visible if the wavelength of the incident light is 5000 Å and the 
number of lines per inch on the grating is 2620?

Sol.  We know that (a + b) sin q = nl

  For maximum order to be possible, q = 90°

   sin q = sin 90° = 1

  Given that (a + b) =   2.54 _____ 
2620 

  cm; l = 5000 Å = 5000 × 10–8 cm

  Hence n =   a + b
 _____ 

l
   =   2.54 _____________  

2620 × 5 × 10–5
  

or,   n > 19

  So, the highest order of spectrum possible =19.

Example 5.11  In a grating spectrum, which spectral line in fifth order will overlap with fourth-order line 

of 5890 Å?

Sol.  The grating equation for principal maximum is,

   (a + b) sin q = nl …(1)

  For fifth-order spectrum, (a + b) sin q = 5l …(2)

  Here l is wavelength of the fifth spectral line

  The wavelength of fourth-order spectrum is 5890 Å, hence

   (a + b) sin q = 4 × 5890 × 10–8 …(3)

  The two spectral lines overlap, so q is same.

  Equating Eqs. (2) and (3), we get

   5l = 4 × 5890 × 10–8

or,    l =   4 × 5890 × 10–8

  _____________ 
5
   = 4712 × 10–8 = 4712 Å

  So the wavelength of the fifth-order spectral line is 4712 Å.
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Example 5.12  How many orders will be observed by a grating having 4000 lines per cm if it is illuminated 
normally by light of wavelength in the range 5000 Å to 7500 Å.

Sol.  The maximum order visible with grating is

   nmax =   a + b
 _____ 

l
  

  Given, (a + b) =   1 _____ 
4000

     Hence nmax =   1 ______ 
4000 l

  

  For l = 5000 Å = 5 × 10–5 cm nmax =   1 _____________  
4000 × 5 × 10–5

   = 5

and for  l = 7500 Å  nmax =   1 _______________  
4000 × 7.5 × 10–5

   = 3.3

    = 7.5 × 10–5 cm

  So, the observed orders range between 3 to 5.

Example 5.13  What is the minimum number of lines of a grating which resolve the third-order spectrum 
of two lines having wavelengths of 5890 Å and 5896 Å. [WBUT 2004]

Sol.  Given: l1 = 5890 Å; l2 = 5896 Å; dl = 6 Å

  The average wavelength l =   
l1 + l2 ______ 

2
   = 5893 Å and n = 3

   The resolving power (RP) =   l ___ 
dl

   =   5893 × 10–8

 __________ 
6 × 10–8

   = 982

  Further RP = nN [N is the number lines on the grating]

or,   nN = 982

or,   3N = 982 or, N =   982 ____ 
3
   = 327.33  327

  So the minimum number of lines in the grating will be 327.

Example 5.14  Calculate the least width that a grating must have to resolve two components of the sodium 
D-line in the second order, the grating having 800 lines/cm. The wavelength for D1 and D2 lines of sodium 
are 5893 Å and 5896 Å respectively. [WBUT 2008]

Sol.  We know that

  Number of slits on the grating = Width of the total number of lines × Number of lines per cm.

    = x × 800 [Here x is the width]

  Given l1 = 5893 Å and l2 = 5896 Å

  So dl = 3Å and average l =   
l1 + l2 ______ 

2
   = 5894.5 Å

  The RP =   l ___ 
dl

   =   5894.5 ______ 
3
   = 1964.83  1965

  Further RP = nN = 1965
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or,   2 × N = 1965

or,   N =   1965 _____ 
2
   = 982.5

  To obtain least width x × 800 = 982.5

   x =   982.5 _____ 
800

   cm = 1.228 cm

Example 5.15  A microscope is used to resolve two equally bright points separated by 5.55 × 10–5 cm. 
What is the numerical apperture (NA) of the objective if light of wavelength 5461 Å is used?

Sol.  The limit of resolution of the microscope is

   x =   1.22 l
 ________ 

2 m sin a
  

  Here m sin a is called numerical apperture (NA),

   l = 5461 10–8 cm

   x = 5.55 × 10–5 cm

  So, m sin a =   1.22 × 5461 × 10–8

  ________________  
2 × 5.55 × 10–5

  

    = 0.60

  So, numerical apperture of the objective is 0.60.

Example 5.16  The microscope objective gathers light over a cone of semi-angle 30° and uses visible light 
of average wavelength 5500 Å. Estimate the resolving limit of microscope.

Sol.  The resolving limit of microscope is given by

   x =   1.22 l
 ______ 

2 sin q
  

  Here l = 5500 Å = 5500 × 10–8 cm, q = 30°

  So, x =   1.22 × 5500 × 10–8

  ________________  
2 sin 30°

   =   1.22 × 5500 × 10–8

  ________________ 
2 × 0.5

  

    = 6.71 × 10–5 cm

Example 5.17  A diffraction grating, which has 4000 lines/cm is used at normal incidence. Calculate the 
dispersive power of the grating in the third-order spectrum in the wavelength region 5000A°

Sol.  Here  l = 5000 × 10–8 cm; n = 3

   s = 4000 lines/cm

\   a + b =   1 _____ 
4000

   = 2.5 × 10–  4 cm

Now   sin q =   nl
 _____ 

a + b
   =   3 × 5000 × 10–8

  _____________  
2.5 × 10– 4

   = 0.6

   cos q =  ÷ 
________

 1 – sin2 q   =  ÷ 
________

 1– (0.6)2   = 0.8

\  dispersive power   dq
 ___ 

dl
   =   ns

 _____ 
cos q

   =   3 × 4000 ________ 
0.8

   = 15000
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Part 1: Multiple Choice Questions

 1. In diffraction, the size of the obstacle should be such that it

 (a) is comparable to the wavelength of the light used

 (b) is greater than the wavelength of the light used

 (c) has no connection with the wavelength of the light used

 (d) None of these

 2. In Fraunhofer diffraction, the incident wave front is

 (a) plane (b) cylindrical (c) spherical (d) None of these

 3. Double-slit interference pattern is the limiting case of double-slit diffraction pattern when the

 (a) distance between the slits tends to zero

 (b) distance of the source and the slits tends to infinity

 (c) slit widths tend to zero

 (d) distance between the slits tends to infinity     {WBUT 2008]

 4. Fraunhofer diffraction arises when the source of light and screen is effectively at

 (a) finite distance (b) infinite (c) semi-finite (d) None of these

 5. In a Fresnel diffraction the source of light is effectively at

 (a) finite   (b) infinite

 (c) both finite and infinite  (d) None of these

 6. In Fraunhofer diffraction minima are

 (a) all perfectly dark   (b)  never perfectly dark

 (c) perfectly bright   (d) None of these

 7. If the wavelength of the light used in single-slit diffraction is increased then the width of the central 
maximum

 (a) decreases (b) increases (c) remains same (d) None of these

 8. The intensity of central maximum due to double slit diffraction pattern is ______ times greater than 
that of single slit pattern.

 (a) eight (b) three (c) four (d) two

 9. The intensity of principal maximum in the spectrum of a grating with N number of lines is propor-
tional to   

 (a)   1 __ 
N

   (b) N (c) N2 (d)   1 ___ 
N2

   [WBUT 2008]

 10. Missing order in the interference maximum in Fraunhofer double-slit pattern occurs if the

 (a) slit width is decreased

 (b) slit width is constant, but the slit separation is increased

 (c) slit width is increased

 (d) None of these
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 11. Angle of diffraction of the first order maximum in a diffraction grating

 (a) increases if the separation between the ruling is increased

 (b) decreases if the separation between the ruling is increased

 (c) does not change if the separation between the ruling is increased

 (d) change depends on the wavelength of the incident light [WBUT 2006]

 12. The resolving power of a grating, having N number of total rulings, in nth order is

 (a)   n __ 
N

   (b) nN (c)   N __ n   (d) None of these

 13. With the increase of number of lines per centimeter of plane transmission grating

 (a) both dispersive power and resolving power decreases

 (b) both dispersive power and resolving power increases

 (c) dispersive power decreases but resolving power increases

 (d) dispersive power increases but resolving power decreases

 14. A diffraction pattern is obtained using a beam of red light. What happens if the red light is replaced 
by blue light?

 (a) Bands disappear

 (b) Bands becomes broader and farther apart

 (c) No change

 (d) Diffraction bands became narrower and crowded together

Answers

 1. (a) 2. (a) 3. (c) 4. (a) 5. (a) 6. (b) 7. (b)  8. (c)

 9. (c) 10. (b) 11. (b) 12. (b) 13. (b) 14. (d)

Short Questions with Answers

 1. Distinguish between Fresnel and Fraunhofer classes of diffraction.
  In Fresnel diffraction phenomena, either the source or the point of observation or both are at 

finite distances from the diffraction obstacle. Here, the incident wave front is either spherical or 
cylindrical.

  In Fraunhofer diffraction phenomena both the source and the point of observation are effectively at 
infinite distance from the diffraction obstacle. Here the incident wave front is plane.

 2. What is the effect of (a) increasing the slit width, (b) increasing the slit separation, and (c) 
increasing the wavelength of light in a double slit diffraction pattern?

   (a) Effect of increasing the slit width: If we increase the slit width the central peak becomes 
sharp. The spacing between the fringes does not change as it depends on the slit separation so 
within the central maximum, number of interference maximum is less. Reverse effect happens 
if we decrease the slit width.

 (b) Effect of increasing the slit separation: If the slit separation is increased, keeping the slit 
width constant, the fringe become closer together, but the envelope of the pattern remains unal-
tered. So, more number of interference maxima will be observed within the central diffraction 
maximum.
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 (c) Effect of increasing wavelength of light: If the wavelength l of the incident light is increased, 
the envelope of the fringe pattern becomes broader and fringe move further apart.

 3. What is missing order?
  Refer to Section 5.5.2.

 4. What is the difference between single-slit and double-slit diffraction pattern?
  Refer to Section 5.6.

 5. What is replica grating?
  Good transmission grating could be made by taking a cast of the ruled surface with some transparent 

material and such casts are called replica gratings. Replica gratings give satisfactory performance 
where the highest resolving power is not needed.

 6. What is the Rayleigh criterion?
  According to the Rayleigh criterion the maximum resolving power of an optical instrument corre-

sponds to the condition that the principal maximum of a diffraction pattern of one point object falls 
exactly on the first minimum of the diffraction pattern of an adjacent point object.

 7. What is the limit of resolution of an optical instrument?
  The smallest separation (linear or angular) between the two point objects at which they appear just 

separated is called the limit of resolution of an optical instrument and the reciprocal of the limit of 
resolution is called its resolving power.

 8. What is the difference between grating spectra and prism spectra?
  Refer to Section 5.8.

 9. In a plane transmission grating 15000 lines/inch are taken. Why?
  With the increase in the number of lines the secondary maxima relative to the principal maxima 

decreases and becomes negligible. When N becomes large enough the secondary maxima are not 
visible with a grating having about 15000 lines or more per inch.

Part 2: Descriptive Questions

 1. What is meant by diffraction of light? Distinguish between Fresnel and Fraunhofer classes of diffrac-
tion   [WBUT 2005]

 2.  (i) Explain the difference between interference and diffraction

 (ii) Derive the expression of intensity at a point for Fraunhofer diffraction due to double slit. Draw 
the intensity distribution carve (diffraction pattern) and explain it. [WBUT 2006]

 3. The intensity distribution for single-slit diffraction is

   I = I0  (   sin2 b
 _____ 

b2
   )  where b =   p b sin q

 _______ 
l

  

  b is the width of the slit and l is the wavelength of light. Show that secondary maxima are given by 
the equations

   tan b = b [WBUT 2006]

 4. What do you mean by (i) ghost lines, and (ii) absent spectra.

 5. What is the condition for the missing order spectra for a diffraction grating? What particular order 
will be absent if width of the slit is equal to width of opaque space of a grating?
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 6. Plot a intensity distribution curve for Fraunhofer diffraction due to single slit and find the positions 
of maxima and minima.

 7. What is grating element? What is its relation with the number of rulings?

 8. What is meant by the resolving power of an optical instrument? Explain Rayleigh’s criterion for just 
resolution.

 9. What do you understand by resolving power of a grating? Derive the necessary expression.

 10. Define the resolving power of microscope. Deduce an expression for it.

 11. Obtain an expression for the resultant intensity in a single-slit Fraunhofer diffraction process and 
show the intensity pattern graphically. [WBUT 2005]

 12. Show that the intensity of secondary maxima formed by single-slit Fraunhofer diffraction process is 
nearly 4.5% of the principal maximum. [WBUT 2004]

 13. State Rayleigh criterion of resolution and discuss its significance in studying spectral lines.

Part 3: Numerical Problems

 1. A single slit form diffraction pattern of Fraunhofer class with white light. The second maximum for 
red light of wavelength 6500 Å coincides with the third maximum of an unknown wavelength. Find 
the unknown wavelength. [4642 Å]

 2. What is the highest order spectrum which may be observed with monochromatic light of wavelength 
5000 Å by means of a grating using 5000 lines cm–1? [Ans. 4]

 3. Find the missing orders for a double-slit Fraunhofer pattern if the width of each slit is 0.15 mm and 
they are separated by a distance of 0.60 mm. [5, 10, 15 etc.]

 4. A diffraction grating 2 cm wide is just able to resolve sodium D-lines in second order. Find the num-
ber of rulings per mm. [24.5]

 5. A plane transmission grating has 15,000 lines per inch. Find

 (a) the resolving power of grating, and

 (b) the smallest wavelength difference that can be resolved with a light of wavelength 6000 Å in the 
second order. [(a) 3 × 104 (b) 20 Å]

 6. Calculate the angles at which the first dark band and the next bright band are formed in the Fraunhofer 
diffraction pattern of a slit 0.3 mm wide (l = 5890 Å). [q = 6¢; q = 12¢]

 7. Calculate the number of lines per cm of a grating which gives an angle of diffraction equal to 30° in 
the first order of light of wavelength 600 nm. [8333.3]

 8. A microscope is used to resolve two point sources separated by a distance 4 × 10–5 cm. If the wave-
length of light be 5461 Å, calculate the numerical aperture of the objective. [1.665 cm]





CHAPTER

6
Polarization of Light

 6.1 INTRODUCTION

A wave is a disturbance which can propagate through a medium. While propagating through the medium, 

the wave cause the particles of the medium to vibrate either along the direction of propagation of the wave 

or in a direction perpendicular to that of propagation. The wave which causes the particles of the medium 

to vibrate along the direction of propagation of it is known as longitudinal wave and the wave which 

causes vibration of the particles of medium in a perpendicular direction is called transverse wave. Light 

is a form of electromagnetic wave.

 The phenomena of interference and diffraction of light were successful beyond doubt to prove that light is 

a form of wave. But they failed to decide wheather light is a transverse or longitudinal wave. The fact that 

light is a transverse wave was established only after the discovery of a phenomenon of light which is 

known as polarization. It was Huygens who first discovered the phenomenon of polarization in 1690. The 

phenomena of interference and diffraction can be exhibited by all types of waves but polarization can be 

exhibited by the transverse waves only. So, it was the discovery of polarization of light that helped us to prove 

that light is a transverse wave.

 6.2 MECHANICAL DEMONSTRATION OF POLARIZATION

Analogy is very much important in physics. It helps one to understand the physical phenomena easily through 

comparison. To understand polarization clearly, let us take the help of an analogous mechanical illustration.

 Let us consider a horizontal string AB attached to a fixed point B at one end [Fig. 6.1]. Holding its other 

end A at hand, one can generate transverse waves in many different planes along the string. The particles of 

the string will vibrate perpendicularly to the direction of propagation of the waves. Let us repeat the experi-

ment in the presence of two parallel slits S1 and S2 between points A and B as shown in the diagram. Amongst 

all the generated waves, only one wave, which is contained by the plane passing through the pair of parallel 

slits S1 and S2, will be able to pass through up to the point B.
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S1 S2

A B

S1 S2

A B

(a)

(b)

Fig. 6.1 Polarization of mechanical wave, such a wave containing vibrations confined in a given plane, is 
called a polarized wave.

 The polarized wave passes through the parallel slit S2. But if the slit S2 is turned and made perpendicular 

to S1 as shown in the Fig. 6.1(b), no wave is obtained beyond S2. If the string AB is replaced by a spring of 

very small cross section and longitudinal waves are generated along it, then turning of the slit S2 through 90° 

[Fig. 6.1(b)] makes no difference to the wave. In the changed situation also, it can pass through both the slits 

S1 and S2 undisturbed. This shows that a longitudinal wave cannot be polarized.

 6.3 SYMBOLIC REPRESENTATION OF UNPOLARIZED AND POLARIZED 
LIGHT

In Section 6.2, we have observed that the wavelength of the wave to be polarized should be comparable to the 

length of the slit. The wavelength of light waves is very small, so it is required to have slits of comparable 

length for getting polarization of light. It is difficult to make such small slits artificially. But some crystals 

provide us such slits for getting polarized beam of light. Before discussing polarization by crystals, let us see 

how unpolarized and polarized beams of light are represented in sym-

bolic form. Light is considered as a transverse electromagnetic wave 

which consists of two mutually perpendicular vectors. One of them is 

the electric vector and the other is the magnetic vector. The direction of 

propagation of the light wave is also perpendicular to each of the afore-

said vectors. In an unpolarized or natural light beam, the electric and 

magnetic vectors keep on vibrating continuously. The average effect of 

these two random vibrations gives rise to the impression that in unpolar-

ized light, vibrations of the electric and magnetic vectors are symmetri-

cally distributed in their plane which is perpendicular to the direction of 

propagation of light (Fig. 6.2).

 A light beam in which the electric and magnetic vectors vibrate symmetrically about the direction 

of propagation of it, is called unpolarized light. On the other hand, a light beam in which the electric 

and magnetic vectors do not vibrate symmetrically about the direction of propagation of it, is called 

polarized light. The conventions of drawing unpolarized and polarized light rays are given below: (i) If the 

vibrations of the polarized light beam take place in the plane of the paper, then they are represented by small 

straight lines perpendicular to the direction of propagation with two opposite arrow-heads [Fig. 6.3(a)], (ii) If 

Fig. 6.2 Vibration is normal 
to the direction of 
propagation.

Normal
plane

Direction of
propagation

y

C

A

B

x

D
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the vibrations of the polarized beam take place in a plane perpendicular to the plane of the paper, then they 

are represented by small dots all along the direction of propagation of light [Fig. 6.3.(b)]. (iii) An unpolarized 

beam of light has vibrations in all possible directions in a plane perpendicular to the direction of propaga-

tion. Each vibration in this case may be considered as the resultant of two mutually perpendicular component 

vibrations. And for this reason, an unpolarized beam is usually represented by the simultaneous use of dots 

and small straight lines along with two opposite arrow-heads [Fig. 6.3(c)].

(a)

(b)

(c)or

Line of propagation
of light

Fig. 6.3 Symbolic representation of polarized and unpolarized light.

 6.4 EXPERIMENT OF POLARIZATION WITH TOURMALINE CRYSTAL

Let us now experimentally exhibit polarization of light with the help of tourmaline crystal. It is made up of 

silicates of various metals and boron. It is a natural crystal with some interesting optical effects. It is a hex-

agonal crystal and almost transparent with a greenish tinge. The greatest diagonal of the hexagonal is known 

as its optic axis (the diagonal ab in the crystal of Fig. 6.4).

T1 T2

a a¢

b b¢

X Y

T1
T2

a

a¢

b

b¢

X Y

Fig. 6.4 Polarization of light by tourmaline crystal.
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 As can be seen in the Fig. 6.4, T1 is a thin piece of tourmaline crystal. A narrow beam of light moving 

along the direction XY is normally incident on a flat surface of the crystal. A part of the light transmits through 

the crystal. No change in the intensity of the emergent light is observed except slight tinge in it. The color 

depends upon the nature of the crystal. There is no change in the intensity of the transmitted beam of light 

if the crystal T1 is rotated about the line XY as axis. Let us now allow the transmitted light to fall on another 

similar crystal T2 placed behind the first one and observe the light passing through T1 and T2. When the axes 

ab of T1 and a ¢b ¢ of T2 of the crystals are parallel to each other, the light passing through T2 appears slightly 

darker but without any change in the intensity. If we now slowly rotate the second crystal T2 about the line 

of vision keeping its plane parallel to that of T1, then the light passing through T2 becomes dimmer and 

ultimately it disappears completely when the axes ab and a ¢b ¢ are crossed at right angles. If the crystal T2 is 

rotated further, the light reappears and becomes brightest when the axes ab and a ¢b ¢ become parallel again. 

The same result is obtained if the crystal T1 is rotated keeping the crystal T2 fixed in its initial position. The 

simple experiment exhibited above leads one to conclude that the light waves are transverse waves, otherwise 

we could not get light emerging from T2 extinguished by simply rotating the crystal T2. A similar effect was 

observed in case of the mechanical illustration in Section 6.2.

 6.5 PLANES OF POLARIZATION AND VIBRATION

When a plane polarized beam of light is obtained by using a suitable polarizer (e.g., a calcite crystal), 

the vibrations of the electric vectors are confined in a plane. Such a plane is called plane of vibration. 

The plane perpendicular to the plane of vibration is called the plane of polarization. The plane of vibra-

tion contains the vibrating electric vectors. In Fig. 6.5, a polarized beam of light transmitted through a tour-

maline crystal AB has been shown. The plane ABCD contains both, the vibrations of the electric vectors of the 

polarized beam and the direction of propagation OQ. The plane EFGH represents the plane of polarization. 

The line OQ, which represents the direction of propagation, also lies on this plane.

A D

G

E F

Q

CB

O

H

Plane of polarization

Plane of vibration

Fig. 6.5 Planes of vibration and polarization.

 6.6 VARIOUS METHODS OF PRODUCING A PLANE POLARIZED BEAM 
OF LIGHT

A beam of light in which the vibrations of electric vectors are confined in a plane is called a plane 

polarized beam. In the previous section, we have seen how a plane polarized beam of light can be obtained 
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by using a tourmaline crystal. There are many other methods to obtain a plane polarized beam of light. Let 

us discuss some of them in brief.

 (a) Polarization by reflection

 (b) Polarization by refraction

 (c) Polarization by double refraction

 (d) Polarization by selective absorption

 (e) Polarization by scattering

6.6.1 Polarization by Reflection

The simplest method of obtaining a polarized beam of light is that of 

reflection. In 1808, Malus discovered that a polarized beam of light 

can be obtained if ordinary light is reflected by a transparent reflect-

ing surface like a plane sheet of glass. He also found that the degree 

of polarization depends on the angle of incidence of light. He further 

observed that at a particular angle (which depends on the nature of 

the reflecting surface) the reflected beam becomes totally polarized. 

This angle of incidence at which totally polarized beam of light is 

obtained is called the angle of polarization of the reflecting sur-

face. The angle of polarization for glass is about 57°. Figure 6.6 shows 

complete polarization by reflection at the polarizing angle qp.

6.6.2 Polarization by Refraction

When a beam of unpolarized light is 

refracted through a transparent medium, 

the refracted light becomes partially 

polarized. To obtain a completely polar-

ized beam of light, one has to get the beam 

refracted through a number of transparent 

refracting plates, which are placed in such 

a way that they become parallel to each 

other having been separated by an air gap. 

The more the number of plates, the more 

will be the purity of the polarized light.

 For example, if a beam of unpolar-

ized light be incident on a number of 

glass plates at polarizing angle, then the 

reflected ray is completely plane polar-

ized. But the refracted light is not com-

pletely polarized, rather it is partially 

polarized. The refracted ray retains cent per cent parallel vibration and a reduced percentage of normal 

vibration. The normal vibration can further be reduced if the beam is repeatedly passed through more parallel 

plates. Hence degree of polarization can be increased by increasing the member of plates which are parallel 

to the first glass plate (Fig. 6.7).

Fig. 6.6 Polarization by reflection.

N
P Q

A B
O

qp
qp

qp

qp

qr
n = 1.5

15% normal vibration

100% parallel vibration

85% normal vibration

Fig. 6.7(a) Incomplete polarization through single refraction.
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Fig. 6.7(b) Complete polarization through multiple refraction.

6.6.3 Polarization by Double Refraction or Bifringence

Let us see what are isotropic and anisotropic crystalline media before starting the analysis of double refrac-

tion. An isotropic crystalline medium is such a medium which consists of a periodic, regular and identi-

cal arrangement of particles (atoms or molecules) in all directions. When a light ray passes through such 

a medium, it travels with the same velocity in all directions. On the other hand, there are many a crystalline 

substance in which the interparticle distances along different directions are different. For this reason, when 

a light ray in such a medium passes through such a medium, the velocity of light is different in different 

directions. The medium which exhibits different velocities in different directions is called anisotropic 

medium, one gets more than one refracted rays in such a medium because of the presence of more than one 

velocities. Example of anisotropic media are calcite and quartz crystals.

 Double refraction is a phenomenon in which one gets two refracted rays from a refracting medium 

following incidence of natural light on it. In the year of 1669, double refraction was discovered by Erasmus 

Bartholinus. He observed that when a ray of ordinary light is incident on a calcite crystal, it splits into two 

refracted rays, one of them always obeys ordinary laws of refraction and other one, in general may not obey 

them. The refracted ray which follows laws of refraction is called ordinary ray (O-ray) and the other 

one which does not obey laws of refraction is called extraordinary ray (E-ray). In Fig. 6.8, a calcite 

crystal (CaCO3) is placed over an ink-dot (P) on a paper. Looking through the crystal one can see two images 

of the dot. If a glass slab is placed instead of the calcite crystal, one can see only one image. The two images 

seen through the calcite crystal evidently represent two different emergent rays. Hence, we get evidence of 

double refraction. The crystals like calcite which give rise to double refraction are called bifringent crys-

tals and the phenomenon is called bifringence. The refractive index of a substance is related to the velocity 

of light in the concerned medium and is given by the following relation:

  m =   
c
 __ 

v
   ...(6.1)
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 The refractive index for the ordinary ray remains same in all direc-

tions but that for the extraordinary ray varies from one direction to 

another. Hence, the velocity of the extraordinary ray is variable  

( as m =   
c
 __ 

v
   and c is the velocity of light in free space ) . For one direc-

tion, the refractive indices for the ordinary and the extra ordinary 

rays are equal. This direction is called the optic axis of the crys-

tal. There are two types of crystals; in one type there exists only one 

direction in which the velocities of the two refracted rays (O-ray and 

E-ray) remain same. This type of crystal is known as uniaxial crystal. 

In another type of crystal there exist two such directions in which the 

O-ray and the E-ray have same velocities. Such crystals are known 

as biaxial crystals. Uniaxial crystals have only one optic axis while 

biaxial crystals have two optic axes. Examples of uniaxial crystals are 

calcite (CaCO3) and quartz (SiO2), that of biaxial crystals are aragonite 

and coper sulphate (CaSO4).

Positive and Negative Crystals

The anisotropic crystals can be categorized into two categories depending on the velocities of O-ray and 

E-ray inside the crystal: (i) positive crystal, and (ii) negative crystal. The crystal in which the velocity of the 

O-ray (vo) is greater than that of the E-ray (ve) is called the positive crystal and the crystal in which the veloc-

ity of E-ray (ve) is greater than that of O-ray (vo) is called the negative crystal (Fig. 6.9). Examples of positive 

crystals are quartz and iron oxide and that of negative crystals are calcite and tourmaline crystals.

Optic axis Optic axis

Positive crystal
( > )v

o
v
e

Negative crystal
( > )v v

e o

Fig. 6.9 Positive and negative crystals.

6.6.4 Polarization by Selective Absorption

If a substance absorbs one or more wavelengths from the several wavelengths present in a beam of light, then 

the absorption is called selective absorption. As for example, a transparent red colored substance absorbs 

all colors except the red. Tourmaline is one of the several substances which produce plane polarized beam 

of light by selective absorption. We have observed in Section 6.4 that when unpolarized light is transmit-

ted through a thin piece of tourmaline crystal, the transmitted beam of light becomes plane polarized with 

vibrations parallel to the optic axis of the crystal. The unpolarized light on entering the crystal splits into two 

polarized components—one known as ordinary ray whose vibrations are perpendicular to the optic axis of 

the crystal and the other—known as extraordinary ray with vibrations parallel to the optic axis. The crystal 

absorbs the O-ray and transmits the E-ray causing polarization through selective absorption.

Fig. 6.8 Double refraction through 
a calcite crystal.
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6.6.5 Polarization by Scattering

When very small particles scatter a beam of light, the resulting scattered light is found to be partially polar-

ized. For light scattered at an angle of 90°, the degree of polarization is the greatest. But this is usually far 

from complete polarization. Light from the blue sky, being the result of scattering by small atmospheric 

particles, is partially polarized.

 6.7 BREWSTER’S LAW

It was observed by Malus that when a beam of unpolarized light is incident on the surface of a transpar-

ent material or medium, both the reflected and refracted beams are partially plane polarized. By changing 

the angle of incidence, Malus observed that for a particular value of the angle of incidence, the reflected 

light beam becomes completely plane polarized, the plane of vibration being at right angles to the plane 

of incidence. This angle for which the reflected beam is completely polarized is known as angle of 

polarization.

Brewster’s law Brewster obserbed that there exists a simple relation between the angle of polarization 

(qp) and the refractive index (m) of the reflector relative to the surrounding medium. This relation is given 

by

  m = tan qp ...(6.2)

 The relation (6.2) is known as Brewster’s law. The polarizing angle for glass is 57°.

 It can be proved from Brewster’s law that when light is incident at the polarizing angle, the reflected beam 

and the refracted beam make an angle of 90°.

 Let PO be a beam of unpolarized light incident on the surface AB of a transparent medium at angle of 

polarization qp, OR and OQ are the corresponding reflected and 

refracted beams. Let qr be the angle of refraction (Fig. 6.10) from 

Brewster’s law, we can write

  m = tan qp =   
sin qp

 ______ 
cos qp

   ...(6.3)

 From Snell’s law again, we can write

  m =   
sin qp

 _____ 
sin qr

   ...(6.4)

 Now, from Eqs. (6.3) and (6.4), we can have

    
sin qp

 ______ 
cos qp

   =   
sin qp

 _____ 
sin qr

  

which implies, cos qp = sin qr = cos (90° – qr)

\  qp = 90° – qr

or,  qp + qr = 90° ....(6.5)

 Hence, q = 90° [  qp + qr + q = 180°]

 6.8 MALUS’ LAW

To discuss about this law one requires the concept of polarizer and analyzer. Let us define polarizer and 

analyzer.

Fig. 6.10 Incidence at an angle of 
polarization results in 

p + r = 90°.
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Polarizer A polarizer is an optical device which can generate a polarized beam of light when an unpolar-

ized beam of light is incident on it.

Analyzer An analyzer is an optical device which can determine whether an incident beam of light is polar-

ized or not when the same is incident on it.

 While working experimentally with polarization of light in 1809, E L Malus observed that the intensity of 

light transmitted by the analyzer varies with the angle between the plane of transmission of the analyzer and 

that of the polarizer. This is called Malus’ law.

Statement of Malus’ law This law states that if a completely plane polarized light beam is incident on 

an analyzer, then the intensity of the light emerged varies directly as the square of the cosine of the angle 

between the plane of transmission of the polarizer and that of the analyzer. Let a be the amplitude of the light 

transmitted by the polarizer and q be the angle of the plane of transmission of the polarizer with that of the 

analyzer (Fig. 6.11)

 Let us now resolve ‘a’ into two components; a cos q 

and a sin q, respectively along the plane of transmis-

sion of the analyzer and a direction perpendicular to it. 

One of these two components (i.e., a sin q) is elimi-

nated and the other component (i.e., a cos q) is freely 

transmitted through the analyzer. Hence, the intensity 

of light emerging from the analyzer is given by,

  Iq = a2 cos2 q

or,  Iq = I cos2 q ... (6.6)

where I = a2 is the intensity of polarized light incident 

on the analyzer. The Eq. (6.6) is the Malus law.

 Two special cases of Malus’ law are given below.

 (i) If the polarizer and the analyzer are parallel to each other, then we get q = 0° or q = 180°

  So, Iq = I.

 (ii) If, however, the polarizer and the analyzer are crossed (i.e., the angle between them is 90°), then 

q = 90°, this implies Iq = 0.

 6.9 CLASSIFICATION OF POLARIZED LIGHT

So far we have discussed about plane polarized light only. Depending on the nature of the polarized light, it 

can be classified as (i) linearly (or plane) polarized, (ii) circularly polarized, and (iii) elliptically polarized 

light. In case of plane polarized light, the electric vector vibrates in a fixed plane along a straight line. In case 

of circularly polarized light, the electric vector rotates along a circle without changing its magnitude. And in 

case of elliptically polarized light, the electric vector rotates along an ellipse. The magnitude of the electric 

vector varies between a maximum and a minimum values which are respectively the semi-major and semi-

minor axes of the ellipse. Circularly and elliptically polarized light waves can be generated by superposing 

two mutually perpendicular linearly polarized light waves. When the amplitudes of the two superposing 

waves are equal, the resultant light wave becomes circularly polarized and when they are unequal, the resul-

tant light wave becomes elliptically polarized.

Fig. 6.11 Resolving of the amplitude a of the plane 
polarized light.
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 6.10 PRODUCTION OF PLANE, CIRCULARLY AND ELLIPTICALLY 
POLARIZED LIGHT BY ANALYTICAL METHOD

Let us consider two orthogonal light vectors (i.e., electric vectors) of frequency v  ( =   
w

 ___ 
2p

   )  and amplitudes a1 

and a2 given by the following two equations:

  x = a1 sin (w t) ...(6.7)

  y = a2 sin (w t + d) ...(6.8)

 Rearranging Eqs. (6.7) and (6.8), we get

    
x
 __ a1
   = sin (w t) ...(6.9)

and   
y
 __ a2
   = sin (w t + d) ...(6.10)

 Now, Eq. (6.10) can be written as

    
y
 __ a2
   = sin (w t) cos d + cos (w t) sin d

or,    
y
 __ a2
   =   

x
 __ a1
   cos d +  ÷ ______

 1 –   
x2

 __ 
a1

2
     sin d

or,   (   
y
 __ a2
   –   

x
 __ a1
   cos d )  =  ÷ ______

 1 –   
x2

 ___ 
a1

2
     sin d

 Now squaring both sides, we get

    
y2

 ___ 
a2

2
   +   

x2

 __ 
a1

2
   cos2 d –   

2xy
 ____ a1a2
   cos d =  ( 1 –   

x2

 ___ 
a1

2
   )  sin2 d

or,    
x2

 ___ 
a1

2
   +   

y2

 __ 
a2

2
   –   

2xy
 ____ a1a2
   cos d = sin2 d ...(6.11)

 Equation (6.11) represents the general equation for an ellipse.

 This generalized ellipse has been graphically represented in 

Fig. 6.12 (for d π 0 or d π np or d π (2n + 1)   
p

 __ 
2
   and a1 π a2).

 If a1 = a2 = a (say), Eq. (6.11) reduces to

  x2 + y2 – 2xy cos d = a2 sin d ....(6.12)

 This equation represents a general circle. This circle also can 

have its centre any where in the plane as the ellipse of Fig. 6.12.

 Let us now have a look at the various cases of the general 

Eq. (6.11).

Case 1 When phase difference d = 0, 2p, 4p, ..., i.e., d = 2np, for 

n = 0, 1, 2, ..., we obtain sin d = 0 and cos d = 1.

 So, from Eq. (6.11), we get

Y

Y¢

XX¢
O

Fig. 6.12 Graphical representation of 
the general ellipse. It can 
remain in any of the four 
quadrants of the plane 
depending on the values of 
x and y.
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    (   x __ a1
   –   

y
 __ a2
   )  

2
  = 0 fi   

x
 __ a1
   –   

y
 __ a2
   = 0

or,  y =   
a2

 __ a1
   x ...(6.13)

 Equation (6.13) is an equation of a straight line pass-

ing through the origin with a slope s =   
a2

 __ a1
   ≥ 0. So, the 

resultant emergent light will be plane or linearly polarized 

with vibrations in the same plane as the two superposing 

components (Fig. 6.13).

Case 2 When phase difference d = p, 3p, 5p, ..., i.e., 

d = (2n + 1)   
p

 __ 
2
  , for n = 0, 1, 2, ..., we obtain sin d = 0 and 

cos d = –1.

 So, from Eq. (6.11), we get

    (   x __ a1
   +   

y
 __ a2
   )  

2
  = 0 fi   

x
 __ a1
   +   

y
 __ a1
   = 0

or,  y = –   
a2

 __ a1
   x ...(6.14)

 Equation (6.14) is again that of a straight line passing 

through the origin with a slope s = –   
a2

 __ a1
   £ 0.

 In this case also, the resultant emergent light will be 

plane polarized with vibrations as in Case 1 (Fig. 6.14).

Case 3 When phase difference d =   
p

 __ 
2
  ,   

3p
 ___ 

2
  ,   

5p
 ___ 

2
  , .... i.e., 

d = (2n + 1)   
p

 __ 
2
  , for n = 0, 1, 2, ...., sin d = 1 and cos d = 0. 

So from Eq. (6.11), we get

    
x2

 __ 
a2

1

   +   
y2

 __ 
a2

2

   = 1 ... (6.15)

 This equation (Eq. (6.15)) is that of a symmetrical ellipse with major axis and minor axis coinciding with 

X-axis and Y-axis respectively. The emergent light will be elliptically polarized (Fig. 6.15).

Case 4 When phase difference d =   
p

 __ 
2
  ,   

3p
 ___ 

2
  ,   

5p
 ___ 

2
  , ..., i.e., d = (2n + 1)   

p
 __ 

2
   for n = 0, 1, 2, ..., and 

a1 = a2 = a (say).

 In this case Eq. (6.11) takes the following form:

  x2 + y2 = a2 ... (6.16)

 The equation (Eq. (6.16)) represents a circle having the center at origin. So, in this case the emergent light 

will be circularly polarized (Fig. 6.16).

Fig. 6.13 Superposition of two plane polarized 
light rays to generate plane polarized 
light.

Y

Y¢

XX¢
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a2

Fig. 6.14 Superposition of two plane 
polarized light rays to generate 
plane polarized light.

Y
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 6.11 OPTIC AXIS AND PRINCIPAL PLANE OF A CRYSTAL

While describing an experiment of polarization with a tourmaline crystal in the Section 6.4, we had simply 

made a mention of optic axis of the crystal and we have also discussed optic axis in subsection 6.6.3 from 

one point of view. 

 To understand the phenomenon of polarization well, one has to acquire good idea regarding the optic axis 

and principal plane of a crystal. In this section we are discussing optic axis from other point of view.

6.11.1 Iceland Spar or Calcite Crystal

A chemically hydrated calcite (calcium carbonate, (CaCO3)) crystal 

is transparent and colorless. It is also known as iceland spar. When 

a transparent variety of calcite is struck, it breaks obliquely through 

three different planes. Thus it breakes into a number of pieces where 

each piece takes a regular geometrical form of a rhombohedron like 

the one given in Fig. 6.17.

 The six faces of the rhombohedron are parallelograms, having two 

acute angles of 78° each and two obtuse angles of 102° each. There 

are two diagonally opposite corners A and C ¢ where the three obtuse 

angles (each of 102°) meet together and these two corners (A and C ¢) 
are known as blunt corners. At each of the other six corners, two 

acute angles and one obtuse angle meet together. This crystal has the 

property of producing a pair of refrected rays for a single incident ray. 

For this reason, this crystal is known as doubly-refracting crystal.

6.11.2 Optic Axis of a Crystal

A line passing through either of the two blunt corners (A or C ¢) which is also equally inclined to the three 

faces that meet together at the corner gives the direction of the optic axis of the crystal, the optic axis of a 

crystal is merely a direction and not any particular line; so any other line which is parallel to the one 

mentioned above is also the optic axis of the crystal. The line AP and C ¢Q in Fig. 6.17 are optic axes. They 

are parallel to each other.

Fig. 6.16 Circularly polarized light formed 
by superposition of two linearly 
polarized light.
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P

Fig. 6.17 The optic axis is 
represented by AP or 
C Q. It is a direction 
parallel to either AP or 
C Q. 

Fig. 6.15 Superposition of two the plane 
polarized light ray to generate 
elliptically polarized light.
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 The special features of the optic axis are as follows:

 (a) It is a direction rather than any particular line.

 (b) The optic axis divides the crytal symmetrically.

 (c) The velocities of both O-ray and E-ray along the optic axis are equal.

6.11.3 Principal Section of a Crystal

The principal section of a crystal is its section or plane which contains the optic axis and is perpendicu-

lar to the two opposite refracting faces or surfaces of the crystal. Since there can be infinite number of 

lines parallel to the direction of the optic axis, there can be infinite number of principal sections. In Fig. 6.17, 

one such principal section is ACC ¢A¢. It has cut the crystal surface in a parallelogram (ACC ¢A ¢) with angle 

71° (–A¢AC) and 109° (–AA ¢C). In fact, each principal section cuts the crystal surface in a parallelogram 

having same angles.

 6.12 NICOL PRISM

It is an ingenious optical device which is designed from a calcite crystal and can be used in optical instruments 

for producing and analyzing linearly polarized light. But recently it has been replaced by polaroids. While 

discussing double refraction (Section 6.6), we have observed that when a beam of ordinary (i.e., unpolarized) 

light is transmitted through a crystal of calcite, in general, two completely plane polarized beams, the beam 

of O-rays and the beam of E-rays, having vibrations in two mutually perpendiculer planes are obtained. Now 

if by some means we can eliminate one beam the calcite crystal may be used for obtaining plane polarized 

light from ordinary light. A device for elemination of the O-ray was accomplished in an ingeneous manner by 

William Nicol in 1828 by utilizing the phenomenon of total internal reflection of light at a thin film of Canada 

balsam separating two pieces of calcite. This device is now known after his name as Nicol prism. But it is not 

really a prism, in fact it is a parallelo-pipendron.

6.12.1 Construction of Nicol Prism

A calcite crystal is shaped as rhombohedron from a natural crystal (having a length to breadth ratio of 3:1) by 

stricking. A cross-section ABCD of the rhombohedron is shown in Fig. 6.18. Next, the end-faces containing 

AB and CD are properly ground by a grinding machine to make the angles in the principal section 68° and 

112° in place of 71° and 109° respectively as a result of grinding the end faces now contain edges A¢B and 

CD ¢. The crystal is then cut into two halves along the plane which contain A¢D ¢ the two surfaces are optically 

flat. Then they are cemented together by Canada balsam — a transparent liquid with refractive index m = 1.55 

for sodium light (wavelength: 589.3 nm). The crystal is finally enclosed in tube which is blackened inside and 

the construction of Nicol prism is then complete.

6.12.2 Action of Nicol Prism as Polarizer and Analyzer

(a) Polarizer Let a light ray PM of ordinary (unpolarized) light, almost parallel to BD ¢, be incident on 

the face A¢B. It splits into two refracted rays inside the crystal, MR and MQ — the so-called ordinary ray 

(O-ray) and extraordinary ray (E-ray) respectively. Both of the rays are plane or linearly polarized. The O-ray 

has vibrations perpendicular to the principal section of the crystal and the E-ray has vibrations in the prin-

cipal section (i.e., vibrations parallel to the principal section). The refractive index mc of Canada balsam lies 

between me and mo, respectively the refractive indices of calcite crystal (the material of Nicol prism) for E-ray 

and O-ray, i.e., me < mc < mo.
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Fig. 6.18 The cross section view of a Nicol prism.

 So, when the O-ray reaches the layer of Canada balsam, it passes from an optically denser to an optically 

rarer medium. Since the crystal length is large, the O-ray is incident at the calcite Canada balsam surface of 

separation at an angle greater than its critical angle (69°) and thus gets totally internally reflected and finally 

it gets absorbed by the blackened tube which encloses the crystal.

 The E-ray, however, is transmitted by the calcite-Canada balsam surface of separation and emerges from 

the Nicol prism as plane polarized light with vibrations parallel to the principal section of the crystal.

(b) Analyzer When an unpolarized ray of light is incident on a Nicol prism, the emergent ray becomes 

linearly polarized having vibrations in the principal section of the Nicol prism [Fig. 6.19(a)]. When the emer-

gent light ray falls on a second Nicol prism whose principal section is parallel to that of first one, the vibra-

tions remain on the principal section of the second one and the light ray, behaving as E-ray, is transmitted 

through it completely. The intensity of the emergent light ray becomes maximum.

 If now the second Nicol prism is rotated to make its principal section normal to that of the first one 

(Fig. 19(b)], the vibrations of the incident polarized light becomes normal to its principal section and the ray 

behaves as O-ray inside the second Nicol prism. So, it is lost by total internal reflection at the calcite-Canada 

balsam surface of separation. In this situation, no light ray gets imerged from the second Nicol prism and the 

two Nicol prisms P and A are said to be crossed to each other.

 If the second Nicol prism (A) is further rotated tilll its principal section is again parallel to that of the first 

Nicol prism (P) [Fig. 19(c)], the intensity of the emergent light again becomes maximum. By using a rotating 

Nicol prism, we can detect whether the incident light ray is linearly (plane) polarized or not. If the intensity 

of the emergent light varies between a maximum and a minimum and the value of the minimum is zero, then 

the incident light ray is plane polarized.

 Here, the Nicol prism P acts as polarizer and A acts an analyzer. Whenever we need to use polarizer and 

analyzer of light beams for various purposes, we can use Nicol prisms. There is a limitation of the use of 

Nicol prism, it can be used only when the incident beam is slightly divergent or convergent. It cannot be used 

in a situation where the incident beam of light is highly divergent or convergent.
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 6.13 RETARDATION PLATES (QUARTER OR HALF-WAVE PLATES)

Definition A retardation plate is an optical device which can make a finite optical path difference between 

the O-ray and the E-ray while they travel through it in the same direction by retarding the motion of one of 

these rays.

 A plate cut from a doubly refracting crystal by making sections parallel to the optic axis can be used as a 

retardation plate (see subsection 6.6.3).

 If both the rays (O-ray and E-ray) propagate along the optic axis, they have same velocities and they have 

different velocities in any other direction. If the rays propagate along a direction normal to the optic axis of 

the plate, the difference in the velocities of O-ray (vo) and E-ray (ve) is maximum. So by allowing light to 

propagate through a direction normal to the optic axis a plate of calcite or similar crystal cut parallel to the 

optic axis can be used as a retarding plate. Usually, there are two types of retardation plates in use. They 

are quarter-wave plates and half-wave plates (they are very frequently denoted by   
l

 __ 
4
   - plate and   

l
 __ 

2
   - plate 

respectively).

Fig. 6.19 Use of two Nicol prisms; one as polarizer ( p) and the other as analyzer (A).
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 The optical path difference for a retardation plate may be deduced as follows:

 Let t be the thickness of the plate in the direction of propagation of light and let mo and me be the refractive 

indices of the material of the plate for the O-ray and E-ray respectively. Within the plate, then, the optical path 

for the O-ray is simply mot and that for the E-ray is met. The optical path difference is, therefore, given by

  D = (mo – me)t [if mo > me] ...(6.17)

Quarter-wave plate If the thickness of a doubly refracting crystal plate is so adjusted that it is able to 

produce an optical path difference of one quarter of a wavelength between the O-ray and the E-ray, then it is 

called a quarter-wave plate.

 For a negative uniaxial crystal the refractive index for O-ray is greater than that of E-ray (i.e., mo > me). 

So, the optical path difference between the O-ray and E-ray in such a crystal for incidence of light normal to 

optic axis is given by Eq. (6.17). In case of a positive crystal, it is given by

  D = (me – mo)t ...(6.18)

 As at present we are considering quarter-wave plate, the thickness the plate is given by

  D = (mo – me)t =   
l

 __ 
4
  

or,  t =   
l
 _________ 

4 (mo – me)
   ...(6.19)

 For a quarter-wave plate of a positive crystal, the thickness of is given by

  t =   
l
 _________ 

4 (me – mo)
   ...(6.20)

 A quarter-wave plate is used to produce circularly and elliptically polarized light by placing it in 

the path of a plane polarized light. Further, in conjunction with a Nicol prism, it becomes a versatile 

analyzer and can analyze all kinds of polarized light.

Half-wave plate If the thickness of a doubly refracting crystal plate is so adjusted that it is able to produce 

an optical path difference of one half of a wavelength between the O-ray and the E-ray, then it is called a 

half-wave plate.

 For a negative crystal like calcite (mo > me), the path difference for a half-wave plate is given by

  D = (mo – me)t =   
l

 __ 
2
   [by Eq. (6.17)]

 So the thickness, t =   
l
 _________ 

2 (mo – me)
   ...(6.21)

 For a positive crystal plate (me > mo)

 The thickness,

  t =   
l
 _________ 

2 (me – mo)
   ...(6.22)

 Quarter wave plate and half wave plate are also known as phase retarding plate. The phase retardation (d) 

is given by 

  d =   
2p ___ 
l

   × D º(6.22a) 

where D is the optical path difference.
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 6.14 DETECTION OF POLARIZED, PARTIALLY POLARIZED AND 
UNPOLARIZED LIGHT

According to Stokes, light can be classified into seven classes on the basis of its status of polarization. 

These classes are (i) unpolarized, (ii) linearly polarized, (iii) circularly polarized, (iv) elliptically polarized, 

(v) mixture of unpolarized and linearly polarized, (vi) mixture of unpolarized and circularly polarized, and 

(vii) mixture of unpolarized and elliptically polarized light.

 In order to detect the status of polarization of a given beam of light, the beam at first may be allowed to 

pass through an analyzer which is capable of rotating about the direction of propagation of the light beam as 

axis [Fig. 6.20 (a)]. This can be considered as the first step of analysis. If the status of polarization of the light 

beam is not completely known in this step, then one can carry on a second test with the help of a pair of one 

quarter-wave plate and one analyzer separated by a distance as shown in Fig. 6.20(b). This may be considered 

as second step of the detection analysis.

 If, in the first step, no variation of intensity of the transmitted light beam is observed, then it may be 

either unpolarized or circularly polarized beam of light. If two maxima and two minima are observed in the 

first step, then the given beam of light may be either partially polarized or elliptically polarized. And if two 

maxima and two extinctions are observed in the first step, then there is no need to carry out the second step 

of the detection process. The given light beam is linearly polarized.

 On observation of no change in the intensity of light in the first step, the second step of the detection 

process is carried out. In this step if no change of intensity is observed, then the given light is unpolarized. 

If two maxima and two extinctions are observed, then it is circularly polarized. Again, on observation of two 

maxima and two minima in the first step, the second step of the detection process is carried out. In this step, 

if two maxima and two minima of intensity are observed, then the given light is partially polarized. On the 

other hand, if two maxima and two extinctions are observed, then the given light is elliptically polarized.

Light

Nicol prism
2 radianp

Transmitted light

(a)

Light

Nicol prism
2 radianp

Transmitted light

(b)
Quarter-wave

plate

Fig. 6.20 Detection of unpolarized and polarized light in two steps.

 6.15 DICHROIC CRYSTALS AND POLAROIDS

We have discussed various methods of generating plane polarized beams of light in Section 6.6. Selective 

absorption was one of them. In double refraction method of polarization, we came across the phenomenon of 

selective absorption. In this section we will to throw more light on this matter.



Basic Engineering Physics6.18

6.15.1 Dichroic Crystals

Some doubly refracting minerals and crystals show the property of absorption of one of the two doubly 

refracting rays (i.e., O-ray and E-ray) very strongly by allowing the other to transmit through them with very 

little loss. This phenomenon of selective absorption of light rays is known as dichroism and those crys-

tals which exibit the property of dichroism are called dichroic crystals.

 Tourmaline is a dichroic crystal and absorbs the ordinary ray (O-ray) completely as shown in Fig. 6.21. 

But the extraordinary ray (E-ray) is partly absorbed and so it emerges out of the crystal. Thus if an unpolar-

ized light is allowed to pass through a dichroic crystal of proper thickness, one of the components is totally 

absorbed and then other component transmits in appreciable amount. The emergent beam will thus be plane 

polarized. A thin tourmaline crystal of approximately 1 mm thickness with its faces cut parallel to its optic 

axis can be used as a polarizer. But as the polarized light of a tourmaline crystal is colored due to unequal 

absorption of the light of various wavelengths, its use as a polarizer is limited.

D
C

D¢ C¢

A
B

A¢
B¢

Plane polarised light

E-ray

O-ray

(completely
absorbed)

Fig. 6.21 Dichroism exhibited by a crystal. It absorbs the O-ray completely and allows E-ray to 
pass through.

6.15.2 Polaroids

In 1852, an English Physician WH Herapath discovered a synthetic crystaline material iodo-sulphate of qui-

nine known as herapathite (named after its discoverer). This material exhibits strong dichroism. It transmits 

plane polarized light of all color and wavelengths unlike a tourmaline crystal. But these crystals are not at all 

stable and they are affected by even slight strain. In 1932, EH Land developed a process which arranges hera-

pathite crystal side by side, oriented with their optic axis all parallel, so that they function like a single crystal 

of big dimensions. This is done by producing a paste of crystals in nitrocellulose which is then squeezed out 

through a very narrow slit. Only those crystals pass through the slit whose axes are parallel to the length of it 

thereby producing a fine sheet of millions of tiny crystals, having their optic axes parallel to each other. This 

is then mounted between two thin sheets of glass forming what is called a polaroid. It has largely replaced the 

Nicol prism for producing and analyzing polarized light in the laboratory.

 Another variety of long-sized polaroids called H-polaroids is formed by heating and stretching polyvinyl 

alcohol films so as to orient the complex molecules in the direction of stress, which then become double 

refracting. And when these polaroids are impregnated with iodin, they exhibit the characterization of dichro-

ism. These polaroids are colorless and transmit 33% more light than the herapathite polaroids.

 It was later discovered by Land and Rogers that when stretched polyvinyl alcohol film is heated along with 

a dehydrating catalyst, e.g., HCl, it darkens slightly but shows strong dichroism and becomes very stable. 
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This polaroid is called K-polaroid. When two pieces of polaroids are crossed, light is perfectly extinguished 

but if they are made parallel to each other, the light transmitted by the first one is also transmitted by the 

second one [Fig. 6.22(a) and (b)].

(a) (b)

Fig. 6.22 (a) Two parallel polaroids transmiting light. (b) Two crossed polaroids showing extinction of light.

 Applications of polaroids are versatile. They are cheaper than the Nicol prisms and are used in 

laboratories for producing and analyzing of linearly polarized light. Polaroids are also used in the 

sunglasses for cutting off glare of light coming from horizontal surfaces.

 To cut off the dazzling light of an approaching car which is coming from opposite directions, K-polaroids 

are extensively used in the headlights and the windscreens of cars. They are also used in windows of trains 

and aeroplanes to control intensity of light entering into them and in viewing stereoscopic motion pictures.

Worked-out Examples

Example 6.1  The angle of polarization of a material is 60°. What is the (i) refractive index of the transpar-

ent material, (ii) the angle of refraction corresponding to the angle of incidence, qi (= 60°), and (iii) the angle 

between the reflected and refracted rays?

Sol. (i) Here, qp = 60°. From Brewster’s law, we get, m = tan qp = tan 60° = 1.73.

 (ii) Also from Brewster’s law, we know that for incidence at polarization angle, the sum of angle of 

reflection and that of refraction is 90°.

  \ qp + qr = 90° [  angle of reflection qrl = polarizing angle = qp]

  \ angle of refraction qr = 90° – qp

    = 90° – 60° = 30°

 (iii) Again, since qp + qr = 90°, the sum of angle of reflection (qrl) and angle of reflection (qr) is given 

by

   qrl + qr = qp + qr = 90° [  qrl = qi = qp]

  \ the angle between the reflected and the refracted rays is 90°.

Example 6.2  Calculate the polarizing angle for a light ray traveling from water of refractive index 1.33 to 

glass of refractive index 1.53. [WBUT 2008]

Sol.  The refractive index of water with respect to air is a mw = 1.33 and that of glass with respect to air is 

a mg = 1.53.
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  So, the refractive index of glass with respect to water is given by

   m = w mg =   
a mg

 ____ 
a mw

   =   
1.53

 ____ 
1.33

  

  Now, if qp be the angle of polarization in water, by using Brewster’s law, we get

   m = tan qp =   
1.53

 ____ 
1.33

  

or,   qp = tan–1  (   1.53
 ____ 

1.33
   ) 

or,   qp = tan–1 (1.1504)

or,   qp = 49°

Example 6.3  Two polarizers are crossed to each other, a third polarizer is placed between them which 

makes angle of q with the first polarizer. An unpolarized light of intensity Io is incident on the first one and 

passes through all of the three polarizers. Calculate the intensity of the light which emerges from the second 

polarizer.   [WBUT 2008]

Sol.  The angle between the first and third polarizer is q and that between the third and second polarizer 

is

   q ¢ = 90° – q.

  So, by using Malus law, the intensity of the light emerged from the third polarizer is given by

   I ¢ = Io cos2q

  Similarly, the intensity of the light emerged from the second polarizer is given by,

   I = I ¢ cos2q ¢
or,   I = Io cos2 q cos2 (90° – q)

or,   I = Io sin2 q cos2 q

  \ the light which finally emerges from the second polarizer has an intensity of I = Io sin2 q cos2 q.

Example 6.4  What is the refractive index of glass if the light of 550 nm wavelength is completely plane 

polarized when reflected at an angle of 60°?

Sol.  As the reflected light is completely plane polarized, the angle of incidence is the angle of polarization 

for glass. So, from Brewster’s law, we get the required refractive index m as follows:

   m = tan qp = tan 60° =  ÷ 
__

 3  

  \ m = 1.732

Example 6.5  The refractive indices of canada balsam and calcite crystal are 1.550 and 1.658 respectively 

for the ordinary ray (i.e., O-ray) formed through double refraction. Find out the maximum angle of inclina-

tion of the O-ray with the surface of Canada balsam so that it is still quenched.

Sol.  The refractive indices of Canada balsam and calcite crystal are mb = 1.550 and mc = 1.658. Let the 

critical angle of the O-ray in the crystal of calcite be qc.

  \ sin qc =   
mb

 ___ mc
   =   

1.550
 _____ 

1.658
   = 0.935.

  Hence, qc = 69.2°
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  So, when the O-ray is incident on the surface of Canada balsam at an angle of inclination q £ (90° – qc) 

the O-ray will quench.

  \ the required maximum angle of inclination (qmax) for quenching is given by

   qmax = 90° – 69.2° = 20.8°

Example 6.6  Calculate the velocity of O-ray and that of E-ray in a calcite crystal in a plane which is nor-

mal to the optic axis. Also, find the ratio of the greater velocity to the smaller one and comment on the ratio. 

The refractive indices of calcite crystal for the E-ray and the O-ray are 1.485 and 1.659 respectively.

Sol.  Let vo and ve be the velocities of the O-ray and the E-ray respectively, then we get

   mo =   
c
 __ 

vo
   and me =   

c
 __ 

ve
  

 where c is the velocity of light in the free space.

  \ vo =   
c
 ___ mo
   =   

3 × 108

 _______ 
1.659

   = 1.808 × 108 m/s

and   ve =   
c
 __ me
   =   

3 × 108

 _______ 
1.485

   = 2.020 × 108 m/s

  \ the velocity of E-ray is greater than that of O-ray and the ratio is given by

   r =   
ve

 __ 
vo

   =   
2.020

 _____ 
1.808

   = 1.12

  \ the E-ray moves faster than the O-ray and its velocity is 1.12 times of the velocity of the O-ray.

Example 6.7  Calculate the thickness of a mica sheet required to make a quarter wave-plate for l = 546 nm. 

The refractive indices for the O-ray and E-ray in mica are 1.586 and 1.592 respectively. [WBUT 2002]

Sol.  From the given data, we find that me = 1.592 and mo = 1.586 for mica and me > mo. So, mica is positive 

crystal and for this crystal, the required thickness is given by

   t =   
l
 _________ 

4 (me – mo)
  

  \ t =   
546 × 10–9

  _______________  
4 (1.592 – 1.586)

   m

or,   t =   
546 × 10–9

 _________ 
4 × 0.006

   m

or,   t = 22.75 × 10–6 m

or,   t = 22.75 mm

Example 6.8  A sheet of cellophane is a half-wave plate for light of l = 4 × 10–5 cm. Assuming that there 

is negligible variation in indices of refraction with wavelength l, how would the sheet behave with respect to 

the wavelength of l¢ = 8 × 10–5 cm ?

Sol.  Let t be the thickness of the half-wave plate, so we can write

   t =   
l
 _________ 

2 (me – mo)
   =   

4 × 10–5

 _________ 
2 (me – mo)
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or,   t =   
8 × 10–5

 _________ 
4 (me – mo)

   =   
l¢ _________ 

4 (me – mo)
  

  which is the formula for a quater wave plate for wavelength l¢ = 8 × 10–5 cm.

  So, for l¢ = 8 × 10–5 cm wave, the sheet would behave as a quarter-wave plate.

Example 6.9  A quartz plate is a half-wave plate for light whose wavelength is l. Assuming that the varia-

tions in the indices of refraction with wavelength can be neglected, how would this behave with respect to 

light of wavelength l1 = 2l?

Sol.  The thickness of half-wave plate is given by

   t =   
l
 _________ 

2 (mo – me)
  

  which can be easily rewritten as follows:

    t =   
2l
 _________ 

4 (mo – me)
   =   

l1
 _________ 

4 (mo – me)
  

  which is the expression for a quarter-wave plate for a light with wavelength l1.

  So, the given plate will behave as a quarter wave plate for light of wavelength l1.

Example 6.10  A quarter wave plate is fabricated with smallest possible thickness for wave length of 589.3 

nm. What phase retardation will be obtained with this plate with light having wave length of 435.8 nm. You 

may neglect the variation of refractive indices with wave length for this problem.  [WBUT 2011]

Sol.  The path difference between ordinary and extraordinary waves is given by (for quarter wave plate)

     (mo ~ me)t =   
l __ 
4
   =   

589.3
 _____ 

4
  

   where t is the thickness of the plate.

   The phase retardation 

     d =   
2p ___ 
l1

   × path difference 

     =   
2p ______ 

435.8 
  ×   

589.3
 _____ 

4
  

     = 0.676 p

Part 1: Multiple Choice Questions

 1. Which of the following phenomena causes polarization of light?

 (a) Reflection (b) Refraction (c) Double refraction (d) Diffraction

 2. Linearly polarized light can be produced by

 (a) simple reflection   (b) simple refraction

 (c) reflection at the angle of polarization (d) None of these
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 3. Which of the following phenomena proves that light is a transverse wave?

 (a) Interference (b) Dispersion (c) Diffraction (d) Polarization

 4. Plane polarized light can be produced by

 (a) reflection at polarizing angle (b) Nicol prism

 (c) piles of plates   (d) All of these

 5. In case of elliplically polarized light which of the following statements is true?

 (a) Amplitude of vibrations changes in direction only

 (b) Amplitude of vibration changes in magnitude only

 (c) Amplitude of vibration changes both in magnitude and direction

 (d) None of the above

 6. From polarization of light, one can conclude that

 (a) light is a transverse wave

 (b) light is a longitudinal wave

 (c) light can bend while facing a sharp edge of an object

 (d) None of the above

 7. The plane of vibration makes an angle q with that of polarization. The value of q is

 (a) 0°   (b) 90°

 (c) 45°   (d) None of these

 8. An unpolarized light consists of

 (a) infinite number of plane polarized light (b) finite number of plane polarized light

 (c) only two plane polarized light (d) None of these

 9. In plane polarized light

 (a) the magnitude of light vectors changes and the orientation remains same

 (b) the magnitude of light vectors remain same and the orientation changes

 (c) both of magnitude and orientation change continuously

 (d) None of the above

 10. Number of optic axes in a uniaxial crystal is

 (a) one (b) two (c) five (d) ten

 11. Number of optic axes in a bi-axial crystal is

 (a) one (b) five (c) two (d) ten

 12. The optic axis is a direction along which

 (a) the O-ray travels faster than the E-ray

 (b) the E-ray travels faster than the O-ray

 (c) both O-ray and E-ray travel with the same velocity

 (d) None of the above

 13. In a quarter-wave plate, the path difference (in terms of wavelength l) between the O-ray and the 

E-ray is

 (a)   
l

 __ 
4
   (b) zero (c)   

l
 __ 

2
   (d) None of these
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 14. In a half-wave plate, the phase difference between the O-ray and the E-ray is

 (a)   
p

 __ 
2
     (b) p

 (c) zero   (d) None of these

 15. If qp be the angle of polarization, then the refractive index m of the material is given by

 (a) sin qp (b) cos qp (c) tan qp (d) sec qp

 16. A Nicol prism can act as a

 (a) polarizer   (b) analyzer

 (c) both analyzer and polarizer (d) None of these

 17. If the refractive index of water is 1.33, the polarizing angle of light reflected from the surface of a 

pond is given by

 (a) cos–1 (1.33) (b) tan–1 (1.33) (c) cot–1 (1.33) (d) sin–1 (1.33)

 18. An elliptically polarized light is a general case of

 (a) only the linearly polarized light

 (b) only the circularly polarized light

 (c) both of linearly and circularly polarized light

 (d) None of the above

 19. If light is incident at the angle of polarization then the angle between the refelcted ray and the 

refracted ray is

 (a)   
p __ 
2
   (b)   

p __ 
4
   (c) p (d)   

3p
 ___ 

2
  

 20. The action of Nicol prism is based on the phenomenon of

 (a) scattering (b) double refraction (c) refraction (d) reflection

Answers

 1. (c) 2. (c) 3. (d) 4. (d) 5. (c) 6. (a) 7. (b) 8. (a)

 9. (a) 10. (a) 11. (c) 12. (c) 13. (a) 14. (b) 15. (c) 16. (c)

 17. (b) 18. (c) 19. (a) 20. (b)

Short Questions with Answers

 1. Why is polarization so important in case of light?

  The phenomenon of polarization is very important in case of light, because it is polarization which is 

capable of proving that light is a transverse wave. No other property of light can confirm this fact.

 2. What is polarization? State Brewster’s law of polarization? [WBUT 2002, 2004]

  Polarization is a phenomenon of light due to which the vibrations of the electric and magnetic vectors 

of a light wave can be restricted to remain confined in a plane only.

  Brewster’s law states that at angle of polarization, the refractive index of a polarizing substance is 

equal to the tangent of the angle of polarization and the angle of polarization is that incident angle 

for which the reflected beam becomes completely polarized. Also, the angle between the reflected 

ray and the refracted ray becomes   
p

 __ 
2
   radian.
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 3. Explain why light waves can be polarized but that of sound cannot be polarized.

  As we know, the sound waves are longitudinal waves where the particles of the medium vibrate along 

the direction of propagation of the wave, for this reason, they cannot be polarized. The propagation of 

the wave cannot be cut-off due to the longitudinal nature of it. But in case of light waves, polarization 

is possible as it is a transverse wave. The polarization of light proves that light is a transverse wave.

 4. What is the difference between the natures of ordinary and extraordinary rays of light when 

they pass through positive and negative crystals?

  In case of the positive crystal, the ordinary ray moves faster than the extraordinary ray and hence the 

refractive index of the extraordinary ray is more than that of ordinary ray. Quatz crystal is an example 

of positive crystal. On the other hand, in case of a negative crystal, the extraordinary ray moves faster 

than the ordinary ray, and hence the refractive index of the ordinary ray is greater than the extraordi-

nary ray. Calcite crystal is an example of negative crystal.

 5. What are meant by uniaxial and biaxial crystals? Cite one example of each one.

  In some crystals there exists only one direction (or optic axis) along which the velocities of ordinary 

and extraordinary rays are same. Such crystals are called uniaxial crystals. There is another kind of 

crystal in which there exist two optic axes along which the velocities of O-ray and E-ray are same. 

These type of crystals are called biaxial crystals. Examples of uniaxial crystals are calcite and quartz 

crystals. Examples of biaxial crystals are aragonite and copper sulphate crystals.

 6. Show that the maximum transmission through any polarizer is half of the maximum intensity 

of the incident light.

  Let Io be the intensity of the light which is incident on the polarizer. Let q be the angle made by the 

direction of polarization of the polarizer and that of vibrations of the electric vector in the incident 

light beam. So, according to Malus law, the intensity of the light which has been transmitted through 

the polarizer is given by the following equation:

   I = Io cos2 q

  where I is the intensity of the polarized light.

  The incident light beam is unpolarized one. So, it vibrates in all directions on the plane normal to 

the direction of propogation of the light. So, in order to compute the intensity I, one has to take the 

time-average value of I. Now, the time average value of cos2 q is 0.5. Hence, Imax = Io cos2 q = 0.5 Io. 

An ideal polarizer will be able to transmit this maximum quantity which is equal to one-half of the 

intensity of the incident light. This implies that even an ideal polarizer can at best have a maximum 

transmission which is only fifty percent of the light incident on the polarizer.

 7. Two polarizers are placed at crossed position (angle between their polarizing planes is 90°) a 

third polarizer making an angle q with the first one is placed between them. An unpolarized 

light of intensity Io is incident on the first one and passes through all the three polarizers. Find 

the intensity of the emergent light. [WBUT 2008]

  Let us use the Malus law in two steps. In the first step, the first and the third polarizers are considered 

the first polarizer acts as a polarizer and the third one making and angle q with the first one acts as 

an analyzer.

  So, by using Malus law, we can write

   I1 = Io cos2 q

  where I1 is the intensity of the light which is coming out of the third polarizer.
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  Again, if we apply Malus Law considering the third polarizer as polarizer and second one as ana-

lyzer, we can write

   I = I1 cos2 (90° – q) = I1 sin2 q

  or, I = Io cos2 q sin2 q

  Hence, the intensity of the emergent ray is given by

   I =   
Io

 __ 
4
   sin2 (2q)

 8. Why is the color of the sky blue?

  It was proved by Lord Rayleigh that the percentage of scattered hight varies inversely as the fourth 

power of the wavelength of it when the size of the scattering particles is comparable to the wavelength 

of light waves. In case of blue light, the scattering is 16 times greater than that of red light. While 

the white light of the sun falls on the small particles in the atmosphere of the earth, the blue light is 

scattered and polarized far more than the light of any other color. For this reason, the sky appears to 

be blue. This blue color of the sky is more brilliant when the atmosphere of the earth remains free 

from the dust particles and water molecules and only the scattering is due to the gas molecules. 

 9. Why does the sky appear to be red at the time of sunrise and sunset?

  During sunset and sunrise, the sun remains near the horizon, so the light rays coming from the sun 

have to traverse a greater distance to reach the eyes of the observer as the surface of the earth is 

spherical the percentage of the dust particles (including smoke) are more near the earth’s surface than 

the upper sky and as the size of the particles are comparable to the wavelength of the blue light, it gets 

scattered (and polarized) by these particles and lost. So the blue color is removed from the sunlight 

in this process of scattering and the red color with its largest wavelength remains more in the rest 

sunlight. At the time of the sunrise and sunset, such lights are reflected by the clouds and thus the 

color of the sky appears to be red.

 10. Discuss Nicol prism as polarizer and analyzer.

  Refer to Section 6.12.2.

Part 2: Descriptive Questions

 1. Explain the terms (a) polarization of light, (b) plane of polarization, (c) plane of vibration, and 

(d) optic axis.

 2. Distinguish between polarized and unpolarized light. What is meant by principal section of a 

crystal?

 3. Define polarization. How can you distinguish between circularly and elliplically polarized light?

[WBUT 2002]

 4. Write short notes on (a) positive and negative crystals, and (b) Nicol prism. [WBUT 2003]

 5. Write a note on Nicol prism and its working as polarizer and analyzer. [WBUT 2004]

 6. What is polarization of light? What do you mean by positive and negative crystals? How can you 

distinguish between an unpolarized, a circularly polarized and a plane polarized light.

[WBUT 2004]

 7. Write the name of different types of polarized lights.

 8. Distinguish diffraction and double refraction. What are the advantages of a polaroid over a Nicol 

prism?



Polarization of Light 6.27

 9. What is a Nicol prism? How is it prepared? What do you mean by crossed and parallel Nicol 

prisms?

 10. State and explain Brewster’s law of polarization by clearly indicating the nature of polarization of the 

reflected and the refracted rays.

 11. What are the differences between (i) isotropic and anisotropic media, (ii) uniaxial and biaxial crys-

tals, and (iii) positive and negative crystals?

 12. What are O-ray and E-ray? How is the concept of total internal reflection used in the construction of 

a Nicol prism? Discribe the method of obtaining a polarized light with the help of a Nicol prism.

 13. Describe the construction of a quarter-wave plate and explain how you can produce circularly and 

elliptically polarized light in such a plate.

 14. How can you distinguish unpolarized linearly polarized, circularly polarized and elliptically polar-

ized light?

Part 3: Numerical Problems

 1. The critical angle of light in a certain substance is 45°. What is the polarizing angle?

 2. Calculate the thickness of a quarter-wave plate for light of wavelength l = 589.3 nm, given 

mo = 1.544 and me = 1.553.

 3. Plane polarized light passes through a quartz plate with its optic axis parallel to the faces. Calculate 

the least thickness of the plate for which the emergent beam will be plane polarized.

 4. Calculate the thickness of a half-wave plate given that me = 1.533 and mo = 1.544 and l = 500 nm.

 5. Calculate the thickness of a double refracting plate capable of producing a path difference of   
l

 __ 
4
   

between the E-ray and the O-ray.

 6. A polarizer and an analyzer are oriented so that the amount of light transmitted is maximum. To what 

fraction of its maximum value is the intensity of the transmitted light reduced when the analyzer is 

rotated through an angle of (i) 30°, (ii) 45°, (iii) 60° and (iv) 90°?

 7. The refractive index of a glass plate is 1.60. Calculate the angle of polarization and the corresponding 

angle of refraction.

 8. An unpolarized light wave of intensity 10 mW/cm2 passes through two Nicol prisms with principal 

section at 30° to each other. Calculate the intensity of the transmitted wave.

 9. A beam of plane polarized light is changed into a circularly polarized light by passing it through 

a 0.003 cm thick slice of crystal. Calculate the difference in the indices of two rays in the crystal 

assuming it to be the minimum thickness that will produce the effect (l = 6 × 10–7 m).





CHAPTER

7
Laser Optics

 7.1 INTRODUCTION 

Laser is an important discovery of modern physics and it gave the branch of optics a new impetus. The beam 
of light emitted from a laser source can have high degree of coherency, monochromaticity directionality and 
light-power density. All these properties of laser made it so important.

 To be familiar with the history of laser one has to go through the history of development of maser. The 
word maser is an acronym of microwave amplification by stimulated emission of radiation while the 

word laser is that of light amplification by stimulated emission of radiation. Historically, the laser is 
nothing but outgrowth of the maser. In 1917, Einstein first theoretically predicted the stimulation process 
(i.e., stimulated emission) in addition to the spontaneous emission in a quantum system while establishing 
two relations known after him between two coefficients known as Einstein’s A and B coefficients. Charles 
H Townes and his associates at the university of Columbia, USA and two Russian physicists Aleksander M 
Prokhorov and Nicolay G Basov independently successfully built maser in early fifties of the 20th century. 
The aforesaid trio were honored with the Nobel prize in physics in 1964 for their outstanding work in quan-
tum electronics which ultimately led to the discovery of maser and laser. In 1958, A H Shawlow and C H 
Townes set forth the principles of laser, then known as optical maser. And because of the development of 
laser optics in the sixties of last century, the attention of researchers in physics was drawn afresh in the field 
of optics. The first successful laser based on the principles of Schawlow and Townes was built in 1960.

 Laser is one such gift of science that has found a good number of applications in the fields of biology 
medicine, chemistry, metallurgy and aeronautics. Townes and his co-workers built maser in 1954 by using 
ammonia (NH3) gas working at the operation frequency of 2.4 × 1011 cycles/second. Schawlow and Townes 
in 1958 tried maser technique in the visible range of frequency. Finally T H Maiman could have successfully 
constructed the first optical maser (i.e., laser) in the year of 1960.

 7.2 CHARACTERISTICS OF LASER

Laser has four distinct characteristics which were just mentioned in the previous section. Laser can be eas-
ily distinguished from ordinary light because of these four distinct chararistics of it though both of them 
belong to the same visible range of electromagnetic radiation. The said four striking features of laser are 
(a) high monochromaticity, (b) high degree of coherence, (c) high directionality (or low divergence), and (d) 
high brightness (or high power density).
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(a) High monochromaticity of laser The energy levels of the atoms which are responsible for 
generation of a laser beam through transitions of electrons from higher to lower levels are not completely 
discrete and sharp. A transition of an electron in an atom between two energy levels produce an emission 
or absorption of a photon whose wavelength lies within the range between l and l + dl. This variation in 
the wavelength (or frequency) of radiation is called spectral broadening. Doppler broadening, collision 
broadening, and natural broadening are three most important broadening mechanisms which are responsible 
for creation of spectral broadening. At the time of emitting a radiation, the atoms do not remain at rest. In 
fact, the frequency of the emitted radiation varies slightly depending on the velocities of the atoms concerned 
and their direction of motion. This is known as Doppler broadening. When an atomic electron in a solid 
substance causes emission of radiation through transition between two energy levels and produces a photon, 
an exponential decay of the amplitude of the wavetrain is observed. It is just like a collision broadening 
where shortening of the wave train occurs and results in broadening of the spectral line. It is called natural 
broadening.

 When a source emits light the degree of monochromaticity of the light can be expressed in terms of line 
width or spectral width of the souce which is the frequency spread of the spectral line and can be denoted by 
Dv. We know that the frequency v is given by 

  v =   c __ 
l

  

or,  Dv = –   c
 ___ 

l2 
   D l ... (7.1)

 Equation (7.1) expresses the relationship between the frequency spread (Dv) and wavelength spread 
(Dl).

 For a laser beam, D l @ 0.001 nm while in case of gas discharging in a tube D l = 0.01 nm and for a source 
of white light D l = 300 nm. One can minimize this spectral width by using different modern techniques. To 
become perfectly monochromatic a laser in expected to have Dv = 0.

(b) High degree of coherence of laser Laser waves are highly coherent. So, if one wants to under-
stand the laser well, one must aquire some knowledge of coherence. Coherence is the predictable cor-

related motion of two waves when there is a fixed amplitude and phase relationship between them. If 

two light waves coming out of two sources are coherent then these sources are also said to be coherent. 

In other words, coherence is related to definite phase relationship between two waves (or sources) at 

different points of space and time. For a source to be coherent, it must be able to emit radiations of single 
frequency or the frequency spread must be very small. The wavefronts spreadings from the source must also 
be able to maintain a constant shape. Thus, we can categorize the coherence into two categories: (i) temporal 
coherence, and (ii) spatial coherence.

 (i) Temporal coherence If one is able to predict the phase and amplitude of a wave at a given point 
in space at different instants of time or if two waves always maintain a fixed phase and amplitude difference 
while passing through a fixed point in space, then such waves are called temporally coherent ones and the 
phenomenon is known as temporal coherence. The definition given above is an ideal one. A real source of 
light emits light in short pulses known as wavetrains. As for example, when an excited atom of a substance 
goes from a higher state to a lower state, it emits a pulse of light during a short interval of time (D t) ranging 
from 10–10s to 10–8 s. For example, in case of red cadmium line (l = 643.8 nm), D t ª 10-9 s. There cannot 
be any phase relationship between the pulses which originate from two different atoms of a substance since 
atoms of a given substance emit radiations randomly. However, one can predict the phase and amplitude of a 
wave at a given point in space at two instants of time if the same wavepulse keeps on passing through the said 
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fixed point. This longest time span (tc) during which one can make a prediction on phase and amplitude of 
a wave is called coherent time. The length of the wavepulse corresponding to tc is called coherence length 
(lc). The coherence length lc is given by

  lc = tc × c ...(7.2)

where c is the speed of light in the free space.

 (ii) Spatial coherence The spatial coherence refers to the 

phase relationship between two waves present at two space points 

at the same point of time. If there is a point source S then, two equidis-
tant points P and Q (which are not along the same line with the source 
S) will always have a definite phase relationship (Fig. 7.1)

 But if one gradually increases the size of the source S, then after 
some time the points P and Q will fail to maintain definite phase rela-
tionship. The maximum lateral dimension of the source up to which 
the radiations from it remain coherent determines the spatial coherence. 
That is, the spatial coherence depends on the size or dimension of 

the source concerned. 

 Though, theoretically the output of a laser is expected to be perfectly 
coherent, but in reality, it does not show perfect coherence because all 
photons are not instigated by the original stimulating photon which initiates the stimulated emission. A 
detailed discussion on temporal as well as spatial coherence has been made in the first chapter of this book 
along with interference of light. Interested readers may refer to that chapter. An analytical discussion of 
coherence has been made in appendix-B

(c) High directionality of laser A beam of conventional light spreads very fast as it passes away from 
the source, i.e., the rays of the light beam diverge quickly resulting in the rapid increase of the area of the 
moving wave front. On the other hand, in case of a laser beam, it is observed that the divergence is very less. 
This property of a laser beam to maintain the parallelity between any two rays of it for a long distance can be 
termed as its directionality. Laser beams are highly directional as compared to those of conventional light. 
As for example, a laser beam of 10 cm in diameter will not be wider than 5 km in diameter while traveling 
from the earth to the moon where the distance between the two said celestial bodies is 3,84,000 km. In case 
of perfectly directional light beam the diameter of the wavefront will remain same. But in reality no light 
beam is perfectly directional.

 The degree of directionality is generally expressed in terms of divergence. As stated above, the divergence 
gives a measure of spreading of the beam when it is emitted from the source. Using small angle approxima-
tion, it can be shown that the laser beam increases in diameter about 1 mm while travelling through a dis-
tance of one metre resulting in a beam divergence of 1 milliradian per metre. If one considers two points at 
distances r1 and r2 respectively from the windows of the laser souce and measures the diameters of the laser 
spot at the aforesaid points and finds the values of the diameter to be d1 and d2 respectively, then the angle of 
divergence in degrees can be expressed as

  q =   
d2 – d1 ________ 

2(r2 – r1)
   ...(7.3)

 The full angle of divergence (q ) in terms of the minimum size of the spot (d0) is given by

  q =   1.27l
 _____ 

2d0
   ... (7.4)

Fig. 7.1 Points P and Q which 
are equidistant from 
the source S can 
maintain definite phase 
relationship.

S

P

Q
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where d0 is the intrinsic size of the beam within the optical cavity of the laser and l is the wavelength of the 
radiation emitted from the laser source.

(d) High intensity or brightness of laser The laser source emits the radiation through its window 
in the form of a narrow beam having its energy concentrated in a small area. On the other hand, the light 
from a ordinary light source gets emitted in all possible directions. As in the case of laser, the beam travels 
in the form of plane wave, the intensity of it remains nearly constant with distance while it travels forward. 
In fact, a one milliwatt He-Ne laser is brighter than the mid-day sun. It acquires this property because of its 
other two properties namely – coherence and directionality. When two photons each having amplitude a are 
in phase with each other and interact with each other, then due to the principle of superposition, the resultant 
amplitude becomes 2a. Hence the intensity in (2a)2 i.e., 4a2. In case of laser a large number of photons (say 
n photons) is in phase with each other. As a result, the amplitude of the resultant wave becomes (na) and the 
corresponding intensity is (n2a2) consequently the intensity becomes very high because of coherent addition 
of amplitudes and negligible divergence. For this reason, one can directly look at a glowing 100 watt electric 
bulb, but on the other hand one cannot look at a one milliwatt He-Ne laser that has 105 times lesser power than 
that of the electric bulb. A one milliwatt He-Ne laser source is 100 times brighter than the mid-day sun.

 7.3  ABSORPTION AND EMISSION OF RADIATIONS BY MATTER 

When light energy interacts with matters, both the activities of absorption and emission of photons take place 
in the concerned matters. By absorbing photons, the atoms of the matters get excited and as the atoms can-
not remain in the excited state for a long time, they return to the ground state or for the time being to some 
metastable states by emitting light.

7.3.1 Absorption of Radiation

The atoms of the active medium have a number of dis-
crete energy states called quantized energy states. They 
are characterized by their principal quantum number n 
(where n is an integer). These atoms of the medium usu-
ally remain in the ground state with a minimum energy 
E1 in absence of any external influence. When they are 
subjected to some interaction, e.g., irradiation by light 
photons of frequency v, they transit to some higher 
energy state E2, by absorbing the energy hv of the inter-
acting photons. This phenomenon is known as absorp-
tion or excitation of the atoms of the active medium. In 
fact, it is a stimulated or induced absorption because 
absorption is necessarily a stimulated or induced 

process (Fig. 7.2). The frequency of such a transition is given by,

  v =   
E2 – E1 ______ 

h
   ...(7.5)

7.3.2 Spontaneous Emission of Radiation

Let us now consider an atom which is initially in the excited state E2 (Fig. 7.3). As an atom cannot stay in 
an excited state for a long time it returns, of its own, to the initial state E1 by emitting a single photon of 
frequency n after a time interval of about 10–8 s or it returns to the ground state in two or more steps by 

Fig. 7.2 An atom transits from the ground 
state E1 to a higher state E2 by 
absorbing a photon of energy hv.

E2

E1

hv
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emitting photons of energy v ¢ (where v ¢ < v) one after another via the metastable states of intermediate energy 
E ¢ where E1 < E ¢ < E2.

E2

E1

hv

hv ¢

hv ≤

E¢

Fig. 7.3 Spontaneous emission. An excited atom transits from the excited state E2 to the ground state E1 
directly or via a metastable state E ¢.

 This process of returning to the initial state E1 is called spontaneous emission (or spontaneous 

de-excitation). And the energy of the emitted photon is given by,

  hv = E2 – E1 or hv ¢ = E2 – E ¢ ... (7.6)

 In fact, the active material under observation contains an assembly of atoms and the photons emitted spon-
taneously by the atoms (due to the process of spontaneous transition) have no directivity. They are emitted 
randomly in different directions with random or uncorrelated phase. Therefore, the light emitted by the atoms 
of the sample under observation is non-coherent in nature.

7.3.3 Stimulated Emission of Radiation 

The quantum description of the processes of stimulated absorption and spontaneous emission is identi-
cal — just a transition from one level to another level of energy—though as a result of the former the atom 
gets excited and as result of the later the atom gets de-excited. But when a photon of precise frequency v (or 
precise energy hv = E2 – E1) interacts with an atom which is already in the excited state E2, it fails to excite the 
atom concerned as it is already excited. Instead, it produces the following equivalent effect, i.e., it de-excites 
the atom and brings it back to the ground state. So, under the influence of the electromagnetic field of the 
interacting photon of frequency v, it makes a transition to the lower energy state E1 and emits and additional 
photon of the same frequency v (Fig. 7.4). So, now there 
are two photons of frequency v, the original one and the 
one which has been emitted through the process of pres-
ent influenced emission of radiation in contrast to the 
spontaneous emission. This kind of transition is known 

as induced or stimulated emission of radiation. It is to 
be noted that in the spontaneous emission, photons get 
emitted in random direction while in case of stimulated 
emission, the light photon always gets released from 
the atom in the same direction in which the stimulating 
incident photon moves. It is also noteworthy that both 
the incident and the stimulated photons are coherent and 
contribute equally to amplify the incident beam. Now if 
these two photons interact with two other atoms in the 

E2

E1

hv

hv

hv

Fig. 7.4 Stimulated emission — a photon of energy 
hv (= E2 – E1) interacts with an excited 
atom and causes it to emit the absorbed 
energy hv.
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excited state E2, it will result in stimulated emission of two more photons and so on. Ultimately, the process 
will form a geometric progression or chain. So, if a lage number of excited atoms get involved in the process, 
the stimulated emission of photons can generate an intense beam of light having very high coherence and 
directionality.

 7.4  EINSTEIN’S A AND B COEFFICIENTS: EINSTEIN’S THEORY AND 
RELATIONS

If in an assembly of atoms of an active medium, some atoms remain in the excited state, then they will de-
excite at a certain rate. But nobody can predict which atom will transit to the lower state first. In fact, this is 
a statistical process. So, to take account of the transition process one has to adopt a statistical method. The 
theory of probability can be used to calculate the rate of relative transitions between any two energy levels 
with a good accuracy. Einstein used the theory of probability of statistics to calculate the rate of transition 
assuming the atomic system to be in equilibrium with an electromagnetic radiation.

7.4.1 Derivation of Einstein’s Relations 

Let us consider an assembly of atoms which is in thermal equilibrium at a certain temperature T with radia-
tion of frequency v and energy density u (v). The energy density u (v) is the amount of energy per unit volume 
of the active medium which is due to the photons of energy hv. Let N1 and N2 be the number of atoms per unit 
volume of the active medium respectively in energy levels 1 and 2 at an instant of time. The rate of transition 
of atoms from state 1 to state 2 (P12) in the process of absorption depends on the said states and it is also 
proportional to the energy density u (v) of the radiation.

\  P12 = B12 u (v),

where the proportionality constant B12 is called Einstein’s coefficient of absorption of the radiation.

 So, the number of atoms in state 1 that absorb a photon and transits to the state 2 per unit time is given 
by 

  N1 P12 = N1 B12 u (v)

 The probable rate of spontaneous transitions from state 2 to the state 1 depends on both the state 1 and the 
state 2 and does not depend on the energy density u (v). So, the number of atoms in the state 2 which transit 
to the state 1 by the process of spontaneous transition per unit time is given by 

  N2 P21 = N2 A21

where A21 is called Einstein’s coefficient of spontaneous emission and P21 is the rate of downward spon-
taneous transition. According to Einstein, there is again a downward stimulated transition from the state 2 to 
the state 1 due to the presence of electromagnetic radiation in the assembly of atoms. The probability of such 
stimulated downward transition is proportional to the energy density u (v) of the stimulating radiation, apart 
from its dependence on the state 1 and the state 2 and it is given by

  P¢21 = B21 u (v)

where B21 is called Einstein’s coefficient of stimulated emission.

 So, the number of atoms undergoing stimulated transition from the state 2 to the state 1 per unit time is 
given by
  N2 P¢21 = N2 B21 u (v)

 So, at the state of equilibrium, the absorption and emission per unit time must be equal.

 Hence,  N1 P12 = N2 P21 + N2 P ¢21

or,  N2  P21 + N2  P¢21 = N1 P21
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or,  N2  A21 + N2  B21 u (v) = N1 B12  u(v)

 Hence, u (v) =   
N2 A21 ____________  

N1 B12 – N2 B21
  

or,  u (v) =   
A21 ___ 
B21

   ◊   1 ___________ 

  
N1 ___ 
N2

    (   B12 ___ 
B21

   )  – 1

  

or,  u (v) =   
A21 ___ 
B21

   ◊   1
 ________________  

(B12/B21)e
hn/(kT) – 1

   (  N1/N2 = ehv/(kT)) ...(7.7)

 Now, this relation of energy density of the radiation of frequency v must be in accord with the Planck’s 
formula for radiation which is given by

  u (v) =   8p h v3

 ______ 
c3

   ◊   1 _________ 
ehv/(kT) – 1

   ...(7.8)

 Now, having compared Eqs (7.7) and (7.8), we get the following two relations:

  B12 = B21 and   
A21 ___ 
B21

   =   8 p h v3

 ______ 
c3

   ...(7.9)

 Thus, from the above two relations, we can see that the probability of stimulated absorption is equal to the 
probability of the stimulated emission. And the second equality implies that the probability of spontaneous 
emission varies as v3. In equilibrium the ratio of stimulated emission rate to spontaneous emission rate is 
given by

    
B21u(v)

 _______ 
A21

   =   1 ________ 
ehv/kT – 1

   ...(7.9a)

 The A’s and B’s are respectively called Einstein’s A and B coefficients. These coefficients cannot be deter-
mined with the help of classical electromagnetic theory. But the coefficient B can be determined through 
quantum mechanical process by making use of Dirac’s theory and hence the value of the coefficient A can 
be calculated. The reciprocal of A21 can be taken as a measure of the life-time of the upper state against the 
spontaneous transition to the lower or ground state.

 7.5 WORKING PRINCIPLE OF LASER

The working of laser depends on the phenomenon of stimulated emission of radiation. As was stated earlier, 
the theory of stimulated emission of radiation was developed by Einstein in 1917. He was considering the 
equilibrium of matter and electromagnetic radiation in a chamber of black body at a constant temperature 
where exchange of energy occurs due to absorption and spontaneous emission of radiation by atoms. It was 
observed by him that the absorption and emission processes together fails to explain the equilibrium situa-
tion. There is a difference between the two. In order to explain the cause of the difference between the said 
absorption and emission processes, he predicted that there must be an additional process of radiation in the 
blackbody chamber and then termed it as ‘stimulated emission’. But his aforesaid prediction regarding stimu-
lated emission attracted little attention of the people engaged in research until 1954. In 1954, one American 
physicist C H Townes and two Russian physicists N Basov and A M Prokhorov discovered independently and 
almost simultaneously the phenomenon of construction of maser using ammonia gas. Townes and Schawlow 
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in 1958 successfully showed that the maser principle can also be extended to the field of visible light radia-
tion. And finally in 1960 Maiman first built the device of laser using ruby as the active medium.

 If one considers the interaction of the atoms or molecules of an active medium with the radiation then for 
the interaction to take place, the energy carried by the photon of the interacting radiation (hv) must be equal 
to the difference of energy between the two energy states of the concerned atoms or molecules. There are alto-
gether three possibilities for the transitions of the electrons of participating atoms or molecules between two 
energy levels, namely, (a) induced absorption (or stimulated absorption or simply absorption), (b) stimulated 
emission, and (c) spontaneous emission.

 7.6 POPULATION INVERSION IN LASER 

By the term ‘population’ we mean number of atoms which remain in particular energy state or level, e.g., 
ground state, first excited state, etc. Normally, in the thermal equilibrium state the higher energy levels are 

much less populated than the lower ones since by Boltzmann law we have N2|N1 =  e – (E2 – E1)/(kT)  and E2 > E1; 

so,  e – (E2 – E1)/(kT)  < 1.

 Hence, N2 < N1. Now, if even B12 = B21, the stimulated emission is normally unlikely to occur because the 
higher energy level is less populated. But we can initiate and sustain it; only if we can make a large number 
of atoms available in the concerned excited energy state by using some means, i.e., if we can make N2 > N1.

 When in a laser active medium, the number of atoms in the higher energy state exceeds the number 

of atoms in the lower energy state, the active medium is said to have population inversion condition. 

And the process of obtaining population inversion is called pumping.

7.6.1 Various Methods of Population Inversion 

Many different methods of pumping are available. One can adopt either of them for achieving population 
inversion. The main principle is to selectively transfer a good number of atoms from the ground state to a 
higher energy state of the atoms so that the number of atoms in the higher state becomes bigger than that 
of the ground or any other lower energy state. We are selectively discussing some of the pumping methods 
here.

(a) Optical pumping In this method of pumping, a high energy light source, e.g., xenon flash lamp, is 
used. It can supply sufficient photon-flux in a given spectral range to excite atoms. The atoms of the active 
medium are allowed to rise to the appropriate excited state from the lower state through the process of 
selective absorption of radiation. These excited atoms then make non-radiative transition through which some 
energy is transferred to lattice thermal motion. And the atoms reach a metastable state where they remain for 
a relatively longer time. Thus, one gets population inversion resulting the number of atoms in the excited state 
more than the number of atoms in the ground state. Optical pumping method is used in case of ruby laser.

(b) Excitation by electrons In this method of pumping, the electrons are released from the atoms of 
laser active gases by passing high voltage electrical discharge through the gas. The intense electrical field 
accelerates these electrons to high speeds and they collide with neutral atoms in the gas. A fraction of the gas 
atoms make thereby a transition to the excited state. This method of pumping is used in some gas lasers.

(c) Inelastic collision of atoms When an electric discharge passes through a gas having two types of 
atoms X and Y, some of the former are raised to excited state X* and some of the latter to the excited state 
Y*. Let one of them (X*) be in a metastable state – having a mean lifetime longer than normal mean lifetime 
(approximately 10–8 s) of an excited atom of X. If the excitation energies of both types of atoms are nearly 
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equal, then some Y-atoms in the ground state may transit to the excited state through inelastic collision with 
X* atoms:

  X* + Y Æ Y* + X

and the number of Y*-atoms continually increases because of the property of metastability of X* atoms. This 
pumping is used in case of helium-neon (He-Ne) laser.

(d) Chemical pumping If an atom or a molecule is produced through some chemical reaction and remains 
in an excited state at the time of production (e.g., HF), then it can be used for pumping. The HF-molecule 
is produced in an excited state when hydrogen and fluorine gas chemically combine. The number of so 
produced excited atoms (or molecules) may considerably be more than the number of atoms (or molecules) in 
the normal state and hence one can get a population inversion in this process. As an example, we can consider 
the following chemical reaction:

  H2 + F2 Æ 2HF

 This chemical reaction generates sufficient energy to pump a CO2 laser.

(e) Thermal pumping Sometimes we can obtain a population inversion in an active lasing medium by 
heating the said medium. As in this method population inversion is achieved by supplying heat, it is called 
thermal pumping.

 7.7  BASIC COMPONENTS OF LASER SYSTEM

Structurally a laser device may have the following three main components along with some other less impor-
tant components: (a) an active medium (in the state of either solid or liquid or gas), (b) A source of pumping 
(for population inversion), (c) Optical resonator (for causing oscillation). Let us discuss the basic laser system 
with a block diagram in the following subsection.

7.7.1 Basic Laser System 

Irrespective of the active medium (solid dielectric, semiconductor, liquid or gas) a basic laser system should 
have at least the three components as stated above. Figure 7.5 shows the block diagram of the basic laser 
system.

E

A

T P

L

Fig. 7.5 A basic (simple) laser system.

 T : Totally reflecting mirror, P : Partially reflecting mirror,

 E : Exciting source (pumping), L : Laser beam (outgoing)

 A : The active medium.
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 The active lasing medium A (which is either a solid or a liquid or a gas) is capable of sustaining the stimu-
lated emission. The pumping device or external source of excitation, E supplies pumping energy to cause 
population inversion in the active medium. The optical resonator consisting of two mirrors P and T is respon-
sible for the capacity of the laser system to sustain the laser oscillation, a part of the output must be fed back 
into the laser system. Such a positive feedback is brought about by placing the active medium A between the 
said plane mirrors P and T, facing each other. The mirror T is totally reflecting while the other mirror P is 
partially reflecting. So it allows a part of the generated laser beam L to pass through. The arrangement of the 
two mirrors T and P is known as the optical resonator.

 To cause population inversion in the system, the medium A is fed with pump energy from E. Then this 
energy is released from the excited atoms by the process of stimulated emission. One photon released by one 
excited atom stimulates another atom it encounters in the path of it to release a second photon; now these two 
coherent photons add completely to a beam of double intensity. While the beam moves to and fro through 
the active medium, its intensity gets rapidly inhanced by more and more stimulated emissions. The reflector 
mirror T gets the beam reversed and allow it another passage (in fact a number of reversions occurs) through 
the excited medium for further amplification while the beam reaches P, a part L of the beam escapes as a laser 
beam. The stimulated photons, which are emitted obliquely with respect to the axis, get lost through the sides 
of the lasing system so that the final emergent beam is always along the axis of the lasing system.

7.7.2 Characteristics of the Active Medium 

The active lasing medium is very much important for a laser system. So we are throwing some more light on 
its characteristics. This medium consists of an assembly of atoms, molecules or ions (in the form of solid, 
liquid or gas) which possessed the capability of amplifying light waves. And in normal situation, there always 
remain a larger number of atoms or molecules in the lower energy levels as compared to the number of such 
partcles remaining in the higher excited energy levels. While passing through such an assembly of aforesaid 
particles, an electromagnetic radiation would get attenuated due to absorption of energy of the electromag-
netic wave. And in this process, the energy density of the radiation decreases. Thus, to achieve amplification 
of the electromagnetic radiation, the active lasing medium must be kept in a state of population inversion. In 
order to obtain population inversion, the active medium must have the following properties:

 (a) It should be transparent to both of the stimulating radiation and the laser output.

 (b) It should possess good optical properties such as it should exhibit negligible variation in the refrac-
tive index and scattering. It should not undesirably absorb the stimulating radiation and the laser 
output.

 (c) It should have a capability to accommodate the active species that help in lasing action without mak-
ing any change in the desired properties.

 (d) It should have good thermal and mechanical properties due to which deformation or fracture will not 
occur during any extreme working condition.

 7.8 OPTICAL RESONATOR AND Q - VALUE 

An optical resonator is used in a laser system to sustain the lasing action for a long time through oscillations 
of the light rays. The optical resonator can have a number of different types of configurations. Out of them, 
the simplest one has already been discussed in the earlier section (Fig. 7.5). Such a simple device is not used 
nowadays because with such a device, the required critical precise alignment of the mirrors cannot be obtained. 
Out of the other alternative configurations (Fig 7.6), we can mention the following four configurations:



Laser Optics 7.11

 (a) Confocal configuration

 (b) Spherical or the concentric configuration

 (c) Hemispherical cavity configuration

 (d) Long radius cavity configuration.

 In the confocal configuration, two identical 
concave mirrors are placed face to face and the 
distance between their centers is made equal to 
the radius of them. In the spherical configura-
tion also, two identical concave mirrors of same 
radius are placed face to face and the separation 
of them is made equal to twice of their radius. 
In the hemispherical configuration, one concave 
mirror is placed at one end and a plane mirror is 
placed at its centre of curvature. And in the case 
of long-radius cavity configuration, two concave 
mirrors of long but equal radius are placed face to 
face as shown in Fig. 7.6.

 It has been observed that in the confocal 
configuration the alignment problem is much 
less. In the hemispherical cavity configuration, 
though, it is easier to align but the power out-
put of this configuration is comparatively low. 
The long-radius cavity configuration is most fre-
quently used for commercial lasers.

7.8.1 Generation of Standing 
Wave in the Resonator 

Though for lasing action population inversion is essential but it is not only the decisive factor for the same. 
A large number of atoms or molecules undergo spontaneous transition and each so generated photon is 
capable of producing stimulated transitions. These spontaneous phtons have different phase, directions and 
polarizations. So these photons cannot contribute in the coherent amplification. In order to obtain a coherent 
emission, the number of photon states must be kept under control. The selectivity of proper photon states and 
positive feedback are necessary for offsetting the lasers. It can be obtained by enclosing the radiation in a 
cavity or resonator which is tuned to desired frequency. 

 Two plane parallel mirrors at the two ends of the active 
material play the role of resonator. If sufficient population 
inversion occurs in the active medium, then the light is ampli-
fied by the laser action. The light is reflected back and forth 
by the two mirrors and standing waves are generated. These 
stationary waves have node at each mirror. When the cavity 
resonates, the distance L between the mirrors has clearly an 
integral multiple of half-wavelengths (Fig. 7.7).

\  L = m  (   l __ 
2
   ) ,

r1

r2

r1 r2

r1

r1

r2

r1 = r2

r1 = r2

r1 = r2

r1 = r2

r2 = •

(a) Confocal

(b) Concentric

(c) Hemispherical cavity

(d) Long-radius cavity

Fig. 7.6 Four configurations of mirrors used in resonators: 
(a) Confocal. (b) Concentric. (c) Hemispherical 
cavity. (d) Long radius cavity.

Fig. 7.7 An optical resonator with two 
parallel mirrors which are L 
distance apart from each other.
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where m corresponds to the axial mode number and m = 1, 2, 3, .... If one expresses the above equation in 
terms of frequency of axial mode, one gets

  vm =   v 
__ 
l

   =   c/n
 ___ 

l
   =   c/n

 _____ 
2L/m

  

where v is the speed of light in the active medium, n is the refrective index of the medium. And c is the speed 
of light in free space.

\ the equation finally can be written as

  vm =   mc
 ____ 

2Ln
    ...(7.10)

 An infinite number of longitudinal cavity modes for oscillations are possible, each with a distinct fre-
quency vm. The frequency difference Dv between two consecutive modes is given by

  Dv = vm + 1 – vm =   c
 ____ 

2Ln
   [(m + 1) – m]

or,  Dv =   c
 ____ 

2Ln
   ... (7.11)

 One can note the important point that the resonant modes of the cavity are narrower in frequency than the 
width of a single spontaneous emission line that may engulf several resonant modes of the cavity. The narrow 
cavity modes and the broad emission line are shown in Fig. 7.8.

Fig. 7.8 Atomic emission line and cavity modes are shown for an optical resonator.

 From the broad range frequencies of an emission line, the cavity mode selects and amplifies only certain 
narrow bands. It is possible to choose, by changing the separation of the mirrors, only one mode in the band-
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width of an emission line. And this explains the property of the extreme monochromaticity of the laser beam. 
The laser cavity may be either stable or unstable. In the stable resonator, the beam is close to the axis and 
bounces back and forth between the two mirrors without much energy loss. On the other hand, in an unstable 
resonator the beam moves away from the axis at each reflection and leaves the resonator within a very short 
time.

7.8.2 Q - value or Quality Factor 

The resonator does not have sharp line resonant mode. In fact, it has a finite, though small, frequency spread 
or frequency band. The various losses which are involved with the modes in cavity are linked to this fre-
quency band. The usual losses are principally due to absorption, scattering and diffraction.

 A measure of these losses can be expressed in terms of a factor known as quality factor Q or the Q - value 
of the cavity. Q is defined as

  Q = 2p ×   
Maximum energy stored per cycle in the concerned mode 

     _______________________________________________     
 Energy dissipated per cycle in the concerned mode

  

in the mode under consideration.

 Another alternative expression for the quality factor Q is given by

  Q =   W ____ 
DW

   .... (7.12)

where D W is the line width, so that a high quality factor Q implies a low loss and narrow width of a mode.

 7.9  THRESHOLD CONDITION FOR SUSTAINING OF LASER ACTION 

When population inversion is produced in the cavity, light amplification takes place in a laser system. A laser 
consists of an active medium kept in between two mirrors which form the optical resonator of the laser sys-
tem. The light radiation which bounces back and forth within the resonator is amplified by the active medium. 
The light radiation also suffers some losses due to various reasons. These losses are to be sufficiently com-
pensated by induced transitions in the active medium for the laser action to sustain. Those losses which draw 
more attention are due to absorption by the active medium, transmission, scattering and diffraction by the 
mirrors, scattering by optical inhomogeneities of the medium, etc., for the compensation, as has been reffered 
to above, a minimum strength of population inversion is required. And this minimum population inversion 

is called threshold population inversion. The density of atoms in the higher energy state (i.e., excited state), 
when population inversion is achieved, is called population inversion density. Different materials have dif-
ferent threshold values of population inversion density as it is related to the intrinsic properties of the material 
concerned.

 7.10 TYPICAL LASERS 

Many types of lasers are nowadays being used. They can be classified broadly into four categories: (a) solid 
dielectric laser, (b) gas laser, (c) semi-conductor laser, and (d) tunable laser. They emit red, blue, blue-green 
or invisible radiation ranging from microwave to ultraviolet. Some of them produce continuous waves (cw), 
and others produce flash or pulse laser. The pulse rate is very short. It may be in the order of milliseconds, 
nanoseconds or picoseconds. We shall describe only two lasers here: (a) pulsed ruby laser, and (b) continuous 
helium-neon gas laser.
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7.10.1 Pulsed Ruby Laser 

The first successful laser built by Maiman (1960) was ruby laser. It is a solid state laser and was built by using 
a ruby crystal (i.e., a Al2O3 crystal dopped with Cr 3+ ions at a concentration of nearly 0.05% by mass).

Construction of the Lasing System 

Doped ruby crystals as stated above are used as active medium. These crystals are grown in special furnaces 
and then given a shape of a cylinder about 1 cm in diameter and 5 cm in length (Fig. 7.9). The end faces A 
and B are polished in such a manner that they become optically flat and parallel.

Capacitor
+ –

A

B

G (Glass tube) L (Xe-light)

Laser
beam

Fig. 7.9 Ruby laser system. AB is cylindrical ruby rod, A–totally reflecting face, B–partially reflecting face.

 The two ends are silvered in such a way that face A reflects light totally and B reflects partially. As the face 
A reflects light totally, it forces the radiation to proceed backward to B, which being semisilvered, allows a 
small fraction (1%) of the intense radiation to emerge out of the laser cavity as laser beam. And the major part 
of radiation (99%) is reflected back into the crystal. The cylindrical surface is also coated with silver to make 
it reflecting. A xenon flash lamp L (helical in shape) surrounds the ruby rod. The output of the lamp is rich 
in yellow-green light and it is flashed for optical pumping. A cylindrical glass tube G through which liquid 
nitrogen circulates also surrounds the rod to keep the rod cool.

Working of Ruby Laser 

When the xenon lamp L is switched on, a flash of light from it excites a large number of chromium ions from 
the ground state E1 to the wide band and excited state E3 by absorption of the light of wavelength l = 550 nm 
(Fig. 7.10); as can be seen in the diagram, the chromium ions have an intermediate metastable state E2. Soon 

Fig. 7.10 Energy level diagram of ruby laser.
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the excited chromium ions decay to the metastable state E2 through radiation less de-excitation process. And 
stay therefore relatively longer time (several milliseconds) to transit finally to the ground state by spontane-
ous emission of wavelength l = 694.3 nm. The lamp L through its flashing, thus increases the population 
in the metastable state E2 via the wide-band state of energy E3. The state E2 being metastable one, the chro-
mium ions cannot stay in this state for long time. They emit photons spontaneously when one or two photons 
are emitted spontaneously by them, the photon(s) induce stimulated emission and coherent laser beam in 
obtained through the partially silvered face B. The output beam of the ruby laser obtained is in the form of 
pulse mode. So it is not continuous laser. The construction of the ruby laser is simple and the operation is very 
easy. So it is used for many practical purposes. Hence it is called practical laser.

7.10.2 Continuous Helium–Neon Laser 

Ali Javan and his associates developed the helium – neon (He – Ne) laser in 1961. It was the first gas laser. 
He – Ne laser is one of the most popular continuous wave lasers.

Construction of the Lasing System 

It consists a discharge tube about 1m long, 4 – 6 mm in diameter and filled with a mixture of pure He – Ne gas 
in the ratio of 5:1 under the total pressure of 1 torr (Fig. 7.11). The ratio of 5:1 is rather critical. The gain of 
this laser system is proportional to the tube length. The intensity varies with diameter.

Fig. 7.11 He – Ne gas laser system.

 The relative intensity of the laser depends to a great extent on it. The other parts of the He – Ne laser 
system are one high-voltage dc power supply, two concave spherical mirrors M1 and M2, mirror M1 having 
99.5% reflectivity and mirror M2 being partially reflecting. Each of the mirrors has a radius of curvature equal 
to the length of the cavity and mounted on a rotatable support to bring them into alignment. Two optically flat 
windows W1 and W2, called Brewster’s windows, are fitted by cementing to the ends of the tube at Brewster’s 
angle q  (= tan–1 m), where m is the refractive index of the material of the window, to provide a plane polarized 
beam of light. The window W1 is fully reflecting while W2 is partially reflecting. The laser operates continu-
ously at low power (in the range between 5 and 10 W). The output lies between 1 mW and 50 mW and it gives 
laser of wavelengths 632.8 and 115.2 nm.

Working Principle of He–Ne Laser 

In order to understand the operation of He – Ne laser, let us take help of the energy-level diagram as shown 
in Fig. 7.12. Due to discharge in the mixture of the two gases, some atoms of helium are raised by electron 
collision to the metastable state F2 and F3 and the number of so excited helium atoms gradually builds up 
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as no radiative transition to the lower states is possible. Now, some of the excited states of the neon gas are 
lower than but very close to the aforesaid metastable states of the helium gas. For this reason, when atoms of 
helium gas in states F2 and F3 collide with those of neon gas in the ground state E1, exchange of energy takes 
place among them. As a result of this type of collisions between atoms of the two gases, some neon atoms 
get excited and raised to levels E4 and E6 and returning of the helium atoms to the ground state through de-
excitation occurs. The process of energy transfer has a high probability as the states F2 and F3 are unstable. 
The discharge in the cavity (i.e., the gas mixture tube) thus continuously increases the population of neon 
atoms in excited states E4 and E6.
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Fig. 7.12 He–Ne gas laser system.

 So, population inversion takes place between E4 and E3 or E6 and E5 or E6 and E3 as shown in the diagram 
by arrowheads. The various transitions between different pairs of layers lead to the emission of radiations of 
wavelength 3.39 × 103 nm, 1.15 × 103 (both lie in infrared region) and 632.8 nm. The last is the well-known 
red-light laser. The excited neon atoms then fall from the level E3 to E2 by spontaneous transition resulting in 
the emission of photons of wave-length l = 600 nm. The He – Ne laser is more directional and more mono-
chromatic than any solid laser as it is a gas laser. The solid lasers suffer from many imperfections in solids and 
the heating effect of the flash lamp used while the He – Ne laser does not suffer from such imperfection.

 7.11 APPLICATIONS OF LASER

A laser beam possesses a good number of mentionable properties which are usually not found in the light 
beams obtained from other sources. It is these properties of laser that impart special importance to the laser 
and because of these specialities of lasers, they have many applications in daily life as well as in science and 
industries. Let us discuss the applications of laser in the following four categories:
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 (a) In technical and industrial fields, the laser beam is used for cutting fabrics for clothing in one hand 
and sheets of steel on the other hand. Laser can be used to make minute holes through drilling in 
paper clips, single hair strand and hard materials including teeth and diamond. And through such 
diamond holes extremely fine wires in cables are drawn. Laser welding method can be used to join 
metallic rods by melting them. Laser heat-treatment is able to harden surfaces of engine crank-shafts 
and cylinder walls. Laser beams can be used to vaporize unwanted materials during the time of 
manufacturing of electronic circuits on the chips of semiconductor.

 (b) In the field of medicine, the laser beams are used for ‘spot welding’ of detached retina, in grafting 
cornea, in drilling holes in the bones, for destroying specific cancerous areas within tissues of the 
body in bleeding-free surgery like vocal chord operation, ulcers of stomach, stones in the kidneys, in 
cutting and sealing small blood vessels during brain operation and also while microsurgery on cells 
and chromosomes are performed.

 (c) In science and for research in science, the laser has become a very useful tool. In Raman spectro-
scopy, He – Ne lasers are fast replacing mercury arcs with the help of laser multiphoton processes 
which are being studied in determining the symmetry of wave functions in spectroscopy. Laser 
beams can be used to confirm the phenomenon of temporal coherence. Laser is also being used in 
the field of ionization and dissociation studies of gases, in kinetic studies of fast chemical reactions, 
in spectrochemical analysis of solids in conjunction with mass and emission spectrometer and in 
the investigation of energy transfer by exciting a specific vibration level and observing its decay in 
polyatomic molecules.

 (d) Other uses of lasers include – ‘inertial confinement’ of plasma and determination of its temperature; 
destruction of enemy missiles, to aim at the enemy at night; laser rifles, laser pistols and laser bombs 
are also being made; detection of earthquakes and nuclear explosions, vaporization of solid fuels 
of rockets and study of the surfaces of distant planets and satellites, accurate measurement of very 
long distances, the distance between the earth and moon has been measured to an accuracy of 15 cm. 
Laser can also be used to make three-dimensional motion pictures. Now laser is essential in com-
munication technology.

Worked-out Examples

Example 7.1  Find the difference of energy between two energy levels of neon atom if the transition 
between these levels gives a photon of wavelength 632.8 nm. Also calculate the number of photons emitted 
per second to give a power output of 2 milliwatt.

Sol.  The energy difference between the said energy levels of neon atom,

   DE = E2 – E1 = hv =   hc
 ___ 

l
  

or,   DE =   6.63 × 10–34 × 3 × 108

  __________________  
632.8 × 10–9

   = 3.143 × 10–19 9 J

or,   DE =   3.143 × 10–19

  ___________ 
1.6 × 10–19

   eV [  1 eV = 1.6 × 10–19J ]

or,   DE = 1.96 eV
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  If n be the number of photons emitted per second to give a power output of 2 mW, then

   P = n × DE

or,   n =   P ___ 
DE

   =   2 × 10–3 watt  ____________  
3.143 × 10-19 J

   = 6.363 × 1015

  So, the number of photons emitted per second is given by 6.363 × 1015.

Example 7.2  If the wavelength of radiation of ruby laser is 694.3 nm, what is the energy of a photon 

emitted?

Sol.  Given the wavelength of radiation is l = 694.3 nm.

  The energy of the radiated photon is 

   E = hv =   hc
 ___ 

l
   =   6.625 × 10–34 × 3 × 108

  ___________________  
694.3 × 10–9

   J

or,   E = 1.787 eV.

Example 7.3  In a He – Ne laser transition from E3 to E2 level gives a laser emission of wavelength 
632.8 nm. If the energy of the E2 level is 15.2 × 10-19 J, how much pumping energy is required, if there is no 
energy loss in the He – Ne laser ? [WBUT – 2008]

Sol.  Wavelength of He – Ne laser is l = 632.8 nm = 6328 × 10–10 m.

  The energy of the laser is E ¢ = hv =   hc
 ___ 

l
  

or,   E ¢ =   6.625 × 10–34 × 3 × 108

  ___________________  
6328 × 10–10

   J = 3.1 × 10–19 J

or,   E ¢ = 1.935 eV

  The energy of the level E2 is E ≤= 15.2 × 10-19 J.

  i.e., E≤ = 9.488 eV

  Now if E be the energy of the pumping source, then E = E ¢ + E ≤.

  Hence, E = 1.935 eV + 9.488 eV.

or,   E = 11.423 eV.

Example 7.4  In a lasing process, the ratio of population of two energy states E1 and E2 (E2 being a meta-
stable state) is 1:1.009 × 1025. Calculate the wavelength of the laser beam at a temperature of 320 K.

Sol.  Let N1 and N2 be the number of atoms per unit volume of the states E1 and E2 respectively, then

     
N1 ___ 
N2

   =   1 ___________ 
1.009 × 1025

   or   
N2 ___ 
N1

   = 1.009 × 10+25

  And temperature T = 320 K.

  Now, using the Boltzmann relation, we get

     
N2 ___ 
N1

   =  e – (E2 – E1)/(kT )  =  e – DE/(kT ) 

or,   ln  (   N2 ___ 
N1

   )  = –   DE
 ___ 

kT
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  Now, considering magnitude only, we get

   DE = kT ln  (   N2 ___ 
N1

   ) 
or,   DE = 1.38 × 10–23 × 320 × ln (1.009 × 1025)

or,   DE = 1.38 × 10–23 × 320 × 57.57

or,   DE = 2.54 × 10–19 J

  Now, if l be the wavelength of the laser, then

   DE =   hc
 ___ 

l
  

or,   l =   hc
 ___ 

DE
   =   

(6.63 × 10–34 J – l) ◊ (3 × 108 ms–1)
   _____________________________  

2.54 × 10-19 J
  

or,   l = 7.83 × 10–7 m

or,   l = 783 nm

Example 7.5  Two plane mirrors forming a resonant cavity in a He – Ne laser are at a distance of 0.5 m. 
Find the frequency separation between two consecutive modes in longitudinal cavity.

Sol.  The distance between the two plane mirrors L = 0.5 m. So, the difference between the frequencies of 
two consecutive modes is given by

   D v =   c
 ____ 

2L µ
  

where velocity of light c = 3 × 108 m/s

 and refractive index of the medium µ = 1

  \ D v =   3 × 108

 _________ 
2 × 0.5 × 1

   = 3 × 108 Hz

Example 7.6  A relative population (Boltzmann ratio) of 1/e is representative of the ratio of populations 
in two energy states at room temperature (T = 27°C). Determine the wavelength of the radiation emitted at 
the temperature.

Sol.  With usual meanings of the symbols, we have

     
N2 ___ 
N1

   =  e – (E2 – E1)/(kT ) 

  But, here,   
N2 ___ 
N1

   =   1 __ e  

  Hence,   1 __ e   =   1 _________ 
 e (E2 – E1)/(kT ) 

  

or,     
E2 – E1 _______ 

kT
   = 1

or,   E2 – E1 = kT fi kT = hv =   hc
 ___ 

l
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or,   l =   ch
 ___ 

kT
   =   

(3 × 108) (6.62 × 10–34)
  _____________________  

(1.38 × 10–23) (273 + 27)
  

or,   l = 4.8 × 10–5 m

Example 7.7  Calculate the probability of stimulated emission if the probability of spontaneous emission 
is 0.07 in a laser action which emits radiation of 6328 Å wavelength.

Sol.  Given A21 = 0.07 and l = 6328 Å = 6328 × 10–10m 

  We know that

     
A21 ___ 
B21

   =   8phu3

 ______ 
C3

  

  But u =   c __ 
l

  , so   
A21 ___ 
B21

   =   8ph
 ____ 

l3
  

or,   B21 =   
A21 l

3

 ______ 
8ph

   =   
0.07 × (6328 × 10–10)3

  ____________________  
8 × 3.14 × 6.625 × 10–39

  

    = 1.06 × 1012

\   the probability of stimulated emission is 1.06 × 1012

Example 7.8  A ruby laser emits a radiation of 694 nm wavelength. Calculate the coherence length, band 
width and line width if the duration of the pulses is 0.1 ns.

Sol.  Here l = 694 nm = 694 × 10–9 m.

   tc = 0.1 ns = 0.1 × 10–9 s

   The coherence length

   lc = tc × c

    = 0.1 × 10–9 × 3 × 108

    = 0.03 m

  Bandwidth Du =   1 __ 
tc

   =   1 _________ 
0.1 × 10–9

   = 1010 Hz

  Linewidth Dl =   l
2

 __ c   Du =   
(694 × 10–9)2 × 1010

  _________________  
3 × 108

  

    = 1.605 × 10–11 m

Example 7.9  Calculate the ratio of stimulated emission to spontaneous emission rate for sodium D lines 
at a temperature 300°C.

Sol.  Here T = 300 + 273 = 573 k

  and lNa–D = 589.3 nm

      = 589.3 × 10–9 nm
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  Now      Stimulated emission rate  ______________________   
Spontaneous emission rate

   =   1 ________ 
ehv/kT – 1

  

    =   1 _______ 

 e 
  hc

 ____ 
lkT

  
  – 1

  

     hc
 ____ 

lkT
   =   6.63 × 10–34 × 3 × 108

   ____________________________   
589.3 × 10–9 × 1.38 × 10–23 × 573

   = 42.6

  By neglecting 1 in the denominator, we have

   e– 42.6 = 3.15 × 10–19

  So, the ratio between stimulated emission rate to spontaneous rate is 3.15 × 10–19. The stimulated 
emission is negligibly small and hence laser action is not possible.

Part 1 : Multiple Choice Questions

 1. In He – Ne Laser, neon atoms obtain energy (WBUT 2008)

 (a) on collision with helium atoms (b) from chemical reactions

 (c) from electrical pumping (d) optical pumping   

 2. In a ruby laser, population inversion is achieved (WBUT 2007)

 (a) through optical pumping (b) through inelastic collisions

 (c) through chemical reactions (d) by applying strong electric field 

 3. Population inversion in preparing laser beam can be achieved (WBUT 2006)

 (a) when one of the excited states is less populated than the ground state

 (b) when one of the excited states is more populated than the ground state

 (c) when the population of one excited state and the ground state are equal

 (d) on the basis of none of the above conditions

 4. Emission of photons due to the transition of an electron from a higher to a lower energy state caused 
by external energy is known as

 (a) stimulated absorption   (b) amplified emission

 (c) stimulated emission   (d) spontaneous emission

 5. The population of electron in different energy states of a system in the thermal equilibrium is gov-
erned by 

 (a) Bragg’s law   (b) Einstein relations

 (c) Boltzmann distribution law (d) Wien’s displacement law

 6. The color of the laser output in case of ruby laser is

 (a) violet (b) blue  (c) red (d) green

 7. In case of laser, variation of divergence of a laser beam with distance gives us an idea about its

 (a) brightness (b) coherence (c) monochromaticity (d) directionality



Basic Engineering Physics7.22

 8. The ratio of He to Ne in a helium-neon laser is of the order of 

 (a) 1:15 (b) 1:1 (c) 1:10 (d) 5:1

 9. In the active medium of ruby laser the percentage of chromium ions in Al2O3 is

 (a) 0.5 (b) 0.05 (c) 0.005 (d) 0.0005

 10. The wavelength of He – Ne laser is

 (a) 632.8 nm (b) 600 nm (c) 532.8 nm (d) 500 nm

 11. The wavelength of ruby laser is 

 (a) 694.3 nm (b) 632.8 nm (c) 600 nm (d) 633.3 nm

 12. Coherence of light can be measured from

 (a) wavelength of the beam (b) variation of spot size in distance

 (c) brightness of the beam  (d) None of these

 13. A three-level laser system will be

 (a) always pulsed (b) either CW or pulse (c) always CW (d) None of these

 14. For a laser action to take place, the medium used must have at least

 (a) 4 energy levels (b) 2 energy levels (c) 3 energy levels (d) None of these

 15. In a gas laser, generally optical pumping is not applied because

 (a) absorption band of the medium is narrow

 (b) absorption band of the medium is broad

 (c) the process is not able to excite atoms in such a higher energy state of gaseous atom

 (d) None of these

 16. The metastable state has a mean life-time of more than

 (a) 10–3 s (b) 10–5 s (c) 10– 4 s (d) 10–2 s

 17. The ratio of Einstein’s A and B coefficient, i.e., A21/B21 (say) is proportional to

 (a) v (b) v2 (c) v3 (d) v4

Answers

 1. (a) 2. (a) 3. (b) 4. (c) 5. (c) 6. (c) 7. (d) 8. (d)

 9. (b) 10. (a) 11. (a) 12. (c) 13. (a) 14. (c) 15. (a) 16 (a)

  17 (c)

Short Questions with Answers 

 1. What are the differences between ordinary light and laser light?

  The ordinary light may be either polychromatic or monochromatic depending on the nature of sources 
which produce it while the laser light is perfectly monochromatic irrespective of the source which 
produces it. The conventional sources produce ordinary light which is basically incoherent because 
the producing sources emit light of random wavelengths with no common phase relationship. On 
the other hand, laser light is highly coherent having constant phase relationship among various rays 
produced by the laser source. Ordinary light sources emit light in all directions whereas laser sources 
emit light rays in a unique direction making it highly directional. The brightness of a laser beam is 
much more than that of the ordinary light.
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 2. What is working principle of laser?

  Refer to Section 7.5.

 3. What is stimulated emission?

  If an atom is excited, then at least one electron of the atomic shell(s) occupies higher energy level(s). 
In such a situation an incident photon having energy equal to the difference of the energies of the 
occupied higher orbit and any other lower orbit (where the number of electrons is less than the 
required number of electrons for a complete shell), may cause one electron in a higher shell to jump 
to the said lower shell and as a result of this act a photon is emitted. This kind of emission of photons 
is called stimulated emission.

 4. What are population inversion and pumping?

  Usually, due to thermal equilibrium, the higher energy levels of atoms are much less populated than 
the lower energy levels (including the ground level) since by Boltzmann law N2/N1 =  e –(E2 – E1)/(kT )  , 
i.e., N2 < N1 for E2 > E1. So, even when Bmn = Bnm; the stimulated emission is normally unlikely to 
occur. It can be initiated and continued; if only by some means a large number of atoms are made to 
attain in appropriate excited energy levels. The situation in which the number of atoms in the higher 
energy level exceeds that in the lower energy level is known as population inversion and the pro-
cess of obtaining population inversion is known as pumping. Pumping may be done in many ways. 
Optical pumping, chemical pumping, etc., are a few of the various ways of pumping to cause popula-
tion inversion.

 5. What is optical resonator? Discuss it in brief.

  For sustaining the laser oscillation, a part of the output must be fed back into the laser producing 
system (i.e., the laser cavity consisting of the active medium). Such a positive feedback is caused to 
occur by placing the active lasing medium in between two plane parallel mirrors which face each 
other. One of them is placed at one end of the active medium and the other one is placed at the other 
end of the medium. One of the mirrors is partial reflector and the other one is total reflector. The 
partial reflector allows a part of the generated laser beam to go out of the system. This arrangement 
is known as the optical resonator. This device is capable of causing a resonance between the stimulat-
ing photons and the excited atoms capable of emitting photons of same frequency. Hence the name 
optical resonator.

 6. What are the characteristic properties of a laser beam?

  Refer to Section 7.2.

 7. Describe in brief, the working principle of laser?

  Refer to Section 7.5.

 8. Discuss briefly the application of laser in the medical field?

  Refer to Section 7.11(b).

 9. Why is helium gas used in the helium-neon laser system?

  In He – Ne laser the masses of the two types of atoms are not comparable. The atoms of neon are 
much heavier than those of helium. So, it is not possible to excite the neon atoms easily efficiently 
with the help of collision with electrons generated from electric discharge in the mixture of neon 
and helium atoms. At the same time, the possibility of the transfer of energy of an electron which 
is accelerated through the collision with helium atoms is maximum because they are lighter atoms. 
There are some metastable states in helium atoms which are almost identical to the two energy states 
of the neon atoms. Therefore, at first the energy of accelerated electrons is transferred in helium 
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atoms through inelastic collisions, then that energy is transferred to the neon atom through resonance 
transfer of energy. So, the excitation is transferred to the neon atoms via the helium atoms. The He 
atoms act as carriers of excitation energy.

 10. What is resonance transfer of energy?

  If there be two atoms of different kinds with identical or almost identical energy levels, then transfer 
of energy from one atom to the other is possible when they take part in the event of collisions. This 
type of energy transfer is called resonance transfer of energy.

Part 2: Descriptive Questions

 1. Explain clearly the terms ‘absorption’ ‘spontaneous emission’ and ‘stimulated emission’

 2.  (a) Define Einstein’s A and B coefficients and deduce their mutual relation.

 (b) Show that the ratio of spontaneous to stimulated emission is proportional to the cube of the 
frequency.

 (c) Explain the construction and action of the optical resonator in a ruby laser. [WBUT – 2008]

 3. Explain the working principle of He – Ne laser with energy level diagram. [WBUT – 2007]

 4. What is the full form of laser? Describe different properties of laser. State the difference between 
laser and ordinary light.

 5. What are the different transition process involved with lasing action? Describe with energy level 
diagram, the phenomena of spontaneous emission, stimulated emission and stimulated absorption in 
a two-level system.

 6. What is population inversion in case of laser? Explain it. Obtain a raltion between Einstein’s A and B 
coefficients. What are their physical significance?

 7. What do you understand by a metastable state? What is rule of a metastable state in order to obtain 
population inversion in an active laser medium?

 8. Draw a net sketch diagram of ruby laser. Discuss the operation of a ruby laser with the help of energy 
diagram.

Part 3: Numerical Problems

 1. Calculate the ratio of stimulated and spontaneous emission rates for the wavelength l = 5893 nm at 
200ºC.

 2. The energy gap between two levels corresponds to wavelength l = 500 nm. Find the ratio of popula-
tions of the two states in thermal equilibrium at 27ºC.

 3. Find the ratio of stimulated to spontaneous emission rate at a temperature of 240ºC for sodium D 
lines.

 4. If the wavelength of the radiation of the He – Ne laser is 632.8 nm, calculate the energy of the radia-
tion.   [1.9625 eV]

 5. A normal optical source emits a radiation of wavelength 600 nm at a temperature of 900 K. Show that 
the stimulated emission in the system is negligible compared to the spontaneous emission.
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8
Holography

 8.1 INTRODUCTION 

Dennis Gabor invented holography in the year of 1948. He developed the principle of holography and then 

used it to record the hologram. For this reason, he received the Nobel prize in the year of 1971 in Physics for 

the invention of holography. The word ‘holography’ has been coined from the Greek words ‘holos’ which 

means ‘the whole’ and ‘graphos’ which means ‘to write’ therefore, the so created combined word holography 

means ‘to write wholly’ (or ‘whole writting’).

 8.2 BASIC PRINCIPLE OF HOLOGRAPHY

Holography is a method of producing three-dimensional images of objects employing the properties of coher-

ence of laser beam. In this technique, the information about the amplitude and that about the phase of the 

light reflected from an object (i.e., and encoded image of the object) is recorded on a photographic plate and 

referred to as the hologram. This hologram is subsequently decoded by a read-out light wave to produce the 

three-dimensional image which manifests a vivid realism.

 In the case of an ordinary photography the image of a three-dimensional objects is recorded on a two-

dimensional film (i.e., photographic plate). This photographic plate senses the intensity of the wave and 

records the information about the amplitude for the object under consideration. In ordinary photography, the 

information about the phase is not utilized. So it gets lost and wasted. On the other hand, in holography the 

information about the phase is successfully used along with that of the amplitude to get a vivid image. There 

are two steps involved in holography: (i) Recording of the hologram, and (ii) reproduction (or reconstruction) 

of the holographic image.

 8.3 RECORDING OF THE HOLOGRAM

The holographic method is based on the principle of interference of light and thus it requires highly coherent 

beam of light. Figure 8.1 illustrates schematically the recording technique in holography. Light coming out 

of the laser source L strikes the light beam splitter S. The splitter splits the laser beam into two components. 

The reflected beam R is incident on the object O and the transmitted beam T is incident on the photographic 

plate P. The object O reflects the beam incident on it. A part of the beam reflected and scattered by the 
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object (and denoted by Ro) is incident on the photographic plate P where the transmitted beam has also been 

incident. The transmitted beam T acts as the reference beam. The interference of the two beams incident on 

the photographic plate gives an interference pattern which is recorded on the photographic plate P. Then the 

plate P is developed. This developed photographic plate is called the hologram which contains the encoded 

image of the object in the form of the interference pattern.

L

S

T

P

R
O

R

O

Fig. 8.1 Recording of hologram: L: laser source, S: beam splitter, O: object, P: photographic plate and 
T: transmitted beam.

 8.4 RECONSTRUCTION OF THE IMAGE

The reconstruction (i.e., reproduction) of the image is schematically represented in the Fig. 8.2.

Fig. 8.2 Reconstruction (or reproduction) of the holographic image for viewing L: source of reconstruction 
wave, Wr: Reconstruction wave, O: observer, Iv: virtual image, Ir: Real image and H: Hologram

 This viewing diagram is slightly modified view of the recording diagram. The object and the light split-

ter have been removed from their respective places. So, in this case the hologram is illuminated by the laser 

beam, which is now called reconstruction wave or read-out beam. This wave interacts with the interference 

pattern recorded on the hologram and two images are formed due to diffraction of the laser beam. Out of the 
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two images, one is a virtual image and the other one is a real image. The real image is known as the pseudo-

scopic image and the virtual image is known as orthoscopic image. The virtual image appears at the original 

position of the object, and the real image is formed in the other side of the hologram. The real image can be 

photographed directly without employing a lens.

 The interference pattern on the hologram contains information of the geometric characteristics of the 

object. The virtual image, which is observed through the hologram, appears in full three-dimensional form. 

One can view the different sides of the object by moving the eye. The real image is also three-dimensional, 

but it is inverted in depth, i.e., the features of the object farther from the viewer appear closer. For this reason, 

this image is called the pseudoscopic image and it is not of much interest.

 8.5 CHARACTERISTICS OF HOLOGRAM

The unique characteristics of hologram are recorded below:

 (i) Two images can be reproduced from the hologram out of which one is real image and other one is a 

virtual image.

 (ii) The wave from each point of the object reaches all the parts of the holographic plate through scatter-

ing of light. So, a copy of the entire hologram constructed from a diffused object can be reconstructed 

by using small portion of the hologram.

 (iii) A cylindrical hologram provides a 360° view of the object.

 (iv) The holographic system must be absolutely still during the time of exposure. The exposure time is of 

the order of 5 seconds and depends on the color of the object.

 8.6 REQUIREMENT FOR AN IDEAL DISPLAY OF HOLOGRAM

To display a hologram ideally the following requirements should be fulfilled:

 (i) The light used to display the hologram should be temporally and spatially coherent.

 (ii) The resolution of the reconstructed image should be good enough.

 (iii) The reconstructed image must be free from aberration.

 (iv) The field of view of the image should be wide enough to allow a large parallax.

 (v) The film, the object and any mirror, used in producing the reference beam must be motionless with 

respect to one another during exposure.

 (vi) The background should be noise free because the background noise reduces the contrast of the 

image.

 8.7 THEORY OF HOLOGRAPHY

In a view to understand the principle of holography well, let us con-

sider a small object O as shown in the Fig. 8.3.

 The light scattered or diffracted by the object and the reference 

beam impinge on the photographic plate P and interfere. The field at 

a point Q on the plate is given by 

  E = Er + Es º(8.1)

Fig. 8.3 Hologram of a small object.
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where Er is the reference-beam field and Es is the scattered-beam field. Since the reflected wave front from 

the object O is spherical with the centre at the point O, we can write

  Es =   
As

 __ r   exp (ikr – wt) º(8.2)

where OQ = r. The field Er is that of a plane wave:

  Er = Ar exp [i(kx – wt)] º(8.3)

where x is the perpendicular distance of the object O from the photographic plate PR. The intensity I of light 

at the point Q is given by

  I = (Er + Es) (Er + Es)
* 

   = Er  E r  
*  + Es  E s  

*  +  E r  
*  Es + Er  E s  

* 

or,  I = |Ar|
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2

  +   
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 The quantity marked with asterisk indicates that it is a complex conjugate. The last two terms in the 

Eq. (8.4) can be combined to get

  I = |Ar|
2 +   |   Ar

 __ r   |  
2

  +   
C

 __ r   cos [k(r – x) + f] º(8.5)

 The presence of the cosine term shows that as r is changed, the intensity I passes through a series of 

maxima and minima. The interference of Er and Es thus generates a set of circular fringes of interference on 

the photographic plate. When developed it gives the hologram. The response of the plate being proportional 

to the intensity I, the coefficient of power transmission of the plate Tc is given by

   T  c  
2  = 1 – a  I º(8.6)

where a is a constant usually a I << 1, so that Eq. (8.6) given us 

  Tc = (1 – a I ) 
  
1
 __ 

2
  
 

or,  Tc = 1 –   
1
 __ 

2
   a I [\ a I << 1] º(8.7)

 If the hologram gets illuminated by the reference beam, the field of the transmitted wave is given by
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 The first term on the right-hand side of Eq. (8.8) represents the incident wave with its amplitude altered by 

blackening of the plate as it passes out through the photographic plate. The second term represents a diverg-

ing spherical wave emitted by the object with its amplitude changed and this wave appears to emanate from 

an image located at the original position of the object. This is the virtual image. The third term also repre-

sents a spherical wave, and this a replica of the original wave except the fact that it has a reverse of conjugate 

curvature. It converges to a point O¢ as seen in Fig. 8.4 forming a real image at this point.
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 The complete theory of holography is quite complex, but the general 

features for an object of finite size can be appreciated by an extension of 

the above done analysis for a point object.

 If the reference beam is not used in producing the hologram, then one 

can have Ar = 0 and it is clear from Eq. (8.5) that the event of blackening 

of the plate would be caused by the scattered field Es only. Thus, only 

the information about the amplitude is recorded, and the information 

about the phase is lost. The reference beam is required for the recording 

of both the amplitude and the phase, so that a complete reproduction of 

the object can be obtained.

 Because of high coherence of gas laser, these lasers are used in holography of still objects. The emitting 

power of gas lasers being low, the time of exposure for gas laser is large. For the holography of moving 

objects pulsed solid state lagers are used. Their time of exposure is as small as 1ms.

 8.8 FEATURES OF HOLOGRAPHY

 (i) The virtual image of a hologram is three-dimensional. The observer can see the details of the object 

by tilting his head. Thus, the image is more realistic.

 (ii) The damage of a portion of a convertional photographic image causes a permanent loss of informa-

tion for that part of the object. But in holography such damaged part can be reconstructed easily as 

every point on the hologram is illuminated from all parts of the object and so contains information 

on the geometrical features of the entire image.

 (iii) The capacity of a hologram to store information is very high.

 (iv) The copied hologram is the reverse of the original one.

 8.9 APPLICATIONS OF HOLOGRAPHY

The principle of holography finds its applications in many branches of science and technology for data stor-

age and processing. Some of its applications are noted below:

 (a) Storage of data Holographic data storage is a technique that can store information at a high density 

inside the crystals. The advantage of holographic data storage is that the volume of the recording 

media is used instead of just the surface of the media. If the hologram of a scene is recorded, then the 

events get frozen into the hologram and hence one can focus through the depth of the reconstructed 

image while studying the phenomenon later. The holographic storage has the potential to become the 

next generation popular storage media.

 (b) Holographic interferometry It is doubly exposed holographic technique that can be used in the 

study of the distribution of strain in an object subjected to stress. The recording plate is first partially 

exposed to the object wave and the reference wave, then the object is stressed and the recording plate 

is again exposed to the stressed object wave and reference wave. The recording plate following its 

development forms the hologram. Two object waves emerged from the hologram corresponding to 

the stressed and unstressed objects interfere and hence produce interference fringes. The shape and 

number of the fringes give the distribution of strains in the object.

 (c) Holographic scanner These are in use in the post offices, shipping firms and automated conveyer 

system to determine the three-dimensional size of the package.

Fig. 8.4 Formation of the image.
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 (d) Holographic stereogram For making holographic stereograms, photographs of objects rather than 

the real objects are used. The two dimensional photographs are recorded in the form of a composite 

hologram such that the image appears to be three dimension.

 (e) Holographic studio Holographic studios exist in several countries for displaying holographs. 

These holographic studios are equipped well for recording of a wide range of objects and composi-

tions including people and animals.

 (f) Holographic art Holographic art is often the result of collaborations between scientists and

artists. Nowadays holography is being used in industry, communication and other engineering fields. 

Another important application is use of bar code readers in shops, libraries warehouses, and so on.

Part 1: Multiple Choice Questions

 1. Dennis Gabor received Nobel Prize in Physics for discovering the principles of holography in the 

year of 

 (a) 1948   (b) 1947

 (c) 1955   (d) 1971

 2. Holography is a method in which one 

 (a) records the amplitude only

 (b) records the phase only 

 (c) not only records the amplitude but also the phase of the light wave

 (d) None of these 

 3. The reconstruction process produces

 (a) a virtual image   (b) a real image

 (c) both virtual and real image of the object (d) None of these 

 4. The virtual image is known as 

 (a) pseudoscopic image   (b) orthoscopic image

 (c) photocopy   (d) None of these

 5. The real image is known as

 (a) pseudoscopic image   (b) photocopy

 (c) orthoscopic image   (d) None of these

 6. If a hologram breaks into pieces, each piece can reproduce 

 (a) the entire image   (b) the half image

 (c) one third image   (d) one forth image

 7. In the recording of the hologram one superimposes 

 (a) object wave and reference wave (b) two object waves

 (c) two reference waves   (d) None of these
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 8. The real image formed 

 (a) at the same distance from the hologram, the scene depth is real

 (b) at the same distance from the hologram, the scene depth is inverted 

 (c) at the half distance from the hologram, the scene depth is real

 (d) None of these

 9. A cylindrical hologram provides a

 (a) 180 degree view of the object (b) 270 degree view of the object.

 (c) 360 degree view of the object (d) 90 degree view of the object 

 10. For holographic system the exposure time is of the order of

 (a) 5 seconds and depends on the colour of the object

 (b) nearly 2 seconds

 (c) 1 second

 (d) 50 seconds

Answers

 1. (d) 2. (c) 3. (c) 4. (b) 5. (a) 6. (a) 7. (a) 8. (b)  

 9. (c) 10. (a)

Short Questions with Answers

 1. Define holography and hologram.

 Ans. Holography is a technique of recording the amplitude and phase of the light waves reflected from an 

object. Thus, a three dimensional image of the object can be recorded. The recorded photograph is 

called a hologram.

 2. What are object wave and reference wave?

 Ans. The light from a laser source is split into two components. One of the component wave is directed 

towards the object is known as object wave. The other one is directed towards the photographic plate 

is known as reference wave.

 3. Why is laser needed for holography?

 Ans. The coherence length of laser is many metres. Hence holograms of larger object can be produced by 

using laser. 

 4. Name the principle that is used in the construction and reconstruction of a hologram.

 Ans. Development or construction of a hologram is based on the principle of interference of light waves. 

  Reconstruction of a hologram is based on the principle of diffraction of light waves.

 5. What are pseudoscopic and orthoscopic images?

 Ans. After reconstruction, the real image formed by hologram is known as pseudoscopic image and virtual 

image formed by hologram is known as orthoscopic image.

 6. What are hologram aberrations?

 Ans. Hologram suffer aberrations coursed by a change in the wavelength from construction to reconstruc-

tion and also by a mismatch in the reference and reconstruction waves.

 7. What are the applications of holograms?

 Ans. Refer to Article 8.6.
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Part 2: Descriptive Questions

 1. What is holography? Explain the process of recording and reconstruction of hologram.

 2. Explain the theory of holography.

 3. What are the basic principle of holography? Why laser needed for holography?

 4. Describe holography.

 5. State some of the applications of holography.

 6. Describe the basic requirements of an ideal display hologram.
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9
Quantum Physics

 9.1 INTRODUCTION

The advent of quantum mechanics caused a revolution in the world of physics in the first quarter of the 
twentieth century. In fact, the formulation of quantum mechanical theory in 1925 was the culmination of 
researches that had started in the last decade of nineteenth century and came to an end in the third decade 
of twentieth century. At the end of nineteenth century, physicists had every reason for regarding the laws of 
newtonian mechanics which governed the motion of material bodies and Maxwell’s electromagnetic theory 
as the fundamental laws of physics. And at that time, there was very little or no reason to suspect the existence 
of any limitation regarding validity of the aforesaid laws and theories which constitute the branch of physics 
that is now known as classical mechanics.

 But following the discoveries of X-rays (by Wilhelm Konrad Röntgen in 1895), radioactivity (by Antoine 
Henrri Becquerel in 1896), radioactive elements such as radium and polonium (by Pierre Curie and Marie 
Curie in 1898), Zeeman effect of splitting of the spectral lines in an intense external magnitic field (by Pieter 
Zeeman in 1896) and electron (by Joshep John Thomson in 1897) set a motion in a series of some impor-
tant and interesting experiments yielding results which could not be explained with the help of the laws of 
classical mechanics. In order to resolve the apparent paradoxes which were created by the above-mentioned 
observations and some other experimental facts, it was necessary to introduce some new ideas that were quite 
different from the concepts acquired by common sense regarding matter and energy around us and their inter-
action with each other which (the acquired concepts) were implicit in classical mechanics and had an essen-
tial role in its development. And introduction of the aforesaid new ideas caused a revolution in the field of 
physics which ultimately led to the mathematical formulation of quantum mechanics that had a spectacular as 
well as immediate success in the explanation of the experimental observation which were the consequences 
of aforesaid discoveries.

 In fact, the researches on discharge of electricity through gases paved the way to conduct experiments 
which led to the discoveries of X-ray, radioactivity, Zeeman effect, etc. These discoveries led to the discov-
ery of electron and ultimately helped us to understand the inner structure of the atoms. And hence, we got 
access to the studies of the atomic and subatomic world. And in this microscopic world, the atomic particles 
were found to have very high speed comparable to that of light. The behaviors of these particles (with so 
high speed) could not be explained with the help of the laws of classical mechanics. During the same period, 
many experiments on blackbody radiation were also performed. Physicists like Lummer, Pringsheim and few 



Basic Engineering Physics9.2

others (in 1899) made precise measurements of the intensity distribution of blackbody radiation for the entire 
range of frequencies (or wavelengths). Two physicists, Rayleigh and Jeans in 1900, tried to explain this inten-
sity distribution on the basis of electromagnetic theory of Maxwell but their attempt was partially successful. 
It was Max Planck who finally explained the said intensity distribution of blackbody radiation with the help 
of his quantum theory of radiation. It was a revolutionary concept not approved by the classical electromag-
netic theory. This quantum concept (i.e., particle nature of radiation) was used by Albert Einstein (in 1905) 
to explain the photoelectric effect. Louis Victor de Broglie (in 1924) predicted the wave nature of the moving 
microscopic particles of atoms. And this wave nature exhibited by moving particles was experimentally veri-
fied by C J Davision and L H Germer of USA (in 1927) and also by G P Thomson of UK independently (in 
1928).

 Erwin Schrödinger (in 1925) and Werner Heisenberg (in 1926) mainly built up the theoratical framework 
of quantum mechanics. Subsequently the subject of relativistic quantum mechanics was developed by Paul 
Adrien Maurice Dirac in 1928. Quantum mechanics was, thus, established as the fundamental theory of the 
phenomena which occur in the atomic and subatomic world. Though quantum mechanics is a completely new 
mathematical formulation capable of being applied in the world of microscopic domain, but it also appeared 
as generalization of classical mechanics. That is the results of quantum mechanics get reduced to those of 
classical mechanics in the limit when the speed of the particles is relatively small and it is not comparable to 
that of light in free space.

 In the phenomena of macroscopic world the speeds of the particles are comparatively small and the masses 
of the particles remain practically constant and there is no ambiguity between the nature of particles and that 
of wave. The spreading of waves along a stretched string or in the water of a still pond is well known to us. 
While such waves propagate in a medium, energy and momentum are carried from one point to another point 
along the direction of propagation of the waves. Particles and waves are separate entities in case of classical 
mechanics. Mechanical waves cause vibration of the particles of medium resulting in the transfer of energy 
through them. Light is an electromagnetic wave where periodic variation of electric and magnetic fields 
takes place and this wave also carries energy with itself. There are certain phenomena like interference, dif-
fraction and polarization which are exhibited by waves only. The electromagnetic radiations also exhibit all 
these aforesaid physical phenomena under suitable conditions. The experimental results in case of some of 
the experiments involving electromagnetic radiation, which were performed during the last decade of nine-
teenth century and the first two decades of the twentieth century, could not be explained with the help of the 
electromagnetic theory. The electromagnetic radiation, in case of these experiments, behaves as a stream of 
particles and the wave nature of them remains concealed. The electromagnetic wave theory, which explained 
well the phenomena of interference, diffraction, polarization, etc., failed to explain the phenomena of black-
body radiation, photoelectric effect, Compton effect, etc., where light behaves as a stream of particles. The 
quantum theory of light was successfully used to explain them. To appreciate the part played by different 
discoveries related to the development of quantum theory, it is necessary, from the very outset, to have a clear 
idea of the classical concepts. For this reason, we begin our studies of quantum mechanics with a brief discus-
sion of these concepts, especially blackbody radiation and Compton effect.

 9.2 BLACKBODY RADIATION

It is often seen that when some metallic bodies are heated and their temperature is raised to a certain level 
they start emitting electromagnetic (e.m.) radiation. As an example, let us consider an iron rod. If it is heated 
to a temperature of a few hundred degrees, it starts giving off e.m. radiation which is predominantly in the 



Quantum Physics 9.3

infra-red region. If the temperature is raised to about one thousand degree celsius it begins to glow with 
reddish color that means the radiation emitted by it lies in the visible red region having wavelengths shorter 
than in the previous case. And if it is heated further, it becomes white hot and the radiation emitted by it gets 
shifted towards still shorter wavelengths (blue color) in the visible spectrum of em radiation. Thus, we have 
seen in the above example that the nature of the radiation depends on the temperature of the emitting body. 
The heated bodies not only emit radiation but also absorb a part of the radiation to which they are exposed. 
In 1889 GK Kirchhoff proposed a theorem which states that the ratio of the emissive power of a body to its 
absorptive power is a constant which depends only on the temperature of the body and not on the nature of it. 
The emissive power of a body is the amount of radiant energy which is emitted by it per unit area of its 
surface normally into a unit solid angle* per unit time for a unit range of wavelength. And the absorp-
tive power of a body is the ratio of the amount of radiant energy absorbed by it to the total radiant energy 
falling on it. So, if a body is able to absorb all the radiant energy which falls on it, then the absorptive power 
of the body becomes unity. Such a body which has absorptive power of unity is called a blackbody. Then 
on the basis of Kirchhoff’s theorem as stated above, the emissive power of a blackbody is a function of its 
temperature only since its absorptive power is unity. A perfect blackbody is one which is able to absorb all 
the radiation of any wavelength completely which is incident on it. A blackbody appears black because 
no reflection or transmission of light takes place in such a body. A good absorber of any radiation is also a 
good emitter of that radiation when it is hot.

9.2.1 Construction of a BlackBody

In practice, one can realize (construct) an ideal blackbody by heating a double-walled hollow metallic enclo-
sure (called cavity) with a small orifice and a conical projection on the inner wall of it which is just opposite 
to the orifice (Fig. 9.1). The space between the two walls is evacuated to prevent the loss of heat by means of 
conduction or convection.

H

Heating coil

O

(a)

P

W

P

O

(b)

Aperture

Fig. 9.1 (a) A blackbody made of a cylindrical metallic cavity surrounded by a heating coil H. (b) The cross-
sectional view of the blackbody; O: the orifice P: the conical projection and W: the double wall.

 The inner surface of the cavity is coated with lampblack which can absorb about 98% of the incident 
radiant energy. The conical projection prevents those rays to get reflected which enter the cavity through the 
orifice normally. The radiation which enters the cavity through the orifice is incident on its blackened surface 
and gets partly absorbed and partly reflected. The component of the incident radiation which gets reflected is 
incident at another point on the inner surface of the cavity and again gets partly absorbed and partly reflected. 
This process of absorption and reflection goes on repeatedly since there is very little chance of any part of 
the said radiation comming out through the orifice again because of its smallness in size. More than 98% of 
the incident beam is absorbed at each reflection so that ultimately the entire beam of radiation, which enters 

* See Appendix A
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the cavity, is completely absorbed by it. Thus, the cavity described above has unit absorptive power and it 
behaves like a perfect blackbody.

 The inner walls of the heated cavity also emit radiation and a part of the emitted radiation can come out 
through the orifice. And this emerging radiation has the characteristics of blackbody radiation and it is inde-
pendent of the constructing material of the cavity.

9.2.2 Experimental Observation of Blackbody Radiation

By using a blackbody as described in the previous 
subsection and maintaining a constant temperature of 
it, if one performs an experiment to measure the emis-
sive power (or intensity) of the blackbody for different 
wavelengths, one will obtain the spectra as shown in 
the Fig. 9.2 for three selected temperatures T1, T2 and 
T3. For detection of the emitted radiation a bolometer 
can be used as detector and the spectra can be analyzed 
by using an infrared spectrometer. Thus the emissive 
power of the blackbody against different wavelengths 
can be determined.

 Having a close look at the figure, one can realize that 
the spectrum is a continuous curve in which emissive 
power is a function of wavelength and the wavelength 
ranges from zero to inifinity. The emissive power El initially increases with respect to wavelength l, reaching 
a maximum value at a certain value of the wavelength (lm) and then it decreases at the higher values of the 
wavelength. When temperature increases, the wavelength lm corresponding to the highest emissive power 
is found to shift towards lower values of the wavelength. The emissive power of the blackbody radiation 
increases throughout the range of wavelength (from zero to inifinity) when the temperature of the blackbody 
is increased. The emissive power El has very low values for both very short and very long wavelength. It has 
a maximum value in between at a wavelength lm. The shift in the peak of the intensity distribution curve can 
be expressed with the help of an empirical mathematical relation as given below.

  lmT = constant ...(9.1)

 The relation (9.1) is known as Wein’s displacement law (1883). The value of this constant is 2.898 × 10–3 
mK (meter-kelvin)

 One can deduce from thermodynamics a law relating the total emissive power radiated per unit area of a 
blackbody to its absolute temperature. This law is known as Stefan–Boltzmann law which can be expressed 
mathematically as follows:

  E = s T 4 ...(9.2)

where E = E(T) =  Ú 
0
   

•

  El (T) dl  and s = 5.67 × 10–8 Wm–2 K–4. And s is known as Stefan’s constant. Stefan 

suggested this law (Eq. (9.2)) from his experimental results in 1879 and Boltzmann theoretically derived it 
in 1884 from the consideration of thermodynamics. W. Wein (in 1896) from thermodynamical consideration, 
proposed one empirical relation between El and l at a constant temperature T which is given by

  El (T )dl =   A __ 
l5

   f (lT) dl ...(9.3)

Fig. 9.2 Experimental results of blackbody 
radiation for three temperatures T1, T2 
and T3 .
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where A is a constant. And f (lT ) is a function of the product of l and T, i.e., (lT). Equation (9.3) is known as 
Wein’s distribution law. Wein’s displacement law [Eq. (9.1)] and Stefan–Boltzmann law [Eq. (9.2)] follow 
simply from Wien’s distribution law [Eq. (9.3)]. Using Wein’s distribution law [Eq.(9.3)], one can explain the 
intensity distribution curve for low values of (lT). For higher values of (lT), El comes out to be smaller than 
the experimental values. So, Wein’s distribution law cannot be used, for complete interpretation of experi-
mental data. Wein’s distribution law is also known as Wien’s radiation law.

9.2.3 Theoretical Aspect of Oscillation of Charged Particle

An accelerating charged particle emits e.m. radiation. An oscillaiting charged particle accelerates. So it emits 
e.m. radiation. Any radiating system is nothing but a collection of charged particles which execute simple 
harmonic motion through oscillations of its constituent charged particles. The cavity of the blackbody as shown 
in Fig. 9.1 is full of standing waves of e.m. radiation of all wavelengths. When the cavity of the blackbody is 
heated, the atoms in the inner walls of it oscillate with various frequencies and they emit radiations of those 
frequencies. The energy is continuously exchanged randomly between any two atoms in the cavity walls 
through emission and absorption of e.m. radiation. The energy density of radiations within the cavity finally 
reaches an equilibrium condition at a certain constant temperature T. If the temperature increased, then new 
modes of stationary waves are generated and also the amplitudes of the existing modes increase. The energy 
density of radiation uv at frequency v increases until a new equilibrium state is reached.

 In order to calculate the density of the radiant energy uv, i.e., the amount of energy per unit volume, corre-
sponding to radiation with frequencies lying between v and v – dv (or l and l + dl) one can use the following 
formula:

  uv dv = nv ea dv ...(9.4)

where, nv dv is the number of oscillating atoms per unit volume which contribute to the radiations of frequen-
cies lying between v and v – dv (or l and l + dl) and ea is the average energy of an oscillating atom at an 
absolute temperature T of the blackbody. Having calculated the number of modes of e.m. stationary waves in 
a three dimensional box, one can express nv dv as follows:

  nv dv =   8p
 ___ 

c3
   v2 dv ...(9.5)

where the velocity of light in free space c = 3 × 108 m/s.

 Having combined Eqs. (9.4) and (9.5), one gets

  uv dv =   8p
 ___ 

c3
   v2 ea dv ...(9.6)

 Now, one can define a quantity ul dl as the energy density of radiations having wavelengths lying between 
l and l + dl. Considering the relation between l and v, one can get

  c = vl

or,  v =   c __ 
l

  

or,  dv = –   c __ 
l2

   dl

 Now, by using these relations  ( i.e., c = vl and dv = –   c __ 
l2

   dl )  in Eq. (9.6), one can get
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  ul dl =   8p
 ___ 

l4
   ea dl ...(9.7)

[Since for a particular state of the system the energy density can be denoted by either uv or ul and dl = – dv 
because while l increases, v decrases. The range for dl is between l and l + dl while the same range for dv 
is between v and v – dv, hence ul dl = – uv dv]

 According to the definition of uv dv or ul dl, dv or dl represents infinitesimal change in v or l respectively 
and thus dv or dl denotes the range within which we are considering the variable uv or ul.

 One measures the intensity of emitted radiation (El) in any experiment on blackbody radiation. The rela-
tion between ul and El is given by

  El =   c __ 
4
   ul ...(9.8)

 Now, making use of Eqs. (9.7) and (9.8) one can write the following equation:

  El =   2p c
 ____ 

l4
   ea ...(9.9)

 This equation [i.e., Eq. (9.9)] can be used for determination of the expression of intensity.

9.2.4 Rayleigh–Jeans Formula of Radiation

Baron Rayleigh (popularly known as Lord Rayleigh) and J.H. Jeans attempted to derive an expression to 
express El by making use of Eq. (9.9). They calculated the average energy ea of an oscillator on the basis of 
the equipartition theorem of energy. According to the equipartition theorem, the average energy per degree of 

freedom of an entity (e.g., molecules of gas, harmonic oscillator, etc.) is given by   1 __ 
2
   kT where k is Boltzmann’s 

constant and T is the absolute temperature of the concerned system which contains the entity. An e.m. stand-
ing wave in the cavity of the blackbody originates in an atomic oscillator in the wall of the cavity. As it is a 
harmonic oscillator, it has two degrees of freedom, one for its kinetic energy and the other for its potential 
energy. Thus, in thermal equilibrium at an absolute temperature T, the mean energy of each oscillator is given 
by 

  ea = kT ...(9.10)

where k = 1.38 × 10–23 Joule/K.

 Now, putting the value of ea from Eq. (9.10), in Eq. (9.7) and Eq. (9.9), one can get the following two 
equations:

  ul dl =   8p
 ___ 

l4
   kT dl ...(9.11)

and El =   2p c
 ____ 

l4
   kT ...(9.12)

 The Eq. (9.11) is known as Rayleigh–Jeans formula (i.e., law) of radiation and Eq. (9.12) is a modified 

form of it, expressed in terms of intensity. Equation (9.12), i.e., El =   2p c
 ____ 

l4
   kT, agrees with the results obtained 

from experiments in the long wavelength region of the em spectrum. But it fails completely to talley with the 
experimental results at the shorter wavelength region.
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Ultraviolet Catastrophe of Raleigh–Jeans Formula or Jeans’ Paradox

Let us consider the modified form of the Rayleign–
Jeans’ formula given by Eq. (9.12). If one puts l = 0 
in Eq. (9.12), one gets El = μ, i.e., when l Æ 0, El 
Æ μ. But experimentally one gets El = 0 for l = 0, 
i.e., El Æ 0 when l Æ 0 (Fig. 9.3).

 This discrepancy between Rayleight–Jeans’ for-
mula and the experimental results in the shorter wave-
lengths region is called ultraviolet catastrophe or 
Jeans’ paradox. The aforesaid discrepancy between 
experimental results and theoretical prediction is in 
fact a failure of the equipartition theorem that is used 
in the derivation stated above. It is an indication of 
the limitation of classical mechanics which is based 
on the equipartition theorem.

9.2.5 Planck’s Radiation Formula and his Quantum Hypothesis

Max Planck of Germany thought that the failure of Rayleigh–Jeans law may be associated with either equi-
partition theorem or classical electromagnetic theory or both of them. In 1900, he examined the entire situa-
tion critically and came forward with a bold new postulate regarding the nature of the linear harmonic oscil-
lators which remain in a state of equilibrium with the radiant energy within the cavity of the blackbody. He 
stated that an oscillator having given frequency can have energies which are discrete, i.e., the energies can 
be expressed as an integral multiple of a finite quantum of energy eo = hv where h is Planck’s constant and 
v is the frequency of the oscillator. Thus, the energy of the oscillator can assume such values only which is 
given by,

  e = neo = nhv

where n is an integer including zero. This statement is 
known as Planck’s quantum hypothesis. Obviously the 
energy of the lowest state (i.e., the ground state) of the 
oscillator will be zero.

 It was also assumed by Planck that the change in the 
amount of energy of the oscillator due to absorption or 
emission of radiant energy can also take place by a discre-
ate amount hv. He calculated the value of the constant h by 
fitting his theory to the experimental data (Fig. 9.3).

 The value of the Planck’s constant is given by

  h = 6.626 × 10–34 joules-second.

 It is a universal constant and it has crucial role to play in 
all quantum phenomena.

 Since according to Max Planck, the change in the energy of an oscillator can only take place in dis-
crete form, the amount of energy emitted by the oscillator or absorbed by it in a single step of change is 
called a photon and its value will be hv which is equal to the loss of energy in case of emission and gain 
of energy in case of absorption.

E.C
.

R.J.L.

Tc

El

lm l

Fig. 9.3 Variation of intensity of blackbody 
radiation against wavelength  at constant 
temperature Tc  EC: Experimental curve 
and RJL: the curve on the basis of Rayleigh-
Jeans’ law.
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 No emission of energy from the oscillator will take place unless the change in energy of the oscillator 
DE = – (Ef – Ei) = hv where hv is the energy carried by the single emitted photon.

 Similarly, no absorption will take place unless the energy of the absorbed photon hv = Ef – Ei = DE.

 According to the postulates of Planck, an oscillator can exist only in a set of states with discrete energies 
given by {0, hv, 2hv, 3hv, ...., nhv} (Fig. 9.4)

 Here Ei and Ef can represent any of the values of the set of discrete energies of the oscillators given by,

{0, hv, 2hv, 3hv, ..., nhv}

 The number of oscillators in an energy level ev (= nhv) is always determined by the Maxwell–Boltzmann’s 
distribution function as follows:

  Nn = No exp (– ev/(kT))

or,  Nn = No exp (– nhv/(kT))

 Nn = No for n = 0, i.e., the number oscillators in the ground state is given by No. The number of oscillators 
in the nth state is Nn and it decreases exponentially with increasing energy ev of the state.

 Let us first derive an expression for the average energy ea of the oscillators on the basis of the new ideas as 
stated above and given by Max Planck. Since the energies of the oscillators can assume only discrete values, 
accordingly we have to replace integral symbols in the expression by summation symbols over all possible 
oscillar states in order to determine the average energy ea.

 Now, we can express ea as follows:

  ea =   
 S 
n = 0

  
•

   Nn en 
 _______ 

 S 
n = 0

  
•

   Nn 
   =   

 S 
n = 0

  
•

   No en exp (– en/(kT)) 
  ___________________  

 S 
n = 0

  
•

   No exp  (   – en
 ____ 

kT
   )  

  

or,  ea =   
 S 
n = 0

  
•

   nhv. exp (– nhv/(kT)) 
  ____________________  

 S 
n = 0

  
•

   exp (– nhv/(kT)) 
  

or,  ea =   
hvx [1 + 2x + 3x2 + 4x3 + ... + •]

   ___________________________   
[1 + x + x2 + ... + •]

  

where we have replaced exp (–hv/kT) by x. The sums in both the numerator and the denominator of the above 
expression can easily be evaluated. And on calculation of the sums as mentioned above, we obtain

  ea = hvx   
(1 – x)–2

 _______ 
(1 – x)–1

   =   hvx
 _____ 

1 – x
   =   hv

 _____ 
  1 __ x   – 1

  

 Hence, we can write

  ea =   hv
 ___________ 

exp  (   hv
 ___ 

kT
   )  – 1

   ...(9.13)

 One can easily show that if hv << kT, then the value of ea reduces to the classical limit kT. This obviously 
corresponds to the case of continuous variation of the oscillator energy. Equation (9.13) along with Eq. (9.7) 
gives Planck’s radiation formula as follows:
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  ul dl =   8p
 ___ 

l4
   ea dl

or,  ul dl =   8p
 ___ 

l4
    (   hv

 ___________ 
exp  (   hv

 ___ 
kT

   )  – 1
   )  dl

or,  ul dl =   8p
 ___ 

l4
    (   h ×   c __ 

l
  
 ____________  

exp  (   hc
 ____ 

l kT
   )  – 1

   )  dl [  c = vl]

or,  ul dl =   8p hc
 _____ 

l5
   ◊   1 ____________  

exp  (   hc
 ____ 

l kT
   )  – 1

   dl ...(9.14)

 Equation (9.14) is known as Planck’s radiation formula (i.e., law) for the intensity distribution of 
blackbody radiation. It agrees very well with the experimental results, both for the long and the short wave-
length ends of the energy spectrum.

 Let us discuss two special cases of Planck’s radiation law wherein the wavelength assumes two extreme 
values given by l = 0 and l = •. 

Case 1 When l Æ •,   hc
 ____ 

l kT
   Æ 0. Equation (9.14) can be written as

  ul dl =   8p hc
 _____ 

l5
   ◊   1  ______________________   

1 +   hc
 ____ 

l kT
   +   (   hc

 ____ 
l kT

   )  2  + ... – 1
   dl

 Now, we can neglect the higher powers of  (   hc
 ____ 

l kT
   )  as   hc

 ____ 
l kT

   Æ 0. So the above equation will take the follow-

ing form:

  ul dl =   8p
 ___ 

l4
   kT dl

or,  ul =   8p
 ___ 

l4
   kT

or,  El =   c __ 
4
   ul =   c __ 

4
   ×   8p

 ___ 
l4

   kT

i.e., El =   2p c
 ____ 

l4
   kT

 This is same as the expression obtained from Rayleigh–Jeans’ theory [vide Eq. (9.12)].

Case 2 When l Æ 0, exp  (   hc
 ____ 

l kT
   )  >> 1.

 Hence, from Eq. (9.14), we can obtain

  ul dl =   8p hc
 _____ 

l5
   exp  ( –   hc

 ____ 
l kT

   )  dl
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or,  El =   c __ 
4
   ul =   c __ 

4
   ×   8p hc

 _____ 
l5

   exp  ( –   hc
 ____ 

l kT
   ) 

or,  El =   2p hc2

 ______ 
l5

   exp  ( –   hc
 ____ 

l kT
   ) 

 This is identical to the Eq. (9.3) which is the Wein’s empirical formula for intensity distribution of radia-
tion and f (lT) is an exponential function.

 Thus, it has been seen that in the limiting cases of extremely low and high wavelengths, Planck’s radiation 
law reduces well to Rayleigh–Jeans law and Wein’s distribution law (also known as Wein’s radiation law) 
respectively.

9.2.6 Deductions from Planck’s Radiation Formula:

(a) Wien’s displacement law Planck’s radiation formula is given by

  ul dl =   8p hc
 _____ 

l5
     1 ____________  

exp  (   hc
 ____ 

l kT
   )  – 1

   dl

or,  El =   c __ 
4
   ul =   2p hc2

 ______ 
l5

     1 ____________  
exp  (   hc

 ____ 
l kT

   )  – 1
  

or,  El =   2p hc2

 ______ z  

where, z = l5  { exp  (   hc
 ____ 

l kT
   )  – 1 } 

 Now, z will be minimum if   
dz

 ___ 
dl

   = 0

or, if   
dz

 ___ 
dl

   = 5 l4  { exp  (   hc
 ____ 

l kT
   )  – 1 }  – (l5)   hc

 _____ 
l2 kT

   exp  (   hc
 ____ 

l kT
   )  = 0

or, if (5l)  { exp  (   hc
 ____ 

l kT
   )  – 1 }  =   hc

 ___ 
kT

   exp  (   hc
 ____ 

l kT
   ) 

or, if 1 – exp  ( –   hc
 ____ 

l kT
   )  =   hc

 _____ 
5l kT

  

or, if 1 – exp (–x) =   x __ 
5
   where x =   hc

 ____ 
l kT

  

 Now, if we denote the value of l for which the value of the function z becomes minimum by lm, then we 
can arrange the condition for minimum value of z as follows:

 The function z will be minimum if {1 – exp (–x)} =   x __ 
5
   when x =   hc

 _____ 
lmkT

  

 The equation

  1 – exp (–x) =   x __ 
5
    ...(9.15)
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is a transcendental equation which cannot be solved analytically. One can solve it easily by using the graphi-
cal method.

 If one puts

  y = 1 – exp (–x) and y =   x __ 
5
  

 Then the point of intersection of the two graphs corresponding to the above two equations gives the solu-
tion of Eq. (9.15). And the solution turns to be x = 4.956 (Fig. 9.5). One can easily verify correctness of this 
solution by putting this value of x in Eq. (9.15).

 We thus can have the value of the product (lmT) as 
follows:

  lmT =   hc
 ___ 

kx
    [  x =   hc

 _____ 
lm kT

   ] 
or,  lmT =   hc

 _______ 
4.965 k

   [Putting x = 4.965]

or,  lmT = 0.29 × 10–2 m

(Putting values of h, c and k)

or,  lmT = constant = c ¢ (say).

or,  lmT = c ¢ ...(9.16)

 The Eq. (9.16) is Wien’s displacement law.

(b) Stefan–Boltzmann law The total energy density u of the radiation is given by

  u =  Ú 
0
   

•

   uv dv  =   8p h
 ____ 

c3
    Ú 

0
   

•

    v3 dv
 ___________ 

exp  (   hv
 ___ 

kT
   )  – 1

    ...(9.17)

 [ by using Eq. (9.14) and l =   c __ v   ] 
 If one substitutes x =   hv

 ___ 
kT

  , one can have dx = h dv/(kT), so that

  u =   8p h
 ____ 

c3
     (   kT

 ___ 
h
   )  4   Ú 

0
   

•

    x3 dx
 _________ 

exp(x) – 1
   

 Now, to evaluate the above definite integral (on the right-hand side of the above equation) having lower 
limit 0 and upper limit •, one can note that

   Ú 
0
   

•

    x3 dx
 _________ 

exp(x) – 1
    =  Ú 

0
   

•

  x3 {exp (–x) + exp (–2x) + exp (–3x) + .... } dx 

   =  S 
p
   

 

    Ú 
0
   

•

  x3 ◊ exp (–px) dx =  S 
p
   

 

     3! __ 
p4

     

since  Ú 
0
   

•

  xn exp (–px) dx  =   n! __ 
pn  

Fig. 9.5 Graphical solution of the equations
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x
 

__ 
5
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 Also  S 
p
   

 

     1 __ 
p4

    =   p
4

 ___ 
90

  , so that

one gets

  u =   8p k4 T 4 _______ 
c3h3

     p 4 ___ 
15

   = aT 4

i.e., u = aT4 ...(9.18)

where a =   8p 5k 4 ______ 
15 c3h3

   = constant.

 Equation (9.18) can be used to get an expression between intensity E and absolute temperature T as 
follows:

  E =   4 __ c   u  [  E =  S 
l

   
 

   El  =  S 
l

   
 

     4 __ c   ul =   4 __ c   u  ] 
or,  E =   c __ 

4
   aT4 =   ca

 ___ 
4
   T4

or,  E = s T 4 ...(9.19)

where the Stefan’s constant s is given by 

  s =   ca
 ___ 

4
   =   2p 5 ____ 

15
     k4

 ____ 
c2h3

   = 5.67 Wm–2 K–4

 Equation (9.19) is Stefan’s law.

9.2.7 Einstein’s Concept Regarding Blackbody Radiation

Planck’s radiation formula can be derived alternatively on the basis of a technique based on quantum statistics. 
For detailed discussion of the technique, one can refer to any text book on statistical mechanics. According 
to Planck’s quantum hypothesis, the oscillators emitting em radiations have energies given by the relation 
e = neo = nhv (n = 0, 1, 2, 3, 4, ....). And according to Einstein’s assumption, the e.m. field itself is quantized 
and light consists of energy packets or particles, known as photons, each of which travels with a velocity of 
c = 3 × 108 m/s in free space. The energy carried by each photon is given by

  E = hv ...(9.20)

or,  E =   hc
 ___ 

l
   ...(9.21)

 Thus, one can consider the blackbody radiation as a photon gas in thermal equilibrium with the atoms in 
the walls of the blackbody cavity. And using this idea, one can derive Planck’s radiation formula with the help 
of the techniques of qunatum statistical mechanics.

 9.3 RELATIVISTIC PROPERTIES OF PARTICLES WITH HIGH SPEED 
COMPARABLE TO THAT OF LIGHT

If a particle with rest mass m0 is moving with a velocity v which is comparable to that of light in free space, 
c, then the mass of the particle will no longer be constant; in fact, it will vary following the formula given 
below:
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  m =   
m0 _______ 

 ÷ 
______

 1 –   v
2

 __ 
c2

    

   ...(9.22)

where m is the mass of the particle while it moves with speed v which is comparable with c.

 According to Einstein’s special theory of relativity the mass of a particle can be converted into equivalent 
energy which is given by the following equation:

  DE = Dmc2 (fi E = mc2) ...(9.23)

 This equation is known as mass-energy equivaence relation.
 By using the concepts of special theory of relativity, one can derive a relation between rest mass m0 of a 
body and its momentum as given below:

  E2 = p2c2 + m2c4

  E =  ÷ 
__________

 p2c2 + m2c4   ...(9.24)

 Interested readers may refer to Appendix-C (Relativistic Concept) for the derivation of Eqs. (9.22), (9.23) 
and (9.24).

 9.4 COMPTON EFFECT

The picture of Max Planck and Albert Einstein regarding individual energy packages (i.e., light quanta) 
proves only that the exchange of energy between atoms and light beams takes place by quanta. But there 
was no conclusive experimental evidence available in support of particle nature of light photons till 1921. In 
the year of 1922, Arthur Holly Compton of USA discovered an effect which was later named after him and 
this discovery made one experimental evidence available in support of corpuscular behavior of light 
photons with only one exception that photons have restmass equal to zero. This is because light photons 
never remain at rest. Compton liked to visualize the collisions between photons and electrons as similar to 
those between two ivory balls on a billiard table. And for such scattering to happen, the electron should be a 
free electron. But this is almost impossible in case of an experimental arrangement.

 AH Compton knew the fact that the binding energy of the electrons of outermost shell of an atom is com-
parable in magnitude to the energy of photons of visible light which ranges from 400 nm to 700 nm. In order 
to make the impact between the light photon and the electron overpoweringly strong (so that the electron can 
be considered as almost free), he thus selected for his experiments high-frequency X-rays, which are energy-
rich photons having much more energy. He found (through his experiments with X-rays) that the scattered 
X-ray emerged with a somewhat longer wavelength (or shorter frequency) than that of incident X-rays. This 
change in the wavelength of the colliding photon is called Compton shift and the phenomenon of wave-
length shift of a photon during the collision of the same with a matter particle is called Compton effect. 
On the basis of electromagnetic wave theory this phenomenon cannot be explained because according to this 
theory a wave could only shake the electron in the atoms of the target with a frequency equal to that of the 
incident wave but it cannot change its wavelength.

9.4.1 Derivation of Compton Formula

The result of the said Compton effect, however, could be explained at once if, (by taking the corpuscular point 
of view into consideration), one regards the process as one elastic collision of two particles, the electron and 
a X-ray photon as shown in Fig. 9.6.
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 The calculations are made on the basis of the laws of conservation of momentum and energy. The energy 
possessed by the light photon before collision is hv and the momentum possessed by it is hv/c. When the light 
photon of energy hv strikes the electron at rest, it imparts kinetic energy to the electron and therefore itself 
looses some energy. The scattered photon possesses less amount of energy hv ¢ and momentum hv ¢/c. For 
the sake of simplicity, it was assumed that the electron is at rest. So in such a case its energy is the rest mass 
energy, moc

2, while its momentum is zero. If v be the velocity of the electron after collision, then its mass m 
at this speed v, is given by Einstein’s formula, i.e., by the following equation:

  m =   
mo
 _______ 

 ÷ 
______

 1 –   v
2

 __ 
c2

    

   ...(9.25)

 Before the collision the energy of the electron is moc
2 and after the collision its energy is mc2. So its kinetic 

energy (Te) after the collision is given by

  Te = mc2 – moc
2 =   

moc
2

 _______ 

 ÷ 
______

 1 –   v
2

 __ 
c2

    

   – moc
2

or,  Te = (m – mo) c
2 = moc

2 (    1 _______ 

 ÷ 
______

 1 –   v
2

 __ 
c2

    

   – 1 ) 
or,  Te = (m – mo) c

2 = moc
2  (   1 _______ 

 ÷ 
______

 1 – b 2  
   – 1 )  ...(9.26)

where b =   v 
__ c  

 As can be seen in the Fig. 9.6, q is the angle of deviation of the photon, and f is angle of recoil of the 
electron following the collision.

 By using the law of conservation of energy, we can write 

  hv + moc
2 = hv ¢ + mc2 ...(9.27)
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2
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Fig. 9.6 Compton effect scattering of an electron due to collision with a photon.
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 Again by using the law of conservation of linear momentum and also using the fact that its component 
along any given direction is conserved, we can write the following two equations:

    hv
 ___ c   =   hv ¢

 ___ c   cos q + mv cos f 

and 0 =   hv ¢
 ___ c   sin q – mv sin f

 These two equations can be rewritten as follows.

    hv
 ___ c   =   hv ¢

 ___ c   cos q +   
mo b c cos f

 __________ 
 ÷ 

______

 1 – b 2  
   ...(9.28)

and 0 =   hv ¢
 ___ c   sin q –   

mo b c
 _______ 

 ÷ 
______

 1 – b 2  
   sin f ...(9.29)

 [  b =   v 
__ c   fi v = b c ] 

 Now, Eq. (9.28) can be rewritten as

    
mo b c

 _______ 
 ÷ 

______

 1 – b 2  
   cos f =   hv

 ___ c   –   hv ¢
 ___ c   cos q ...(9.30)

and Eq. (9.29) can be rewritten as

    
mo b c

 _______ 
 ÷ 

______

 1 – b 2  
   sin f =   hv ¢

 ___ c   sin q ...(9.31)

 Squaring and adding Eq. (9.30) and Eq. (9.31), we get

    
mo

2 b 2c2

 _______ 
(1 – b 2)

   =   (   hv
 ___ c   )  2  +   (   hv ¢

 ___ c   )  2  –   2h2 vv ¢
 ______ 

c2
   cos2 q ...(9.32)

 Equation (9.27) can be rearranged as 

  mc2 = hv – hv ¢ + moc
2

or,    
moc

2

 _______ 
 ÷ 

______

 1 – b 2  
   = hv – hv ¢ + moc

2

 Now by squaring both sides, we can write

    
mo

2 c4

 _______ 
(1 – b 2)

   = (hv – hv ¢ + moc
2)2

or,    
mo

2 c2

 _______ 
(1 – b 2)

   =   (   hv
 ___ c   –   hv ¢

 ___ c   + moc )  2 

or,    
mo

2 c2

 _______ 
(1 – b 2)

   =   (   hv
 ___ c   )  2  +   (   hv ¢

 ___ c   )  2  –   2h2 vv ¢
 ______ 

c2
   + mo

2 c2 + 2(moh) (v – v ¢) ...(9.33)
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 Now subtracting Eq. (9.32) from Eq. (9.33), we obtain

    
mo c

2

 _______ 
(1 – b 2)

   × (1 – b 2) = mo
2 c2 –   2h2 vv ¢

 ______ 
c2

   (1 – cos q) + 2 moh (v – v ¢)

or,  2moh (v – v ¢) =   2h2 vv ¢
 ______ 

c2
   (1 – cos q)

or,  mohc  (   v – v ¢
 _____ 

vv ¢
   )  =   h

2

 __ c   (1 – cos q)

or,  c  (   1 __ 
v ¢

   –   1 __ v   )  =   h
 ____ moc

   (1 – cos q)

or,    c __ 
v ¢

   –   c __ v   =   h
 ____ moc

   (1 – cos q)

or  l¢ – l =   h
 ____ moc

   (1 – cos q) [  vl = c]

or,  Dl =   h
 ____ moc

   (1 – cos q), where Dl = l¢ – l

or,  Dl = lc (1 – cos q),  [ Putting lc =   l
 ____ moc
   ] 

or,  Dl = 2 lc sin2   q __ 
2
   ...(9.34)

where Compton wavelength,

  lc =   h
 ____ moc

   = 2.42 × 10–3 nm.

 Equation (9.34) is known as Compton formula for the change of wavelength of the photon due to the 

scattering process. The parameter lc  ( =   h
 ____ moc

   )  is called the Compton wavelength which is a universal 

constant; l and l¢ are respectively the wavelengths of the incident and scattered photons. Equation (9.34) 
expresses the wavelength shift due to Compton scattering in terms of Compton wavelength lc and scattering 
angle of the photon q. The wavelength shift is also known as Compton shift and it is independent of the 
wavelength of incident radiation. It is also independent of the scattering material. For a scattering angle 
of p/2,

  Dl = 2lc sin2   p __ 
4
   = lc

 The above results were verified experimentally by Compton himself by using X-rays of different wave-
lengths. Gamma radiations (g - rays) also exhibit Compton effect.

9.4.2 Derivation of the Angle of Recoil of the Electron

The kinetic energy of the recoiled electron Te can easily be calculated. 

 Now, dividing Eq. (9.31) by Eq. (9.30), we get
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  tan f =   v ¢ sin q
 __________ 

v – v ¢ cos q
   =   sin q

 _________ 
  v __ 
v ¢

   – cos q
   ...(9.35)

 In Eq. (9.34), Dl is expressed as

  Dl = 2lc sin2   q __ 
2
  

or,  l¢ – l = 2lc sin2   q __ 
2
  

or,    c __ 
v ¢

   –   c __ v   =   2h
 ___ mc   sin2   q __ 

2
  

or,    1 __ 
v ¢

   –   1 __ v   =   2h
 _____ 

mo c
2
   sin   q __ 

2
  

 Now, putting a = hv/(mo c
2) or   a __ v   = h/(mo c

2) in the above equation, we get

    1 __ 
v ¢

   –   1 __ v   =   2a
 ___ v   sin2   q __ 

2
  

or,    1 __ 
v ¢

   =   1 __ v   +   2a
 ___ v   sin2   q __ 

2
  

or,    1 __ 
v ¢

   =   1 __ v    ( 1 + 2a sin2   q __ 
2
   ) 

or,  v ¢ =   v
 ___________  

1 + 2a sin2   q __ 
2
  
   ...(9.36)

 Now, substituting the value of v ¢ from Eq. (9.36) in the Eq. (9.35), we get

  tan f =   sin q
 __________________  

1 + 2a sin2   q __ 
2
   – cos q

  

or,  tan f =   
2 sin   q __ 

2
   cos   q __ 

2
  
  ___________________  

(1 – cos q) + 2a sin2   q __ 
2
  
  

or,  tan f =   
2 sin   q __ 

2
   cos   q __ 

2
  
  _________________  

2sin2   q __ 
2
   + 2 a sin2   q __ 

2
  
  

or,  tan f =   
cos   q __ 

2
  
 ___________ 

sin   q __ 
2
   (1 + a)
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or,  cot f = (1 + a) tan   q __ 
2
   ...(9.37)

9.4.3 Derivation of Kinetic Energy of the Electron

Equation (9.37) gives the relationship between the angle of scattering of the photon (q ) and the angle of recoil 
of the electron (f). So by detecting the angle of scattering of the photon, one can calculate the angle of recoil 
of the electron.

 The kinetic energy of the recoiled electron can be calculated as follows.

  Te = mc2 – mo c
2 = hv– hv ¢

or,  Te = h  [ v –   v
 ___________  

1 + 2a sin2   q __ 
2
  
   ] , using Eq. (9.36)

or,  Te = hv  [ 1 –   1 ___________  
1 + 2a sin2   q __ 

2
  
   ] 

or,  Te = hv .   
a (1 – cos q)

  ______________  
1 + a (1 – cos q)

   ...(9.38)

 So, if one knows the frequency of the incident photon and angle of deviation of scattered photon, then one 
can use Eq. (9.38) to calculate the kinetic energy of the recoiled electron.

9.4.4 Experimental Set-up for Study of Compton Effect

In Fig. 9.7, a typical experimental set up for the study of 
Compton effect is shown.

 In the X-ray generating tube T is a molybdenum target. The 
monochromatic ka radiation from the target T is incident on the 
carbon scatterer S. The beam of X-ray is scattered through an 
angle q and then passes through the collimator C . Ultimately 
the scattered beam falls on a crystal Cr or in a Bragg spectrome-
ter. The X-rays are diffracted by Cr and then enter the detector D 
which is basically an ionization chamber. The detector D mea-
sures the intensity of the diffracted beam. The X-rays interact 
with the loosely bound electrons of the carbon scatterer S and 
get deviated through an angle q (see Fig. 9.6) and the electrons 
get recoiled through angle f (not shown in Fig. 9.7). At the Bragg spectrometer Cr , the X-rays get diffracted 
through various angles depending on the order of diffraction. The angle d is one such diffraction angle. By 
measuring the angles of diffraction at which the maxima of intensity are observed, one can determine the 
wavelength of the X-rays scattered by S at a given angle of diffracton d from Bragg’s law given by

  nl = 2 d sin d ...(9.39)

 For the derivation of Eq. (9.39), the reader is referred to Chapter 10. The intensity of diffracted X-rays 
were measured as a function of wavelength at different angle of deviation q (see Fig. 9.6). For each angle of 
deviation q (other than q = 0°) two peaks appear corresponding to the deviated X-ray photons with two dif-
ferent wavelengths. The intensity I versus wavelength l curves are shown for different angles of deviation in 
Fig. 9.8.

D

d

Cr

C

q

S

T

X-ray tube

Fig. 9.7 Experimental set-up for the study 
of Compton effect.
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Fig. 9.8 Compton shift ( ) at four angles of 
scattering.

 The first peak represents the wavelength of the 
incident beam and the second one represents a wave-
length which is greater than the incident wavelength. 
The difference in the two wavelengths is greater for 
a greater angle q.

 At q = 90°, one of the peaks was found to 
have wavelength of molybdenum ka X-rays 
(i.e., 7.08 × 10–2 nm) while the other had the wave-
length of 7.316 × 10–2 nm. The wavelength differ-
ence 0.236 × 10–2 nm between the two wavelengths 
agrees very well with the value of Dl as expected 
from the Compton equation (i.e., Eq. (9.34)) for q = 
90° (Dl = 0.236 × 10–2 nm).

 The wavelength difference was calculated by 
him having used monochromatic X-rays of different 
wavelengths. And Dl was found to possess the same 
value in all cases.

 Results of observation at other angles of devia-
tion had also confirmed the Compton’s theoretical 
predictions.

 One can note here that the presence of the peak at 
longer wavelength (7.316 × 10–2 nm for q = 90°) is due to Compton scattering from the electron that may be 
considered free as its energy of binding with the atom is small enough as compared to that of the X-ray photon 
which is hv. On the other hand, the presence of the other peak at the wavelength of the incident X-ray is due 
to scattering from one bound electron in which case the recoiled momentum is taken up by the entire atomic 
mass. As the mass of the atom is much heavier as compared to that of the electron, a negligible wavelength 

shift is produced in this case  ( because Dl = (2h/(mo¢ c
2)) sin2   q __ 

2
   and m ¢o is the rest mass of the atom ) . We 

get conclusive evidence in support of the particle character of electromagnetic radiation from the Compton 

effect. On analysis of Eq. (9.34), i.e.,

  cot f = (1 + a) tan   q __ 
2
  

 We see that as the angle of scattering (deviation) of the photon q varies between 0 and p, the angle of recoil 

of the electron f varies from   p __ 
2
   to 0, i.e., the electrons are ejected at angles less than   p __ 

2
  . Te is maximum for 

f = 0 and minimum for f =   p __ 
2
  , i.e., for q = p and q = 0 respectively. As discussed above (earlier), the Compton 

(wavelength) shift is given by

  Dl =   h
 ____ moc

   (1 – cos q)

or,  Dl = lc (1 – cos q)

where lc =   h
 ____ moc
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 So, the Compton shift is the difference between the wavelengths of the incident photon and the scattered 
photon.

 From the expression of Compton wavelength  ( lc =   h
 ____ moc

   )  one can write the following equation:

  mo c
2 =   hc

 ___ 
lc

   = hvc

where vc = h/lc is the Compton frequency. From the above equation, one can write

  Ec = hvc = mo c
2

 Thus, the Compton wavelength lc is the wavelength of radiation whose photon has energy equal to 
the rest (mass) energy of an electron. It was already noted that Compton shift Dl is independent of the 
wavelength of incident radiation and nature of the target. It depends only on the angle of scattering. In the 
forward direction (i.e., the direction of the incident photon where q = 0), the Compton shift is zero as (1 – cos 

q) = 0 for q = 0. In the direction which is normal to that of the incident photon where q =   p __ 
2
  , the Compton shift 

Dl =   h
 ____ moc

   = lc and in the backward direction (for q = p) the Compton shift is the maximum and it is equal to 

2lc. 

 When photons of incident radiation collide with tightly bound electrons of the target atom, the energy and 
momentum of the colliding photon are exchanged with the atom as a whole. Since the mass of the target atom 
is much greater than that of a free electron (or lightly bound electron of metal atom), the Compton shift in this 
case is neglected, and l¢ practically coincides with l. This explains the presence of the unmodified radiation 
at all angles of scattering of the incident radiation (vide Fig. 9.8).

9.4.5 Failure of Classical Theory in Case of Compton Effect

According to classical wave theory X-rays are electromagnetic waves. If v be the frequency of the incident 
X-ray radiation which falls on the material, then they cause electrons in the material to oscillate at the same 
frequency v. The oscillating electrons then radiate X-rays of equal frequency v. Hence the scattered X-rays 
should consist of single frequency v. Also, the electrons should radiate X-ray waves uniformly in all possible 
directions. Thus, the wavelength of the scattered X-ray radiation should not vary with the angle of scattering 
q. But this is contrary to the experimental fact which was revealed by Compton. So, classical theory fails to 
explain Compton effect.

 9.5 WAVE PARTICLE DUALITY

It was earlier observed that radiations very well exhibit the well-known classical phenomena of interference, 
diffraction, polarization, etc., which are basically the results of interaction of radiation with another radiation. 
In the aforesaid phenomena, the radiations behave as waves. Again in case of some other phenomena, e.g., 
blackbody radiation, photoelectric effect, Compton effect, etc., the radiations behave as a set of corpuscles 
(or particles), i.e., discrete entities called photons or light quanta.

 These phenomena are the results of interactions of matter with energy (or radiation). So, one can observe 
that radiations can act as both particles and waves at different instants of time but not simultaneously. As 
nature exhibits examples of symmetry in its behavior which is called the principle of symmetry, one can 
accordingly expect that particles also should exhit dual nature like radiations. That the matter also should 
possess the properties to behave as particle and wave under suitable conditions.
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 The wave particle duality of matter was first predicted by the French theoretical physicist Pierre Louis 
de Broglie in the year of 1924. This theoretical concept of de Broglie was later experimentally verified by 
C.J. Davison and L.H. Germer of USA in 1927 and also by G.P. Thomson of UK in the same year. The wave 
properties of matter can be reconciled with the particle properties of it by superposition of waves of various 
wavelengths to form a group of waves known as wave packet. A wave packet is able to represent a particle 
in motion since any moving particle remains confined to a small region in space at any instant of time. 
The manifestation of wave-particle duality of radiations becomes transparent to any one if one consid-
ers the entire e.m. spectrum. The radio waves (wavelength l ~ a few hundred meters) are there at lower 
frequency region and spreads over a large volume in the space (Fig. 9.9].
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Fig. 9.9 Electromagnetic spectrum-wave nature is prominent in the low frequency region whereas particle 
nature is prominent in the high frequency region of the spectrum.

 So the available energy at any point is insignificantly small and for this reason, the particle nature cannot 
be observed. This is because the particles remain confined in a very small area unlike the radio waves. Again 
at higher frequency end of the e.m. spectrum there are ultraviolet, X-rays and g - rays (wavelength l ~ a few 
angstroms) where the waves are located in a very small region of space due to their very short wavelength and 
hence the energy at a particular point assumes a large value. As a result of this fact, the wave property is less 
noticeable as compared to the particle properly. Thus, at low frequency (or large wavelength) region the wave, 
nature is prominent whereas at high frequency (or small wavelength) region the particle nature is dominant. 
The visible region is the transition region where both, the wave and particle aspects are observed depending 
on some suitable conditions.

9.5.1 Bohr’s Quantum Condition and Broglie Hypothesis 

As we have just visualized the em spectrum from higher wavelengths to lower wavelengths, one can similarly 
visualize the matter starting from extremely large celestial bodies to extremely small subatomic particles. 
In this case the particle nature is prominent for big celestial 
bodies whereas the wave nature becomes prominent in case 
of subatomic particles like electrons. Louis de Broglie in 
1925 proposed the dual character for electrons having been 
guided by the aforesaid logic. He was also trying to discover 
the underlying significance of Bohr’s quantum condition 
for atomic structure. His idea was to fit an exact number of 
standing waves (or half waves) into the Bohr orbit in analogy 
with the integral number of waves (or halfwaves) in a string 
stretched between two rigidly fixed ends. (Fig. 9.10)

 Thus if rn is the radius of the nth Bohr orbit, then one has to 
write 2p rn = nl where n is an integer so that an integral num-
ber of waves (with wavelength l) may be fitted into the orbit. 
Comparing this with Bohr’s quantum condition (i.e., mvrn = 
nh), one can obtain

Fig. 9.10 An allowed orbit of an atom 
accommodates integral number 
of electron waves.



Basic Engineering Physics9.22

  mv  (   nl
 ___ 

2p
   )  = nh    [  2p r = c fi r =   c ___ 

2p
   =   nl

 ___ 
2p

   ] 
or,  l =   2 p h

 
____ 
mv

  

or,  l =   h
 ___ 

mv
   =   h __ p   ...(9.39)

where p = mv is the momentum of the electron. Bohr’s quantum condition (or postulate) states that the 

angular momentum of an orbiting electron of an atom is equal to the integral multiple of h where h =   h ___ 
2p

   

 Thus, de Broglie put forward a proposal known as de Broglie’s hypothesis which states that a mate-
rial particle with energy E and momentum p may exhibit characteristics of a wave of wavelength l. 
And this wavelength l is called de Broglie wavelength. Frequency v of the particle is determined by 
Planck’s formula
  E = hv ...(9.40)

 Equation (9.39) may be written as

  p = h k ...(9.41)

 [  p =   h __ 
l

   =   h ___ 
2p

   ×   2p
 ___ 

l
   = h k ] 

 And Eq. (9.40) may be written as

  E = h w ..(9.42)

 [  E = hv =   h ___ 
2p

   × (2p v) = h w ] 
 Here, k =   2p

 ___ 
l

   and w = 2p v. And k is known as wave number or propagation vector and w is called cir-

cular frequency. The wave and particle characters of an entity (such as an electron or a photon) are mutually 
exclusive. A wave of definite wavelength (and frequency) classically is of infinite extent in space and also is 
of infinite span of time (or duration). On the other hand, a particle is localized at a definite point in space at 
a fixed (given) instant of time and has a definite momentum p and energy E. Hence, the basic characteristics 
of a wave and a particle are incompatible.

 As stated earlier, the two sets of incompatible characters can have reconciliation through the concept of 
wave packet. In order to do so, one has to localize the wave in a finite region in space. And this goal can be 
achieved by the superposition of waves of various wavelengths with each other by the well-known method of 
Fourier transform. To state otherwise, one complex real wave can be expressed as superposition of a number 
of simple harmonic waves, each with slightly different velocity and wavelength. In order to grasp this idea 
pictorially, let us consider one pair of sinusoidal waves with slightly different velocity and wavelength and 
superpose them as shown in the Fig. 9.11.

 As can be seen in the figure, following superposition of two waves a resultant wave (curve c) is produced 
which shows regularly recurring humps which repeat themselves. And due to this event, the energy in the 
space gets redistributed and confined in the humps. By increasing the number of participating waves one can 
show that the energy practically can be confined in a single hump. Such a hump is termed as wave pocket. 
And the wave pocket then represents the corresponding particle in space.
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9.5.2 Phase and Group Velocities

The phase velocity of a monochromatic wave is that velocity with which any crest or any trough of the wave 
propagates in a given medium. Let us denote the phase velocity by u. In a dispersive medium, the phase 
velocity u is different for different wavelengths. One cannot measure the phase velocity by any experimental 
method. For a completely monochromatic wave it is not possible to distinguish between the successive crests 
or troughs. They all look exactly alike. It is well known that during the propagation of radio waves, signals 
are transmitted after modulation, either through the process of amplitude or that of frequency modulation. 
The production of amplitude-modulated signals involves the superposition of a number of plane waves with 
different frequencies, centering about a mean frequency. The energy carried by such modulated signals gets 
transmitted with a velocity called group velocity which is different from the phase velocity of any compo-
nent wave and let us denote this velocity by vg. The production of such modulated signals essentially consti-
tutes affixing a distinguishing mark on the wave train. And this distinguishing mark helps one to follow the 
progress of the wave with time easily and to make measurements with parameters of the wave.

 The simplest way of signaling a wave train is the well-known method of producing beats by superposition 
of two waves of slightly different wavelengths (or frequencies). When it is done, the two waves reinforce 
each other to produce humps at certain points in space at regular intervals of time with relatively weaker 
disturbances in between two humps (Fig. 9.11). As has been stated above, if the number of superposed waves 
increases, the regions with prominent humps will be narrower but the intervening regions of weaker distur-
bances will become broader. In the limit, the superposition of an infinite number of waves with continuously 
varying frequncies extending over a finite range produces only one hump within a very narrow region of 
space with practically no disturbance at any other point in the space. One so produced hump is called a 
wave packet. This method of producing a wave packet is called the method of Fourier integral, Figure 9.12 
shows one such wave packet.

 By suitably distributing the amplitudes of the various component waves, any arbitrary non-periodic wave 
form may be reproduced by the method of Fourier integral. It deserves to be noted here that if in this case 

2 l l ¢
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x

x

x

l

l¢

Fig. 9.11 Superposition of two sinusoidal waves of slightly different frequencies [(a) and (b)]. Curve 
(c) represents the resultant motion. x = a sin (  t).
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the frequencies of the waves used extend over an infinite 
range, the wave packet formed so, will be confined to a 
single point in space.

 The prominent hump can be considered as a mark on 
any wave which is concerned and it (the hump) propagates 
through the medium with the group velocity (vg). There 
exists a definite relation of the group velocity vg with the 
phase velocity u. In order to determine this relationship 
between vg and u, let us consider the superposition of two 
waves having slight difference in their frequencies v and v ¢ 
with the same amplitude a (Fig. 9.11). Let l and l¢ be the 
wavelengths of them. Then one can represent the waves by 
the following two equations:

  y1 = a sin  { 2p  (   x __ 
l

   – v t )  } 

or,  y1 = a sin (kx – w t) …(9.43)

and y2 = a sin  { 2p  (   x __ 
l¢

   – v ¢t )  } 

or,  y2 = a sin (k ¢x – w ¢t) …(9.44)

where w = 2p v and w ¢ = 2p v ¢ are the circular frequencies while k =   2p
 ___ 

l
   and k ¢ =   2p

 ___ 
l¢

   are the wave numbers 

of the two waves.

 The resultant wave on superposition of the two waves can be obtained as follows:

  y = y1 + y2 = a sin (kx – w t) + a sin (k ¢x – w ¢t)

or,  y = 2a cos  (   k – k ¢
 _____ 

2
   x –   w – w ¢

 ______ 
2
   t )  sin  (   k + k ¢

 _____ 
2
   x –   w + w ¢

 ______ 
2
   t )  ...(9.45)

 The superposed resultant wave of equation (9.45) has a wave number   k + k ¢
 ______ 

2
   and circular fre-

quency   w + w  ¢
 _______ 

2
  . As can be seen from the said superposed equation, the amplitude of it is not constant. 

Its amplitude varies according to the cosine term which shows that it varies slowly with the circular fre-

quency   
(w – w ¢)

 _______ 
2
  . The propagation velocity of the maxima in the amplitudes is given by   

(w – w ¢)
 _______ 

(k – k ¢)
  . On the other 

hand, the phase velocity of propagation of the superposed wave is   
(w + w ¢)

 _______ 
(k + k ¢)

  . Since the circular frequencies w 

and w ¢ of the participating waves are almost equal. One can write this phase velocity as

  u =   lim    
w Æ w ¢

    
(w + w ¢)

 ________ 
(k + k ¢)

   =   w __ 
k
   = vl

x
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Fig. 9.12 One-dimensional wave packet.
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or,  u =   w __ 
k
   = vl …(9.46)

 On the other hand, the group velocity vg can be expressed as follows:

  vg =   lim    
w Æ w ¢

    
(w – w ¢)

 _______ 
(k – k ¢)

   =   dw
 ___ 

dk
  

or,  vg =   dw
 ___ 

dk
   …(9.47)

 This equation (i.e., Eq. (9.47)) is also valid, in general for an infinite number of monochromatic waves of 
continuously varying frequencies.

 Differentiating Eq. (9.46) with respect to k, one gets

    du
 ___ 

dk
   =   1 __ 

k
     dw

 ___ 
dk

   –   w __ 
k2

  

or,    du
 ___ 

dk
   =   1 __ 

k
   ◊ vg –   1 __ 

k
   ◊ u

or,  k   du
 ___ 

dk
   = vg – u

or,  vg = u + k   du
 ___ 

dk
  

or,  vg = u – l   du
 ___ 

dl
   …(9.48)

since k =   2p
 ___ 

l
    [ and kl = 2p fi k dl + l dk = 0. Hence   dk

 ___ 
k
   = –   dl

 ___ 
l

   ] 
 For light waves in the free space there is no dispersion. Hence,   du

 ___ 
dk

   = 0, so one gets vg = u = c where 

c = 3 × 10+8 ms–1 is the velocity of light in free space.

 The group velocity vg is equal to the phase velocity u (i.e., vg = u) in any homogeneous elastic medium in 
general.

Group and Particle Velocities

The mathematical expression of the de Broglie hypothesis is given by,

  l =   h __ p   [vide Eqn. (9.39)]

or,  p =   h __ 
l

   =   
h/(2p)

 ______ 
l/(2p)

   =   h ___ 
2p

   ×   2p
 ___ 

l
  

or,  p = h k [vide Eqn. (9.41)]

where k =   2p
 ___ 

l
  , the definition of the wave number.

\  k =   
p
 __ 

h
  

 According to Einstein’s mass–energy conversion relation, we get

  E = mc2
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or,  mc2 = E = hv =   h ___ 
2p

   × 2p v = h w

or,  w =   mc2

 ____ 
h
  

 Now, the phase velocity of the de Broglie wave representing the particle is given by

  u =   w __ 
k
   [Eqn. (9.46)]

or,  u =   mc2/h
 

_____ 
p/h

   =   mc2

 ____ p   =   mc2

 ____ 
mv

  

or,  u =   c
2

 __ 
v
  

 Since the particle velocity v is less than the speed of the light in free space (c), the phase velocity u is 
greater than the speed of light in free space. Thus, the particle and the phase of the wave will not accompany 
each other. Although, the phase velocity is greater than the speed of light, it does not contradict the special 
theory of relativity because the phase waves do not carry energy.

 The velocity of the particle is given by

  v =   
p
 __ m   =   

pc2

 ____ 
mc2

   =   
pc2

 ___ 
E

  

 Now making use of the relations p = h k and E = h w, one can get dp = h dk and dE = h dw

 Hence, one can get the rate of change of p with respect to E as follows:

    
dp

 ___ 
dE

   =   dk
 ___ 

dw
   or   dw

 ___ 
dk

   =   dE
 ___ 

dp
  

or,  vg =   dE
 ___ 

dp
    [  vg =   dw

 ___ 
dk

  , Eqn. (9.47) ] 
 The relativistic energy of a particle is given by

  E =  ÷ 
___________

 p2 c2 + m2
o c

4  

or,  E = p2 c2 + m2
o c

4

 Now differentiating both sides with respect to p, we may get

  2E   dE
 ___ 

dp
   = 2c2 p

or,    dE
 ___ 

dp
   =   

pc2

 ___ 
E

  

or,  vg =   
pc2

 _____ 
(mc2)

    [  vg =   dE
 ___ 

dp
   ] 

or,  vg =   
p
 __ m   or, vg =   mv

 
___ m  

\  vg = v
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 That is, the group velocity related to a particle wave is equal to the particle velocity itself. Thus, logically 
one can represent a particle by the wave-packet, i.e., the wave-packet represents the concerned moving 
particle.

9.5.3 Matter Wave: de Broglie Wave

It is well known that in a real case, no wave can be extended infinitely in space. Even light waves are of finite 
spatial extent since the light emission process of an excited atom lasts for a time of the order of 10–8 seconds. 
During this short interval, the emitted wave train extends over a distance of approximately 300 cm. Thus, 
light signals propagate with the group velocity instead of the phase velocity. The energy, which is associated 
with the wave and carried by it, is transported with the group velocity. And hence, all the quantities, which 
are physically measurable and associated with the wave packet, propagate with the group velocity. On the 
other hand, the phase velocity is the velocity of propagation of the phase of the disturbance. In case of a 
light wave, the phase velocity may exceed that of light in free space, i.e., c. But the group velocity vg always 
remains less than the light velocity c. And this should be the case for any physically measurable quantity 
because according to the special theory of relativity no real body can have a velocity which exceeds that of 
light in free space.

 Having taken this clue from the facts stated above, de Broglie proposed that the particle velocity v should 
be taken equal to the group velocity vg of the concerned wave:

  v = vg …(9.49)

 Now, using the relation E = hw, the energy of the particle of rest mass mo can be written as

  E = mc2 =   
mo c

2

 _______ 
 ÷ 

______

 1 – b 2  
   = hv = hw  [ Here b =   v 

__ c   ] 

or,  w =   
mo c

2

 ________ 
h  ÷ 

______

 1 – b 2  
   …(9.50)

 The phase velocity of the wave is given by

  u = vl =   w __ 
k
   =   

mo c
2

 ____________  
h k  (  ÷ 

______

 1 – b 2   ) 
   …(9.51)

 Now, differentiating with respect to k, we get

    du
 ___ 

dk
   = –   

mo c
2

 ___________ 
h k2  ÷ 

______

 1 – b 2  
   +   

mo c
2 b
 ____________  

h k (1 – b 2)3/2
   ◊   

db
 ___ 

dk
   ...(9.52)

 Then from equations (9.48) and (9.49), one can write

  vg = u + k   du
 ___ 

dk
   = v

 Now, with the help of equations (9.51) and (9.52), the above equation can be written as

  v =   
mo c

2

 ____________  
h k (1 – b 2)1/2

   –   
mo c

2

 ____________  
h k (1 – b 2)1/2

   +   
mo c

2 b
 __________ 

h (1 – b 2)3/2
   ◊   

db
 ___ 

dk
  

or,  v =   
mo c

2 b
 __________ 

h (1 – b 2)3/2
   ◊   

db
 ___ 

dk
  

Hence, dk =   
mo c

2

 _____ 
h
   ◊   

db
 _________ 

(1 – b 2)3/2
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 Now, integrating one gets

  k =   
mo c

 ____ 
h
   ◊   

b
 _________ 

(1 – b 2)1/2
   + C

where C is a constant of integration. If one assumes that the number k = 0 when particle velocity v = 0 
(or b = 0), then C = 0.

 So, one gets

  k =   
mo c

 ____ 
h
   ◊   

(b)
 ________ 

 ÷ 
_______

 (1 – b 2)  
   + 0

or,  k =   
mo
 _______ 

 ÷ 
______

 1 – b 2  
   ◊   

(b c)
 ____ 

h
  

or,  k =   mv
 

___ 
h
   =   

p
 __ 

h
  

or,  p = h k =   h ___ 
2p

   ×   2p
 ___ 

l
  

\  p =   h __ 
l

   …(9.53)

 As was seen earlier, the relation (9.53) between the momentum p of a particle and the wavelength l of its 
de Broglie wave is consistent with Bohr’s quantum condition (i.e., mvrn = nh). Equation (9.53) which is the 
same as Eq. (9.39) is the famous de Broglie equation. This gives the mathematical relationship between the 
momentum of the particle p (which is a quantity characteristic of the particle nature) and the wavelength l 
(which is a quantity characteristic of the wave nature).

9.5.4 Relation between Phase and Group Velocities

The phase velocity of de Broglie waves is given by

  u = vl =   w __ 
k
   …(9.54)

 Now by using ideas of special theory of relatively, electronic energy and momentum are given by

  E = mc2 =   
mo c

2

 _______ 

 ÷ 
______

 1 –   v
2

 __ 
c2

    

   = hw …(9.55)

and p = mv =   
mo v

 
_______ 

 ÷ 
______

 1 –   v
2

 __ 
c2

    

   = hk …(9.56)

 Now dividing Eq. (9.55) by Eq. (9.56), one can have

    E __ p   =   c
2

 __ 
v
   =   w __ 

k
   …(9.57)

 Hence, from Eq. (9.46), one gets u =   w __ 
k
   =   c

2

 __ 
v
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where v is the velocity of the electrons and c is the velocity of light in the free space.

 According to de Broglie hypothesis, v = vg , the group velocity of de Broglie waves. Hence one has

  u =   c
2

 __ 
vg

  

or,  uvg = c2 …(9.58)

 Equation (9.58) gives the relationship between the phase velocity of the de Broglie wave, the group 
velocity and velocity of light in free space.

9.5.5 Relation between Phase Velocity u and de Broglie Wavelength l

For a de Broglie wave, the phase velocity of a particle of mass m and momentum p is given by

  u =   E __ p    [  u =   w __ 
k
   =   h w

 ____ 
h k

   =   E __ p   ] 
 The total energy of the particle in relativistic form is given by,

  E =  ÷ 
___________

  p2 c2 + mo
2 c4  

where mo is the rest mass of the particle.

\  u =   
 ÷ 

___________

 p2 c2 + mo
2 c4  
  ____________ p   = c  ÷ 

_________

   
p2 + mo

2 c2

 _________ 
p2

    

or,  u = c  ÷ 
________

 1 +   
mo

2 c2

 _____ 
p2

    

or,  u = c  ÷ 
____________

  1 +  (   mo
2 c2

 _____ 
h2

   )  l2   …(9.59)

where l =   h __ p  

 Equation (9.59) shows that u > c and in free space, this is consistent with the relation vg =   c
2

 __ u   since 

vg = v, the velocity of the concerned particle v is always less than c. In addition to this, u is a function of 
the de Broglie wavelength l even in the free space or vacuum. But for a light wave, u does not depend on 
wavelength l. Because the rest mass of light photon is zero and hence for light u = c. This is the difference 
between de Broglie wave and light wave.

9.5.6 Calculation of de Broglie Wavelength of a Particle of Mass m and 
Kinetic Energy Ek

Let Ek be the kinetic energy of a particle of rest mass mo, then its total energy is given by

  E = Ek + mo c
2

or,   ÷ 
___________

  p2 c2 + mo
2 c4   = Ek + mo c

2

 Squaring both sides of the equation, we get

  p2 c2 + mo
2 c4 = Ek

2 + mo
2 c4 + 2mo Ek c

2

or,  p2 c2 = Ek
2 + 2mo Ek c

2
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or,  p =     ÷ 
______________

  Ek (Ek + 2mo c
2)   / c

\ de Broglie wavelength,

  l =   h __ p   =   hc
 _______________  

 ÷ 
______________

  Ek (Ek + 2mo c
2)  

  

or,  l =   h
 __________________  

 ÷ 
_________________

  2mo Ek  ( 1 +   
Ek
 ______ 

2mo c
2
   )   

   …(9.60)

 So, the de Broglie wavelength l can be calculated for any particle (e.g., electron, proton, neutron, etc.) if 
its kinetic energy Ek and rest mass mo are given.

9.5.7 Characteristics of de Broglie Waves

The de Broglie waves have the following characteristics:

 (a) The lighter is the particle, the greater is the de Broglie wavelength, i.e., l μ   1 __ m  .

 (b) The smaller the velocity of the particle, the greater the de Broglie wavelength of the particle.

 (c) The de Broglie wavelength l = •, when the particle velocity v = 0, i.e., the waves are produced due 
to the motion of the particle only.

 (d) The velocity of the matter wave is not constant but depends on the velocity of the particle while the 
velocity of the electromagnetic wave is constant.

 (e) Both the wave and particle behaviors of a moving body cannot be exhibited by it simultaneously 
in the same experiment. One can say that the waves have particle-like properties and particles have 
wave-like properties and the concepts are inseparably linked.

 (f) The wave nature of matter is associated with the uncertainty in position of the particle.

9.5.8 Experimental Proof of de Broglie Hypothesis

There was no experimental evidence in support of de Broglie hypothesis till 1926. In the year of 1927, two US 
physicists, namely, CJ Davision and LH Germer first performed an experiment successfully which conclu-
sively demonstrated the wave character of electrons. On 
the other hand, in the same year, one UK physicist, GP 
Thomson, also confirmed the wave nature of electrons 
having performed an independent experiment. We are 
giving below the details of the Davision and Germer’s 
experiment.

Davision and Germer’s Experiment

The arrangement of performing Davision and Germer 
experiment is shown in the Fig. 9.13.

 The beam of electrons used to perform the experi-
ment is produced by heating a tungsten filament F. The 
beam is then collimated by a slit system and is acceler-
ated by the anode A having small axial hole H in it. The 

A

F

G

C

q

H

T

Fig. 9.13 Set-up for Davision and Germer 
experiment.
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accelerated electron beam while emerging through this hole is incident on a single crystal of nickel T which 
is used as the target. The electron beam generating gun, the target crystal T and the detector are kept in a 
highly evacuted chamber. The electron beam hits the target normally. The scattered electrons coming out of 
the target T in different directions are collected by a Faraday cup C. And the intensity of the beam of scattered 
electrons is measured with the help of a sensitive galvanometer G. The collector (Faraday cup C) is such that 
all the electrons which are having the same energy in the incident beam can enter it. The ejected electrons 
from the nickel crystal T due to the impact of the incident electrons being of low energy cannot enter the col-
lector (i.e., the Faraday cup C). The intensity of the scattered beam of electrons can be estimated by rotating 
C about an axis passing through the crystal target T.

Results of the Experiment

The results of measurements have been shown in the Fig. 9.14. This figure consists of four parts (a), (b), (c) 
and (d). Each part is, in fact, a special type of plot of intensity of the scattered beam of electrons versus angle 
of scattering. This graphical representation is called polar graph. The line of the incident beam is taken as 
ordinate and a line normal to it is taken as abscissa. The radius vector ( 

 _
 
›
 r  ) of this graph is proportional to 

the intensity of the scattered beam of electrons. And the angle q is measured from the ordinate (i.e., y-axis) 
instead of the abscissa (or x-axis). q is the angle between the ordinate and the radius vector  

 _
 
›
 r  .
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Fig. 9.14 Results of Davision and Germer experiment.

 The electron beam is accelerated to various energies by applying various accelerating potentials between 
the filament F and the anode A. As can be seen, the graph is fairly smooth at the low values of accelerating 
potential but at 44 V a hump (or spur) appears on the curve at a scattering angle of q = 60°. When the acceler-
ating potential gradually increases, the value of the radius vector at the spur also increases. The spur becomes 
maximum (hence maximizes the length of r) at the accelerating potential of 54 V and angle of q = 50°, when 
the accelerating potential increases further, the spur decreases and ultimately disappears at 68 V at a scatter-
ing angle of q = 40°. On further increase of the accelerating voltage, the graph again becomes fairly smooth. 
The plot of the intensity of scattered beam of electrons at 54 V against the angle of scattering has also been 
shown in a cartesian graph in Fig. 9.15(a) and similar plot of intensity of the beam of scattered electrons 
versus kinetic energy of the electrons (in eV) at angle of scattering q = 50° has been shown in Fig. 9.15(b).

Observations of the Experiment

From Figs. 9.14 and 9.15, it is clear that a strong scattered beam is obtained for a potential difference of 54 
volts at an angle of 50°.
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Fig. 9.15 (a) Plot of relative intensity versus angle of scattering  at V = 54 volt. (b) Plot of relative 
intensity versus kinetic energy of electrons at  = 50°.

 By the time, when Davission and Germer’s experiment was performed it was very wellknown that X-ray 
beam is diffracted from the parallel atomic planes of a crystal. And the scattered rays, in case of such diffrac-
tion, take part in constructive interference by obeying Bragg’s law which is given by

  nl = 2d sin f …(9.61)

where f is the angle of glancing which is made by the incident and 
scattered beams with a family of parallel planes (Fig. 9.16). The dis-
tance between two consecutive planes is d, l is the wavelength of the 
X-ray. From the diagram, we can write

  f =   180° – q
 ________ 

2
   …(9.62)

 Putting value of f from Eq. (9.62) in Eq. (9.61), we get

  nl = 2d sin  (   180° – q
 ________ 

2
   )  …(9.63)

 Now, the experimental results of Figs. 9.14 and 9.15, can be explained if one considers them to have arisen 
due to the constructive interference of waves scattered by the periodic arrangement of atoms in the crystal. It 
is possible to infer like this if one assumes that electrons are able to exhibit wave behavior. It is to be noted 
that this interference takes place among the various parts of the wave associated with a single electron, scat-
tered from different regions of the crystal. One can make the intensity of the electron beam so small that only 
one electron passes through the apparatus at a time. And under such condition, the pattern of the scattered 
electron remains the same. It very clearly establishes the fact that various parts of the de Broglie wave associ-
ated with a single electron interfere with each other. The equation (9.63) can be used to find the wavelength 
of the de Broglie wave linked with an electron. The interplanar distance (d) of the crystal in this case is given 
by d = 0.91 Å = 0.091 nm. The constructive interference takes place at q = 50° [  one gets maximum intensity 
of the scattered ray at this angle]. Taking n = 1, we can now get

  l = 2 × 0.091 × sin  (   180° – 50° _________ 
2
   )  nm

or,  l = 1.65 × 10–1 nm

q

f f

Fig. 9.16 Diffraction of waves from 
planes of a crystal.
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 This is the theoretical value of the de Broglie wavelength for one electron. If p be the momentum of an 
incident electron, then using its relation with the kinetic energy Ek, we can write

  p =  ÷ 
_____

 2mEk   =  ÷ 
_____

 2meV  

 By using this expression, the de Broglie wavelength is obtained as

  l =   h __ p   =   h
 ______ 

 ÷ 
_____

 2meV  
   …(9.64)

 Now, putting the values of all the parameters in the right side of Eq. (9.64), we get

  l = 1.67 × 10–10 m = 1.67 × 10–1 nm

where V = 54 volts, m = 9.11 × 10–3 kg, e = 1.6 × 10–19 coul and h = 6.626 × 10–34 Joule-s.

 This is the experimental value of the de Broglie wavelength. This experimental value of de Broglie wave-
length (l = 1.67 Å) is very close to the theoretical value of the same (l = 1.65 Å). This excellent agreement 
between the theoretical and experimental values of de Broglie wavelength confirms the correctness of his 
hypothesis.

 9.6 UNCERTAINTY PRINCIPLE OF HEISENBERG

The uncertainty principle (i.e., the principle of indeterminacy) was proposed by Werner Heisenberg of 
Germany in the year of 1927. This wonderful principle is a direct impact of the dual nature of matter.

 According to the concepts of classical mechanics, a moving particle posseses a definite position as well as 
a definite momentum in space. Both of these two physical quantities of a particle can be definitely measured. 
But with the advent of the concepts of quantum mechanics in the first quarter of twentieth century, the classi-
cal view has been found to be a special case of the quantum view and it is inadequate to describe the dynami-
cal behavior of the microscopic objects. Though it can still describe the dynamical behavior of macroscopic 
objects well.

 In quantum mechanics, a particle is described by a wave packet which surrounds the position of the clas-
sical particle and moves with a group velocity. According to Max Born’s interpretation of probability, the 
particle may be found anywhere within the wave packet. This means that the exact position of the particle is 
not certain within the limit (range) of the wave packet. And hence, one may say that the particle may be found 
to exist anywhere within the range of the wave-packet. Again, as we know, a wave packet is formed by the 
superposition of a large number of waves having different wavelengths. The wavelength of the wave packet 
cannot be said definitely. What one can say is that the wavelength of the wave packet lies within a certain 
range between l and l + Dl. As the momentum of a particle is related to its de Broglie wavelength given 
by,

  p =   h __ 
l

   or Dp = –   h __ 
l2

   Dl 

 The momentum of the particle lies in the range between p and p + Dp. So, one cannot definitely predict 
what is the value of the momentum of the particle. Hence, because of the wave nature of particle there exists 
an uncertainty (Dr) in position of it and uncertainty in the corresponding momentum of it (Dp).

 If the number of superposed waves as well as their range of wavelength (Dl) be increased, then the 
spread (Ds) of the wave packet decreases. But simultaneously the uncertainty (Dp) in momentum increases 
as Dp μ Dl. When Dl = •, Dp = • and Ds = 0, i.e., the wave packet, in such a case, reduces to a point. In this 
position, there does not exist any uncertainty in the position of the particle.



Basic Engineering Physics9.34

 Again, for a definite l, Dl = 0, this implies Dp = 0 (  Dp μ Dl). In such a situation, there is no uncertainty 
in the momentum of the particle, but in this case Ds = μ, i.e., the uncertainty in position is infinite since the 
associated wave with the particle may now extend up to infinity.

9.6.1 Statement of the Uncertainty Principle

The uncertainty principle can be stated as follows:

 It is fundamentally impossible to determine simultaneously the position as well as momentum of a 
particle to an accuracy which is better than one quantum of action h.
 The mathematical expression for the uncertainty principle can be written as

  Ds Dp ≥ h ...(9.65)

where h = h/2p = 1.054 × 10–31 Js, h being the Planck’s constant (h = 6.62 × 10–34 Js). Here Ds is the error 
(i.e., uncertainty) in the determination of position of the particle and Dp is the error (i.e., uncertainty) in the 
determination of momentum. If the position of the particle is determined accurately, then Ds becomes smaller 
and consequently Dp becomes larger and vice versa. It is to be noted here that the uncertainties do not exist in 
apparatus used for measurement of position or momentum but they exist in the nature itself.

 We have so far considered the uncertainty in one-dimensional space but it can be extended in three-dimen-
sions also which is given by the following three equations:

  Dx Dpx ≥ h

  Dy Dpy ≥ h  ...(9.66)

  Dz Dpz ≥ h

 It should be noted that the uncertainty relations do not exist for any arbitrary pair of position and momentum. 
The uncertainty relation exists for the following pairs:

(x, px), (y, py) and (z, pz)

but it does not exist for the following pairs:

(x, py), (x, pz), (y, pz), (y, px), (z, px), (z, py)

 The position and momentum pairs for which uncertainty relation exists are known as canonically 
conjugate pairs.

9.6.2 Uncertainty Relation for Time and Energy

The time–energy uncertainty principle can be stated as follows:

 In any simultaneous measurement of time and energy of a moving particle, the product of the uncertainty 
in the two physical quantities is equal to h (= h/2p) or greater than it.

i.e., DE Dt ≥ h ...(9.67)

where DE is the uncertainty in the measurement of energy and Dt is the uncertainty in the measurement of 
time.

9.6.3 Exact Uncertainty Product

So far, we have observed that the product of uncertainties of a conjugate pair of variables is of the order of or 
greater than h (i.e., Planck’s constant divided by 2p). But rigorous mathematical calculations show that the 
minimum value of the product of uncertainties in a conjugate pair of variables is actually h/2. So, one can 
write

  Ds Dp ≥ h/2 ...(9.68)
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 And when the above one-dimensional case is extended to three-dimensions, we get

  Dx Dpx ≥ h/2

  Dy Dpy ≥ h/2  ...(9.69)

  Dz Dpz ≥ h/2

 And for the conjugate pair of time and energy, the exact relation becomes

  DE Dt ≥ h/2 ...(9.70)

 The mathematical proof of these relations (9.69) and (9.70) is beyond the scope of this book.

9.6.4 Physical Significance of the Uncertainty Principle

The position–momentum uncertainty relation  ( Dx Dpx ≥   h 
__ 
2
   )  leads us to draw the following inferences:

 (a) If one can measure the position of a particle accurately (i.e., Dx = 0), then the uncertainty in the mea-
surement of its momentum becomes infinity (i.e., Dpx = •) at the same moment of time.

 (b) If one can measure the momentum of a particle accurately (i.e., Dpx = 0), then the uncertainty in the 
measurement of its position becomes infinity (i.e., Dx = •) at the same moment of time.

 (c) For a particle of mass m moving with a velocity v, the position momentum uncertainty relation 
becomes

   (Dx) (m Dvx) ≥   h 
__ 
2
  

or,   Dx Dvx ≥   h ___ 
2m

   …(9.71)

  Hence, for a heavily massive body

     h __ m   ª 0.

  So, from the relation (9.70), we can write

   Dx Dvx = 0

  For such a particle both position and momentum can be measured accurately. This is true for mac-
roscopic bodies whose motions are the matter of discussion in classical mechanics. Thus the uncer-
tainty relation does not play any role in classical mechanics. On the other hand, for the microscopic 
objects, such as electron, proton, neutron, atom, etc., the quantum mechanics is applicable. In this 
case, the uncertainty relation is a reality in describing the dynamical behavior of the microscopic 
objects.

 (d) From the relation (9.70), we can write

   Dt =   h
 

____ 
2DE

  

  If the uncertainty in the measurement of energy of a system (DE) becomes maximum in a particular 
state, then from the above relation, Dt becomes minimum, i.e., the system remains for a minimum 
time in the state.

  Again, DE =   h
 

___ 
2Dt
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  The above relation shows that if a system remains in a particular state for a maximum interval of 
time, then the uncertainty in the measurement of the energy of the system becomes minimum.

9.6.5 Applications of the Uncertainty Principle

 (a) Calculation of the binding energy of an electron in an atom by using the uncertainty 

principles When an electron revolves round the nucleus of an atom in an orbit of radius r, the 
uncertainty in the position of the electron Dx is given by

   Dx = r [  the position is measured from the center of the nucleus]

  Now, one can write the position momentum uncertainty relation as

   Dx Dpx ≥   h 
__ 
2
  

  or, Dpx ≥   h
 

____ 
2Dx

  

  or, Dpx ≥   h
 

____ 
(2r)

   [  Dx = r]

  Hence, the minimum value of the momentum of the particle is

   p = Dpx =   h 
__ 
2r

  

  Now, taking r ª 10–10 m,

   p =   h
 _________ 

4p × 10–10
   ª 0.527 × 10–24 kg ms–1

  The kinetic energy corresponding to this non-relativistic momentum for an electron is given by

   Ek =   
p2

 ____ 
2mo

   =   
(0.527 × 10–24)2

  _____________  
2 × 9.1 × 10–31

  

  or, Ek = 1.5 × 10–19 J ª 1 eV

  Again, the potential energy of an electron in the field of the nucleus with atomic number Z is given 
by

   V = –   Ze2

 ______ 
4p Eo r

  

  or, V = –   
Z(1.6 × 10–19)2

  _________________________   
4 × 3.14 × 8.85 × 10–12 × 10–10

   J

  or, V ª – 14.4 Z eV

  So, the total energy of the electron in its orbit is given by

   E = Ek + V = (1 – 14.4 Z) eV

  i.e., E = (1 – 14.4 Z) eV

  So, for hydrogen atom, [  Z = 1]

   E = 1 – 14.42 = – 13.4 eV
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  And for helium atom Z = 2, E = (1 – 28.8) eV  = – 27.8 eV. These two binding energy values cal-
culated from uncertainty principle agree with the binding energy of the outer most electron (s) in 
hydrogen atom (– 13.6 eV) and helium atom (– 24.6 eV) respectively.

 (b) No electron (with separate entity) exists in the nucleus of an atom The radius (r) of the 
nucleus of an atom is in the order of 10–14 m.

  So, if one electron (with separate entity) exists inside the nucleus of the atom, then the uncertainty in 
the position of this electron is given by

   Ds = diameter of the nucleus

  or, Ds ª 2r ª 2 × 10–14 m

  From, the principle of uncertainty, the uncertainty in momentum of the said electron is given by

   Dp ≥   h ___ 
Ds

  

  or, Dp ≥   h
 _____ 

2p Ds
  

  or, Dp ≥   6.63 × 10–34

  __________________  
2 × 3.14 × (2 × 10–14)

   kg ms–1

  or, Dp ≥ 5.27 × 10–21 kg ms–1

  It means that if the elementary particle (i.e., electron) has to be inside the nucleus of the atom, the 
minimum momentum of it must be given by

   pmin = 5.27 × 10–21 kg ms–1

  The minimum energy of an electron (with separate entity) of mass m is obtained from the relativistic 
formula (of energy) as

   E =  ÷ 
___________

 p2 c2 + mo
2 c4  

  or, E =  ÷ 
______________________________________________

     (5.27 × 10–21)2 × (3 × 10+8)2 + (9.1 × 10–31)2 × (3 × 108)4   kg ms–1

  or, E @ 10 MeV

  So, if one electron (with separate entity) remains in the nucleus of the atom, its energy must be of 
the order of 10 MeV. But it is known from the experimental data that the electrons get emitted from 
radioactive nuclei during b-decay with energy of about 4 MeV.

  Therefore, electrons cannot exist within the nucleus of an atom rather they get generated instanta-
neously just before their emission.

 (c) Protons and neutrons can exist in the nucleus of an atom with their separate entity If 
one nucleon (proton or neutron) has to be inside the nucleus of an atom its minimum momentum 
must be

   pmin = 5.27 × 10–21 kg ms–1

  [It can be calculated as was done in the case of one electron in (a)].

  For the nucleon, rest mass

   mo @ 1.67 × 10–27 kg
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  So, the corresponding value of energy (kinectic energy) is given by

   Ek =   
p2

 ____ 
2mo

   =   
(5.27 × 10–21)2

  ______________  
2 × 1.67 × 10–27

   J

  or, Ek = 52 K eV

  As this energy Ek is smaller than the energy carried by a nucleon emitted from a nucleus, a nucleon 
can exist inside the nucleus.

 (d) Proof of the finite width of the spectral lines by using the uncertainty principle The 
Heisenberg’s energy-time uncertainty relation gives us

   DE Dt ≥ h/2

  Since, the lifetime of an electron in an excited state is not infinite and it is in the order of 10–8 s, 

  \ Dt = 10–8 s

  Hence DE ≥   h
 

___ 
2Dt

  

  or, DE ≥   6.63 × 10–34

  ________________  
2 × 2 × 3.14 × 10–8

   J

  or, DE ≥ 0.53 × 10–27 J

  This implies that the excited (energy) levels of an atom given by DE =   h
 

___ 
2Dt

   must have a finite width 

(i.e., finite energy spread) instead of a sharp line.

 (e) Calculation of the uncertainty in frequency of a radiation emitted by an atom If the 
life-time of an excited state of an atom be Dt and DE be the uncertainty in energy of the state, then 
according to the uncertainty relation, we get

   DE Dt ≥   h 
__ 
2
   or DE ≥   h

 
___ 
2Dt

  

  or, DE ≥   h
 _____ 

4p Dt
  

  But the energy E = hv. So, DE = hDv, where Dv is the uncertainty in the frequency of the emitted 
photon.

  \ Dv =   DE
 ___ 

h
   =   h

 _____ 
4p Dt

   ◊   1 __ 
h
   =   1 _____ 

4p Dt
  

  Now, the average life-time of the excited state of an atom is given by

   Dt = 10–8 s.

  \ Dv =   1 ________ 
4p × 10–8

   = 0.8 × 107 Hz.

  Thus, the radiation emitted by an atom cannot have a definite frequency (v), instead it will have a 
variable frequency lying within the range of frequency between v – Dv and v + Dv. In other words, 
the radiation emitted will have a band of frequency.
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 9.7 OLD QUANTUM THEORY

Classical mechanics not only failed to explain the phenomena like blackbody radiation, photoelectric effect 
and Compton effect but also failed to explain the phenomenon of stability of atoms. According to Rutherford, 
an atom consists of a positively charged heavy nucleus surrounded by a set of negatively charged electrons 
which revolve around the nucleus in circular orbits. These electrons experience strong attraction towards the 
positively charged heavy nucleus. As a result of the action of this strong attractive force, they should come 
closer to the nucleus with time. Secondly, the energy of these negatively charged revolving electrons should 
decrease continuously since an accelerating charged particle always radiates energy in the form of e.m. radia-
tions. And due to this continuous loss of energy through radiation, the orbital electrons should come closer 
and closer to the nucleus until they collide with the nucleus and the atom collapses. This is an indication of 
instability of the atoms. But it is contrary to the fact of stability of the atoms. So, the classical mechanics fails 
to explain the stability of the atoms.

9.7.1 Bohr’s Theory of the Hydrogen Atom

The hydrogen atom is the simplest of all atoms. It consists of a proton as its nucleus and a single electron 
orbiting around the nucleus. The nucleic proton is very heavy as compared to the orbiting electron and practi-
cally remains at rest. The force of attraction between the two, being electrostatic, obeys the inverse square 
law and the possible orbits are circular or elliptical. If the electron orbits in a circular orbit of radius r with 

a constant speed v, then the force of attraction is given by   1 _____ 
4p eo

   ◊   e
2

 __ 
r2

   and it is balanced by the centrifugal 

force   mv
2

 ____ r  , where e is the electronic charge.

 This fact gives us the relation,

  mv
2 =   1 _____ 

4p o

   ◊   e
2

 __ r   …(9.72)

which can be used to eliminate v from the expression of the energy E:

  E = Ek + Ep

where Ek is the kinetic energy, Ep is the potential energy and E is the total energy of the electron.

 So, E =   1 __ 
2
   mv

2 +  ( –   1 _____ 
4p o

   ◊   e
2

 __ r   ) 
[The minus sign here indicates that the potential energy is of attractive nature]

or,  E =   1 __ 
2
   ◊   1 _____ 

4p o

   ◊   e
2

 __ r   –   1 _____ 
4p o

   ◊   e
2

 __ r  

or,  E = –   1 __ 
2
     1 _____ 
4p o

   ◊   e
2

 __ r   …(9.73)

 Thus, the total energy is one-half of the potential energy.

 Classically, the orbital radius r can assume any positive value, and accordingly E can occupy any value 
from – • to + 0. However, according to Bohr’s first postulate, the electron can occupy only any one of the 
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special set of orbits among all the possible ones. He proposed that these special orbits which characterize the 
stationary states are those in which the angular momentum L of the electron about the centre of the orbit (i.e., 
the nucleus of the atom) is an integral multiple of h (= h/2p). As the angular momentum in a circular orbit is 
given by the product of the linear momentum (mv) and the orbital radius (r), so the Bohr’s quantum condition 
can be written as 

  mvr = nh …(9.74)

[In other form,  Ldf = nh, where, L = mvr]

where n = 1, 2, 3, …, N and the value of n identifies the stationary states. The integer n is known as quan-

tum number. The radii of the permitted orbits are now obtained by eliminating v from the Eq. (9.72) and 
Eq. (9.74).

 For the nth orbit, we get

  rn =   
Eo n

2 h2

 _______ 
p me2

   …(9.75)

where rn is the radius of the nth orbit. Substituting this value of rn in Eq. (9.73), one gets the quantized energy 
levels of the hydrogen atom as follows:

  En = –   me4

 ______ 
8Eo

2 h2
    (   1 __ 

n2
   )  …(9.76)

where n = 1, 2, 3, …, N and En is the nth energy state (or energy level). The state of the lowest energy (i.e., 
the ground state) corresponds to n = 1. The energies of the other (‘excited’) states increase with n, tending to 
0 as n Æ •.

 Having known the energy levels, one can immediately obtain the wavelengths (or frequencies) of the 
hydrogen spectrum when the electron jumps from the initial state ni to the final state nf (where nf < ni) as 
follows:

  hv = Ei – Ef or v =   
Ei – Ef

 ______ 
h
  

or,    c __ 
l

   =   me4

 ______ 
8Eo

2 h3
    (   1 ___ 

nf
2
   –   1 __ 

ni
2
   ) 

 [ by using Eq. (9.76) and v =   c __ 
l

   ] 
or,    1 __ 

l
   =   me4

 _______ 
8Eo

2 ch3
    (   1 ___ 

nf
2
   –   1 ___ 

ni
2
   ) 

or,    1 __ 
l

   = R (   1 __ 
nf

2
   –   1 __ 

ni
2
   )  …(9.77)

where R =   me4

 _______ 
8Eo

2 ch3
   = 1.097 × 107 m–1 and known as Rydberg number (or constant).

 According to the classical theory, an excited hydrogen atom can radiate energy of all wavelengths con-
tinuously. But experimentally it was observed that the excited hydrogen atom emits em radiations of certain 
definite wavelengths due to transition of the electron from higher energy state to lower energy states cor-
responding to Lyman (nf = 1), Balmer (nf = 2), Paschen (nf = 3), Bracket (nf = 4) and Pfund (nf = 5) series. 
These discrete set of lines are represented by Eq. (9.77). So, it can be concluded that the classical theory fails 
to explain the atomic spectra.
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 The Bohr’s quantum condition of Eq. (9.74) is a special case of the general quantum condition given by

   pr dqr = nrh; r = 1, 2, 3, …, N …(9.78)

where the integration in case of each pair of conjugate variables (i.e., generalized conjugate coordinates) is to 
be taken over one period of that particular pair. The quantum number nr takes integral values. Bohr’s general 
postulates along with the quantum rule of Eq. (9.78) constitute what is known as the old quantum theory.

Worked-out Examples

Blackbody Radiation

Example 9.1   (a) Calculate the energy in eV of a photon of wavelength 1 Å

  (b) What is the momentum of this photon?

Sol. (a) If l be the wavelength of the photon, h be the Planck’s constant and c is the velocity of light then 

energy of the photon E =   hc
 ___ 

l
  

  Here h = 6.62 × 10–34 J-s, c = 3 × 108 m/s, l = 1 Å = 10–10 m.

  \ E =   6.62 × 10–34 × 3 × 108

  __________________  
 10–10

   = 19.86 × 10–16 J

    =   19.86 × 10–16

  ___________ 
1.6 × 10–19

   eV = 12.412 K eV

 (b) Momentum of the photon p =   h __ 
l

  

or,   p =   6.62 × 10–34

 __________ 
10–10

   = 6.62 × 10–24 kg m/s

Example 9.2  Calculate the average energy of Planck’s oscillator for  (   h w
 ___ 

kT
   )  = 0.01,

Sol.  The average energy of Planck’s oscillator in terms of angular frequency (w) is

   Ea =   hw
 ___________  

exp  (   hw
 ___ 

kT
   )  – 1

   =   hw /kT
 ___________  

exp  (   hw
 ___ 

kT
   )  – 1

   × kT

  Putting the values of   hw
 ___ 

kT
   given in the problem, we find

   Ea = 0.00 45 kT

Example 9.3  Calculate the number of modes in a cube of 2 cm side in the wavelength range 4995 Å and 

500 S Å.

Sol.  Number of modes within the volume (V) having wavelength between l and l + dl is given by

   dn =   8p V
 ____ 

l4
   dl
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  Here V = L3 = (2 × 10–2 m)3

   dl = 10 Å = 10 × 10–10 m.

  \ dn =   
8 × 3.14 × (2 × 10–2)3

  __________________  
(5000 × 10–10)4

   × 10 × 10–10

  or, dn = 3.21 × 1011

Example 9.4  Calculate the number of photons emitted per second by a 100 watt sodium lamp [Assume 

l = 5893 Å of Sodium lamp]

Sol.  Energy of a photon,

   E = hv =   hc
 ___ 

l
  

    =   6.63 × 10–34 × 3 × 108

  __________________  
5893 × 10–10

   = 3.375 × 10–19 joule.

  Now, the rate of energy emission from a 100 watt lamp is 100 J/s. Since the energy of a photon is 

3.375 × 10–19 J, the number of photons emitted per second is   100 ___________  
3.375 × 10–19

   = 2.96 × 1020

Example 9.5  Radiation from the moon gives, lm of 4700 Å and 14 × 10–6 m. What conclusion can you 

draw from this? [h = 6.6 × 10–34 Js, k = 1.37 × 10–22 J/K, c = 108 m/s]

Sol.  We know that Wien’s displacement law is

   lm T = 0.289 × 10–2 mk

when   lm = 4700 Å = 4700 × 10–10 m

or,   T =   0.289 × 10–2

 ___________ 
4700 × 10–10

   = 6166 K

and when lm = 14 × 10–6 m

   T =   0.289 × 10–2

 ___________ 
14 × 10–6

   = 207 K

  As the sun’s radiation is reflected from the moon, T1 = 6166 K represents the temperature of the sun. 
T = 207 K represents the temperature of the moon.

Compton Effect

Example 9.6  An X-ray photon is found to have its wavelength doubled on being scattered through 90°. 
Find the wavelength and energy of the incident photon.

Sol.  We know that Compton shift

   l¢ – l (= Dl) =   h
 ____ mo c

   (1 – cos q)

  Here q = 90° and l¢ = 2l \ Dl = 2l – l = l
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 and wavelength l =   h
 ___ mc   =   6.62 × 10–34

  _________________  
9.1 × 10–31 × 3 × 108

  

    = 0.0245 Å

  The energy of the incident photon

   E = hv =   hc
 ___ 

l
   =   6.62 × 10–34 × 3 × 108

  __________________  
0.0245 × 10–10

  

    = 8.1 × 10–14 joule.

Example 9.7  (a)  At which angle will the Compton shift be maximum?

 (b) Calculate the Compton wavelength in Å for an electron. [WBUT 2005]

Sol. (a) We know Compton shift

   Dl =   h
 ____ mo c

   (1 – cos q)

  If q = 180°; then D l will be maximum. In that case,

   Dl =   2h
 ____ mo c
   = 2 × 0.0245 Å

    = 0.049 Å

 (b) Compton wavelength lc =   h
 ____ mo c

   =   6.62 × 10–34

  _________________  
9.1 × 10–31 × 3 × 108

  

    = 0.0245 Å.

Example 9.8  X-rays of wavelength 10.0 pm are scattered from a target.

 (a) Find the wavelength of two X-rays scattered through 45°.

 (b) Find the maximum wavelength present in the scattered X-rays.

 (c) Find the maximum kinetic energy of the recoil electrons.

Sol. (a) We know Compton shift

   l¢ – l =   h
 ____ mo c

   (1 – cos q)

  or, l¢ = l +   h
 ____ mo c

   (1 – cos q)

    = 10 + (0.293)   h
 ____ mo c

   = 10.7 pm [  q = 45°]

 (b) l¢ – l is maximum when (1 – cos q) = 2 in which case

   l¢ = l +   2h
 ____ mo c
  

    = 10 + 4.9 = 14.9 pm.

 (c) Kinetic energy of electron = h(v – v ¢) = hc  (   1 __ 
l

   –   1 __ 
l¢

   ) 
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    =   6.62 × 10–34 × 3 × 108

  __________________  
10–12

    (   1 ___ 
10

   –   1 ____ 
14.9

   ) 
    = 6.54 × 10–15 J

    = 40.8 K eV.

Example 9.9  An X-ray photon of frequency 3 × 1019 Hz collides with a free electron at rest and is scat-

tered at 60°. Find the direction in which the electron will move.  [ given   h
 ____ mo c

   = 0.024 Å ] .
Sol.  Here v = 3 × 1019 Hz, q = 60°, h = 6.62 × 10–34 Js

  Now, the angle of scattering q and the angle of recoil of the electron f are given by

   cot f = (1 + a) tan   q __ 
2
  

where   a =   hv
 _____ 

mo c
2
   =  (   h

 ____ mo c
   )    v __ c  

    = 0.024 × 10–10 ×   3 × 1019

 _______ 
3 × 108

   = 0.242

  \ cot f = (1 + 0.0243) tan 30° = 1.242   1 ___ 
 ÷ 

__
 3  
   =   1.242 _____ 

1.73
  

or,   tan f =   1.73 _____ 
1.242

   = 1.39

  \ f = 54.34°

Example 9.10  Show that a free electron at rest cannot absorb a photon.

Sol.  If pph and pec be the momentum of a photon and that of a free electron respectively, then

   pph = pec or,   hv
 ___ c   = pec

  If Eph and Eec be the energies of a photon and a free electron respectively,

  then Eph = Eec or, hn =  ÷ 
_______________

  (pec c)2 + (mo c
2)2  

or,     hv
 ___ c   =  ÷ 

_________

 p2
ec + m2

o c
2   > pec

  Thus the conservation law of momentum breaks down. Hence the result.

  So we may conclude that Compton scattering must occur with free electron.

de Broglie Hypothesis

Example 9.11  Calculate the wavelength associated with an electron accelerated to a potential difference 
of 1.25 KeV.

Sol.  If E is the kinetic energy of the electron, the de Broglie wavelength of the wave associated with the 
electron is
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   l =   h
 ______ 

 ÷ 
____

 2mE  
   =   6.62 × 10–34

   ___________________________________    
 ÷ 

__________________________________

    2 × 9.1 × 10–31 × 1.25 × 103 × 1.6 × 10–19  
   [  E = eV]

  \ l = 3.46 × 10–11 m

Example 9.12  What is the de Broglie wavelength of an electron moving with velocity, v =   3c
 ___ 

5
  ?

Sol.  The de Broglie wavelength of a particle of mass m moving with velocity v is l =   h
 ___ 

mv
  .

  Here,   v 
__ c   =   3 __ 

5
  , so the electron mass undergoes relativistic variation according to the relation,

   m =   
mo
 _________ 

 ÷ 
________

 1 – v2/c2  
  , mo is the rest mass of the electron.

  \ l =   h
 ____ 

mo v
    ÷ 

________

 1 – v2/c2   =   6.63 × 10–34

  ______________  
9.1 × 10–31 ×   3 __ 

5
   c

    ÷ 
______

 1 –   9 ___ 
25

    

    =   6.63 × 10–34 × 4  ____________________  
9.1 × 10–31 × 3 × 3 × 108

   = 0.33 × 10–11 m

  \ l = 0.032 Å

Example 9.13  What is the de Broglie wavelength of an electron which has been accelerated from rest 
through a potential difference of 100 V.

Sol.  We know l =   12.25 _____ 
 ÷ 

__
 V  
   Å

  Here V = 100 V

  \ l =   12.28 _____ 
 ÷ 

____
 100  
   = 1.225 A

Example 9.14  An electron and a proton have the same de Broglie wavelength. Prove that the energy of the 
electron is greater than that of the proton. [WBUT 2008]

Sol.  For the electron de Broglie wavelength is given by,

   le =   h
 ____ 

meve
   where me and ve are the mass and velocity of the electron.

  And for the proton, we get

   lp =   h
 _____ 

mpvp
   where mp and vp are mass and velocity of the proton

  But le = lp

or,      h
 ____ 

meve
   =   h

 _____ 
mpvp

   or, meve = mpvp
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  Now, the energy of the electron is given by

   Ee =   1 __ 
2
   meve

2

    =   1 __ 
2
   (meve)

2 ×   1 ___ me
  

    =   1 __ 
2
   (mpvp)

2 ×   1 ___ me
  

    =   1 __ 
2
   mpvp

2 ×   
mp

 ___ me
  

or,   Ee = Ep ×   
mp

 ___ me
   where Ep is the energy of the proton

or,     
Ee

 ___ 
Ep

   =   
mp

 ___ me
  

  \ Ee > Ep [\ mp > me]

  So, the energy of the electron is greater than that of the proton.

Example 9.15  Show that the de Broglie wavelength for a material particle of rest mass mo  and charge q 
accelerated from rest through a potential difference of V volts relativistically is given by

  l =   h
 ___________________  

 ÷ 
__________________

  2 mo qV  ( 1 +   
qV
 ______ 

2 mo e
2
   )   

  

Sol.  Since v is relativistic so Ek π   1 __ 
2
   mv

2 and so, we cannot find momentum directly from Ek. Now using 

relativistic formula

   E2 = p2c2 + m2
o c

4

  Again E = Ek + moc
2 = qV + moc

2

  \ p2c2 = E2 – mo
2 c4

  or, p2c2 = (qV + mo c
2)2 – mo

2 c4

    = q2V2 + 2qV moc
2

  \ p2 =   
q2V2

 ____ 
c2

   + 2q Vmo = 2mo qV  ( 1 +   
qV
 ______ 

2 mo c
2
   ) 

  \ p =  ÷ 
_________________

  2mo qV  ( 1 +   
qV
 _____ 

2moc
2
   )   

  \ de Broglie wavelength l =   h __ p   =   h
 __________________  

 ÷ 
_________________

  2 mo qV  ( 1 +   
qV
 _____ 

2moc
2
   )   
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Example 9.16  Find out the glancing angle at which electrons of 100 eV should fall on the lattice planes of 
a crystal to obtain a strong Bragg reflection in the first order [lattice spacing, d = 2.15 Å].

Sol.  The de Broglie wavelength of an electron accelerated through a potential difference V is

   l =   12.25 _____ 
 ÷ 

__
 V  
   =   12.25 _____ 

 ÷ 
____

 100  
   = 1.225 Å

  Again for the nth order Bragg diffraction maximum,

   2d sin q = nl

where q is the glancing angle of incidence.

  For 1st order n = 1

  \ 2d sin q = l or, sin q =   l ___ 
2d

   =   1.225 _______ 
2 × 2.15

   = 0.285

  \ q = 16.5°

Example 9.17  A crystalline material has a set of Bragg planes separated by 1.1 Å. For 2 eV neutrons what 
is the highest order Bragg reflection? [Given glancing angle q = 22°]

Sol.  The de Broglie wavelength of the neutron is given by

   l =   h
 ____ 

mov
   =   h

 _______ 
 ÷ 

______
 2mo Ek  
   =   hc

 __________ 
 ÷ 

_________

 2(moc
2) Ek  

  

    =   12400 eV Å  ___________________________   
 ÷ 

_________________________

   2 × (940 × 106 v) × (0.083 eV)   
  

[Here hc = 12400 eV Å and moc
2 = 940 × 106 eV]

    = 0.993 Å

  For the first-order peak,

   d =   l
 ______ 

2 sin q
   =   0.993 Å _________ 

2 × sin 22°
   = 1.33 Å

Example 9.18  Calculate the de Broglie wavelength of a baseball of mass 1 kg, moving at a speed 10 m/s. 
Discuss the reason why we can’t observe its wave nature.

Sol.  The de Broglie wavelength is given by

   l =   h __ p   =   h
 ___ mv  

  Here m = 1 kg, v = 10 m/s, h = 6.62 × 10–34 Js.

  So l =   6.62 × 100–34

  ___________ 
1 × 10

   = 6.62 × 10–35 m

  or, l = 6.62 × 10–25 Å

  To observe the diffraction effect, the dimension of the apparatus through which light passes must be 
comparable with the wavelength. The de Broglie wavelength of the baseball is so small that we can 
not expect to construct an apparatus which is capable of detecting wave nature by causing the diffrac-
tion of its de Broglie wave.
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Uncertainty Principle

Example 9.19  The maximum uncertainty in the position of an electron in a nucleus is 2 × 10–14 m. Find 
the minimum uncertainly in its momentum, given h = 6.63 × 10–34 Js. [WBUT 2002]

Sol.  We have from uncertainly principle

   Dx Dp =   h ___ 
4p

  

  Now if position uncertainty is maximum, then momentum uncertainly will be minimum i.e.,

   Dxmax Dpmin =   h ___ 
4p

  

or,   Dpmin =   h
 _________ 

4p × Dxmax
   =   6.62 × 10–34

  ____________  
4p × 2 × 10–14

  

    = 2.6 × 10–21 kg ms–1

Example 9.20  What is the minimum uncertainty in the energy state of an atom if an electron remains in 
this state for 10–8 s?

Sol.  Since the time available for energy measurement is 10–8 s, the uncertainty in time Dt s. Now from the 

relation DE Dt =   h ___ 
4p

  , we get

   DE =   h
 _____ 

4p Dt
   =   hc

 ______ 
4p c Dt

   =   12400 eV Å  ______________________   
4p × 3 × 108 × 10–8 × 1010

   [1 Å = 10–10 m]

    = 0.329 × 10–7 eV.

  So the natural width (minimum uncertainty) of the energy state = 0.329 × 10–7 eV.

Example 9.21  Assume that an electron is inside a nucleus of radius 10–15 m. Calculate from the uncer-
tainty principle the minimum kinetic energy of the electron. [WBUT 2007]

Sol.  Using uncertainty relation

   Dpmin =   h
 ________ 

4p Dxmax
  

  Here Dxmax is the diameter of the nucleus = 2 × 10–15 m.

  \ Dpmin =   6.62 × 10–34

  _________________  
4 × 3.14 × 2 + 10–15

   kg ms–1

    = 0.263 × 10–19 kg ms–1

  Now E2
min

 = p2
min c

2 + mo
2 c4

    = (0.263 × 10–19) × (3 × 108)2 + (9.1 × 10–31)2 × (3 × 108)4

  or, E2
min = 6.2 × 10–23

  \ Emin = 7.9 × 10–12 joule

    =   7.9 × 10–12

 _________ 
1.6 × 10–19

   eV = 49 MeV
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Example 9.22  An electron has a speed 4 × 105 m/s within the accuracy of 0.01 per cent. Calculate the 
uncertainty in position of the electron. Given h = 6.62 × 10–34 Js.

Sol.  Uncertainty in velocity =   0.01 ____ 
100

   × 4 × 105 = 40 m/s

   Dx Dp =   h ___ 
4p

  

   Dx =   h
 _______ 

4p (Dp)
   

    =   6.62 × 10–34

  ______________________   
4 × 3.14 × 9.1 × 10–31 × 40

   [here Dp = m Dv]

    = 1.447 × 10–6 m.

Example 9.23  If a component of angular momentum of the electron in a hydrogen atom is known to be 
2 h within 5% error, show that its angular position in the plane perpendicular to the component can not be 
specified at all.

Sol.  According to uncertainty relation

   DL Dq  h

  Here DL = uncertainty in angular momentum

   Dq = Corresponding uncertainty in angular position 

  \ DL =   5 × 2h
 

______ 
100

  

  So Dq =   h ___ 
DL

   =   h × 100 _______ 
5 × 2 h

   = 10 radians > 2p

  The angle in a plane perpendicular to the component of angular momentum cannot be greater than 
2p. So, the orbital angular position of the electron in the plane perpendicular to the given component 
of angular momentum can not be specified at all.

Example 9.24  Imagine an electron to be somewhere in the nucleus whose dimension is 10–14 m. What is 
the uncertainty in momentum? Is this consistent with the binding energy of nuclear constituents?

Sol.  For uncertainty relation

   Dx Dp  h =   h ___ 
2p

  

   Dp =   h
 _____ 

2p Dx
   =   6.62 × 10–34

  ______________  
2 × 3.14 × 10–14

   = 1.054 × 10–20 kg m/s

  The least value of momentum equal to 1.054 × 10–20 kg m/s

  The corresponding kinetic energy of electron is

   E = pc [Here rest mass energy of electron is very small]

    = 1.054 × 10–20 × 3 × 108 J

    = 3.162 × 10–12/1.6 × 10–19 eV

    = 20 MeV
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  Experiments shows that energy of electrons in nuclear disintegration (b – decay) is very much less 
than 20 MeV. Hence the uncertainty principle rules out the possibility of electrons being a nuclear 
constituent.

Review Exercises

Part 1: Multiple Choice Questions

 1. Total energy emission per unit area per unit time from the surface of a blackbody at an absolute tem-
perature T is proportional to

 (a) T  3/2 (b) T  4 (c) T (d) T  5/2

 2. Quantum nature of light emerged in an attempt to explain

 (a) radioactivity   (b) pair production

 (c) black-body radiation   (d) interference of light

 3. The absorptive power of a blackbody is

 (a) 2 (b) 0 (c) 1 (d) 3

 4. Blackbody radiation is

 (a) an elastic wave   (b) mechanical wave

 (c) electromagnetic wave  (d) None of these

 5. Wien’s displacement law could explain the distribution of thermal radiation in the spectrum of 
blacbody radiation in the region of

 (a) higher wavelength   (b) lower wavelength

 (c) middle wavelength   (d) None of these

 6. All the radiation laws can be shown to be special cases of 

 (a) Wien’s law   (b) Stefan – Boltzmann’s law

 (c) Rayleigh – Jeans law   (d) Planck’s law

 7. Rayleigh – Jeans law could explain the energy distribution in the spectrum of blackbody radiation 
in the region of 

 (a) higher wavelength   (b) lower wavelength

 (c) middle wavelength   (d) X-rays

 8. Average energy of an oscillator of frequency v in a cavity at an absolute temperature T is,

 (a)   kT
 ___ 

hv
   (b) kT (c)   hv

 _____ 
ehv/kT

    – 1 (d)   hv
 _____ 

ehv/kT
    + 1

 9. The emissive power of a blackbody kept at an absolute temperature [WBUT 2006]

 (a) T 4 (b) T 3 (c) T 5 (d) T –1

 10. Planck’s oscillator has

 (a) continuous energy   (b) discrete energy

 (c) a mixture of continuous and discrete (d) None of these
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 11. The wavelength of which the spectral energy density of emitted radiation at temperature T from a 
blackbody attains maximum value, is proportional to, [WBUT 2005]

 (a)   1 __ 
T

   (b) T (c) T 4 (d) T 3/2

 12. Number of oscillation modes for the electromagnetic standing waves of frequency v and v + dv or the 
cavity radiation is proportional to [WBUT 2008]

 (a) v (b) v2 (c) v4 (d)   hv
 ________ 

ehv/KT – 1
  

 13. The Compton wavelength is [WBUT 2004]

 (a)   h
 ____ moc

   (b)   h
 ____ 

moc
2
   (c)   h

 ____ 
moc

2
   (d)   h

 ____ moc
  

 14. The Compton shift depends on 

 (a) angle of scattering   (b) material of the target

 (c) wavelength of the incident X-rays (d) None of these

 15. The Compton shift is maximum when the scattering angle is

 (a) 45° (b) 90° (c) 180° (d) 60°

 16. Compton effect is observed if the target electron is

 (a) free

 (b) bound to the nucleous

 (c) binding energy is very small compared to the energy of the incident photon

 (d) None of these

 17. In unmodified Compton line, the wavelength of the scattered photon

 (a) equals the wavelength of the incident photon

 (b) greater than the wavelength of the incident photon

 (c) less then the wavelength of the incident photon

 (d) None of these

 18. The kinetic energy of the recoil electron in Compton effect is desired from the

 (a) lattice energy of the metarial (b) energy of the incident photon

 (c) thermal energy of the free electrons (d) rest mess of the electron

 19. De Broglie proposed the hypothesis of matter wave by examining the parallelism of

 (a) light and sound   (b) heat and motion

 (c) mechanics and optics   (d) electricity and magnetism

 20. The de Broglie wavelength of a particle with momentum p is

 (a)   h __ 
p2

   (b)   
p2

 __ 
h2

   (c)   h __ p   (d)   
p
 __ 

h2
  

 21. The de Broglie wavelength is associated with moving

 (a) charged particles   (b) macroscopic particles 

 (c) substomic particles   (d) electrically neutral particles
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 22. A proton and an electron are accelerated by the same potential difference. Let le and lp denote the 
de Broglie wavelengths of the electron and the proton respectively, then

 (a) le = lp (b) le < lp (c) le > lp (d) None of these

 23. A stone is dropped from the top of a building? What happens to the de Broglie wavelength of the 
stone as it falls?   [WBUT 2008]

 (a) It increases   (b) It decreases

 (c) Remains constant   (d) de Broglie wavelength can’t be defined

 24. Phase velocity and group velocity are equal when the medium is

 (a)  dispersive (b) non-dispersive (c) isotropic (d) None of these

 25. Which statement is correct?

 (a) group velocity (vg) = phase velocity (vp)

 (b) vg > vp (c) vp > vg (d) vp =   1 __ 
vg

  

 26. The de Broglie wavelength of a moving electron subjected to a potential V is

 (a)   1.26 ____ 
 ÷ 

__
 V  
   Å (b)   12.26 _____ 

 ÷ 
__

 V  
   Å (c)   12.26 _____ 

V
   Å (d) None of these

 27. The de Broglie wavelength of a body of mass m and kinetic energy E is [WBUT 2005]

 (a)   
 ÷ 

____
 2mE  
 ______ 

l
   (b)   2mh

 ____ 
 ÷ 

__
 E  
   (c)   h

 ______ 
 ÷ 

____
 2mE  
   (d)   

 ÷ 
____

 2mh  
 _____ 

E
  

 28. If visible light is used to study Compton scattering then the Compton shift will be [WBUT 2007]

 (a) negative (wavelength of the scattered light will be lesser)

 (b) move positive than what is observed with X-ray

 (c) zero

 (d) positive but not detectable in the visible window

 39. An a - particle is 4 times heavier than a proton. If a proton and an a - particle are moving with the 
same velocity, how do their de Broglie wavelengths compare? [WBUT 2006]

 (a) lp = la (b) lp = 4 la (c) lp =   
la

 ___ 
2
   (d) lp =   

la
 ___ 

4
  

 30. The product of group velocity (vg) and phase velocity (vp) of de Broglie waves is

 (a) c (b)  c2 (c) less than c (d) None of these

 31. If lr and lnr be the relativistic and non-relativistic wavelengths of the electron, then

 (a) lr > lnr (b) lnr = lr (c) lnr > lr (d) lr =   1 ___ 
lnr

  

 32. Uncertainty principle is the consequence of

 (a) wave nature of particle (b) wave-particle duality

 (c) particle nature of wave (d) particle-particle interaction

 33. Heisenberg energy-time uncertainty relation is given by

 (a) DE Dt £ h (b) DE Dt ≥   h 
__ 
2
   (c) DE Dt ≥   h __ 

4
   (d) None of these
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 34. For very heavy particle

 (a) Dx Dvx =   l __ 
2
   (b) Dx Dvx = 0 (c) Dx Dvx = a (d) Dx Dvx =   h 

__ 
2
  

 35. Uncertainty principle has significance only in 

 (a) macroscopic world   (b) microscopic world

 (c) both macroscopic and microscopic world (d) None of these

 36. In the measurement of a physical entity, and experiment can exhibit only

 (a) particle aspect     (b) wave aspect

 (c) cannot exhibit wave and particle aspect simultaneously (d) All of the above

 37. Uncertainty principle tells that [WBUT]

 (a) a particle can have only position but no momentum

 (b) a particle can have only momentum but no position

 (c) one can determine simultaneously the position and momentum of a particle

 (d) one cannot determine simultaneously the position and momentum of a particle

Answers

 1. (b) 2. (c) 3. (c) 4. (c) 5. (b) 6. (d) 7. (a) 8. (c)

 9. (a) 10. (b) 11. (a) 12. (b) 13. (d) 14. (a) 15. (c) 16. (c)  
 17. (a) 18. (b) 19. (c) 20. (c) 21. (c) 22. (c) 23. (b) 24. (a)  
 25. (c) 26. (b) 27. (c) 28. (c) 29. (b) 30. (b) 31. (c) 32. (b)  
 33. (b) 34. (b) 35. (b) 36. (d) 37. (d)

Short Questions with Answers

 1. What is the difference between Compton effect and photoelectric effect?
  In Compton effect, the incident photon collides with loosely bound electron and gives some part 

of its energy to the electron. The incident photon then is scattered with its reduced energy of the 
scatterer.

  In photoelectric effect, the incident photon is completely absorbed by the bound electron and elec-
tron is emitted from metal surface with its maximum kinetic energy which is equal to the difference 
of energy between the incident photon and the work function of the metal.

 2. Why is Compton effect not observed with visible light?
  The wavelength of visible light is l = 6000 Å

  So, energy of the visible light =   hc
 ___ 

l
   =   6.62 × 10–34 × 108

  ______________________   
6000 × 10–10 × 1.6 × 10–19

   eV = 0.7 eV

  But the binding energy of an electron in the atom  10 eV, so when visible light falls on a target, it 
cannot liberate electrons. So we cannot observe Compton effect with visible light. 

 3. Show that it is impossible for a photon to give all of its energy to the electron.
  We know that kinetic energy of recoil electron is

   EK = hv   
2a cos2 f

  ________________  
(1 + a)2 – a2 cos2 f

  . Here a =   hv
 ____ 

mc2
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  and f is the angle of recoil electron with incident photon.

  For maximum kinetic energy cos f = 1

  So maximum value of EK =   2a
 ______ 

1 + 2a
   hv

  Since   2a
 ______ 

1 + 2a
   < 1, the maximum kinetic energy of the electron is less than hv. So we can say that 

photon does not transfer its entire energy to the electron.

 4. Explain modified and unmodified lines in Compton effect.
  The presence of the modified line is due to the collision of X-ray photon with free electrons. But we 

know that electrons are bound to the atom. So, when the collision occurs between the X-ray photon 
and the atom as a whole, the rest mass m of electron must be replaced by mass (M) of the atom and 
the equation for Compton shift (equation) must be replaced by

   Dl =   h
 ___ 

Mc
   (1 – cos q)

  For large value of M, Dl is nearly zero this condition gives unmodified line, i.e., there is no shifting 
in wavelength. So wavelength of the scattered photon remains same as that of the primary.

  For heavier element, the intensity of unmodified line is greater than modified line and the intensity 
of unmodified line is smaller than modified line.

 5. Show that Compton shift is independent of the nature of the scatterers.

  The Compton shift Dl =   h
 ____ moc

   (1 – cos q)

  where q is the scattering angle.

  From expression of Compton we see that Dl depends only on the rest mass of the electron (mo) and 
the scattering angle q. So we can say that Compton shift is totally independent of the nature of the 
scatterer.

 6. Does the principle of uncertainty apply to macroscopic as well as microscopic bodies?

  According to uncertainty principle Dp Dx =   h ___ 
2p

  , so Dx Dvx    h
 ____ 

2mp
  . For macroscopic object, m is 

very large compared to h. So uncertainty is very small. Hence macroscopic object possesses definite 
position and momentum. But for microscopic object, m is very small, hence uncertainty principle is 
applicable.

 7. What is the difference between phase velocity and group velocity?
  The velocity with which an individual wave of a wavepacket travels is called phase velocity. The 

velocity with which the slowly varying envelope of the modulated pattern due to a group of waves 
travels in a medium is called group velocity.

  The phase velocity may be greator than the velocity of light. But particle (or group) velocity is 
always less then the velocity of light.

 8. Calculate the de Broglie wavelength of a ball of mass 250 g moving at a speed of 20 m/s. What 
conclusion you can draw from it?

  The de Broglie wavelength of the ball is given by

   l =   h __ p   =   h
 ___ 

mv
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  Here mass of the ball m = 250 g =   1 __ 
4
   kg, velocity of the ball v = 20 m/s,

  Planck’s constant h = 6.62 × 10–34 J/s

  So, l =   6.62 × 10–34

 __________ 
  1 __ 
4
   × 20

   = 1.23 × 1–34 m 

     = 1.32 × 10–24 Å

  We know that to observe diffraction effects, the dimension of the apparatus through which light 
passes must be comparable with the dimension of the wavelength. The de Broglie wavelength of the 
ball is so small that we cannot construct an apparatus which is capable of detecting its de Broglie 
wavelength.

 9. Show that spectral lines have a finite width.
  We know from Heisenberg’s energy-time uncertainty principle

   DE Dt    h 
__ 
2
   =   h ___ 

4p
  

  or, DE =   h
 _____ 

4p Dt
  

  The lifetime of an electron in an excited state is of the order of 10–8 s, i.e., Dt = 10–8 s. This implies 
that the excited energy levels of an atom must have a finite width rather than sharp line. So, we can 
say that the spectral lines have a finite width.

 10. Prove that the rest mass of a photon is zero. 

  We know that phase velocity vp =   w __ 
k
   =   h w

 ___ 
hk

   =   E __ 
P

   ...(1)

  where E and P are total relativistic energy and momentum of a paticle.

  Again, for relativistic particle total energy E follow the relation,

   E2 = p2c2 + mo
2 c4

  So from Eq. (1), vp =   E __ p   =   [   p2c2 + mo
2 c4

 ___________ 
P2

   ]  1/2

 

    = c   [ 1 +   
mo

2 c2

 _____ 
p2

   ]  1/2

  ...(2)

  Since the velocity of the photon is c, so vp = c

  we have from Eq. (2),

   c = c   ( 1 +   
mo

2 c2

 _____ 
p2

   )  1/2

  = c   ( 1 +   
mo

2 c2 l2

 _______ 
h2

   )  1/2

 

 [ According to de Broglie hypothesis l =   h __ p   ] 
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  which gives 

     
mo

2 c2 l2

 _______ 
h2

   = 0

  The equation is valid only when mo = 0

  So the rest mass of the photon is zero.

Part 2: Descriptive Questions

 1.  (a) State the characteristics of blackbody radiation.

 (b) Deduce Planck’s law for the spectral distribution of energy in blackbody radiation.

 (c) Show graphically, how the energy density versus frequency (or the wavelength) plot of a 
blackbody radiation is changed if the temperature is increased. [WBUT 2007]

 2. State clearly, explaining all the terms, the Planck’s law, Rayleigh – Jeans law and Wien’s displace-
ment law for radiation. Find out the two limits at which the Planck’s formula reduces to the other 
two.   [WBUT 2006]

 3.  (a) State Planck’s hypothesis and hence derive Planck’s radiation law. [WBUT 2005]

 (b) Show that the temperature dependence in Stephan’s law can be derived from Planck’s radiation 
law.   [WBUT 2008]

 4.  (a) Derive an expression for Compton shift in wavelength for a photon scattered from a free electron 
at an angle q.   [WBUT 2002, 2005]

 (b) At which angle will the shift be maximum? [WBUT 2005]

 5. A photon of energy E is incident on a stationary electron target and the angle of Compton scattering 
of the photon is q. Show, using non-relativistic kinetic energy that the KE of recoil of the electron 
is

    
E2(1 – cos q)

  ________________  
mc2 + E(1 – cos q)

   where m is the mass of the electron.

 6.  (a) Why cannot Compton effect be observed with visible light?

 (b) Derive the expression for Compton shift when a photon interacts with an electron. Show that it 
is impossible to transfer all the energy of the photon to the electron. [WBUT 2008]

 7. Discuss how classical approaches failed to account for the spectral distribution of energy density in 
a blackbody radiation. How did Planck overcome this difficulty? Discuss Wien’s displacement law 
from Planck’s law.

 8.  (a) What is Compton effect?

 (b) Why unmodified line appears in Compton scattering?

 (c) Prove that Compton shift is independent of the nature of the scatterer.

 9.  (a) What do you mean by matter wave? [WBUT 2002]

 (b) What is the experimental evidence in favor of de Broglie hypothesis of matter waves?
[WBUT 2005]

 10.  (a) Describe the experiment which justifies de Broglie’s hypothesis about the wave nature of 
particles.
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 (b) Show that the product of group velocity and phase velocity of the de Broglie wave are con-
stant.   [WBUT 2008]

 11.  (a) What is wave-particle duality?

 (b) Show that the de Broglie wavelength l associated with an electron of mass m and kinetic energy 
Ek is given by

   l =   h
 _______ 

 ÷ 
______

  2m Ek  
  

 (c) Describe the Davision and Germer experiment giving emphasis on the interpretation of the result 
of the experiment.

 12.  (a) Show that the de Broglie wavelength of a particle of mass m and kinetic energy Ek is given by

   l =   hc
 ______________  

 ÷ 
_____________

  Ek (Ek + 2moc
2)  

  

 (b) Why is quantum mechanics used in case of moving electrons while for a moving car we use 
newtonian mechanics? Explain. [WBUT 2005]

 13. (a) Starting from de Broglie’s hypothesis show that the group velocity associated with a particle is 
the same as the particle velocity. [WBUT 2007]

 (b) Show that the de Broglie wavelength l of electrons of charge e and energy E (in eV) is given 
by,

   l =   h
 ______ 

 ÷ 
_____

 2meV  
   [WBUT 2005]

 14.  (a) State and explain Heisenberg uncertainty principle. [WBUT 2003, 2005]

 (b) Show that there cannot be any existance of free electrons inside the nucleus of an atom.
[WBUT 2005]

 15.  (a) Starting from de Broglie wave concept obtain Heisenbergs uncertainty principle.

   Dx Dpx ≥ h

 (b) Give one illustration of this principle. 

 (c) Discuss the significance and importance of uncertainty principle.

Part 3: Numerical Problems

 1. Calculate the number of photons emitted by a 10 watt source of monochromatic light having wave-
length of 100 nm.   [5.03 × 18]

 2. X-rays of wavelength l = 0.124 Å is scattered from a block of graphite. What is the wavelength of 
the X-rays scattered in the backward direction?

 3. Calculate the maximum energy in eV, that can be transferred to an electron in a Compton experiment 
when the incident quanta are X-rays of wavelength 0.50 Å. [4.7 eV]

 4. X-rays of wavelength 10–11m are scattered by loosely bound electrons. Find the maximum wave-
length present in the scattered rays and maximum kinetic energy of the recoil electron.

[1.485 × 10–11 m, 40.576 KeV]

 5. A g - ray beam of wavelength 1.8 × 10–2 Å is scattered by free electrons at an angle of 90° with the 
incident beam. Calculate the Compton wavelength shift. [0.0242 Å]
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 6. Calculate the Compton wavelength (in Å) of an electron. [WBUT 2005] [0.0242 Å]

 7. X-ray of wavelength l0 = 2.00 Å are scattered from a block of carbon. The scattered X-ray are 
observed at an angle of 45° to the incident beam.

 (a) Calculate the Compton shift and the wavelength of the scattered X-ray at f = 45°.

 (b) Find the fraction of energy lost by the photon in this collision. [2.007 Å, 0.354%]

 8. Calculate the wavelength associated with an electron accelerated to a potential difference of 
1.25 K eV.   [3.46 × 10–11 m]

 9. What is the de Broglie wavelength of an electron moving with a velocity, v =   3 __ 
5
   c? [0.0323 Å]

 10. You have 10 eV photon and 10 eV electron. Which one has shorter wavelength? Explain.
[electron]

 11. Find out the de Broglie wavelength of a neutron of kinetic energy 10 MeV?

 12. Davision and Germer studied electron diffraction with nickel crystal and found a first-order peak at 
65° with electron beam of 54 eV. If instead, a 216 eV beam were used, find the angle at which the 
corresponding peak will be seen. [WBUT 2007] [26.9°]

 13. What is the de Broglie wavelengths of any electron which has been accelerated from rest through a 
potential difference of 100 V? [1.225 Å]

 14. Calculate the minimum uncertainty in position of an electron moving with a velocity of 
3 × 107 ms–1.   [0.019 Å]

 15. The average time interval that elapses between the excitation of an atom and the time it radiates 
energy is 10–8 sec. Calculate the uncertainty in the energy of emitted photons and the limit of accu-
racy with which the frequency of the emitted radiation may be determined.

[4.14 × 10–7 eV, 108 cycle/sec]

 16. Calculate the minimum energy of a photon for its existence within the nucleus of diameter 10–14 m.
[4.9 MeV]

 17. On an average, an excited state of a system exists in that state for 10–11 s. What is the minimum 
uncertainty in the energy of an excited state? [Question Bank, WBUT] [1.054 × 10–23 J]



CHAPTER

10
Crystallography

 10.1 INTRODUCTION

The study of the geometrical form and other physical properties of crystalline solids by using X-rays, neutron 
beams and electron beams constitutes the science of crystallography. Based on the nature of arrangement of 
microparticles, solid can be classified as crystalline solids and amorphous solids. Crystalline solids are those 
in which the atoms or molecules are arranged in a very regular and orderly fashion in a three-dimensional pat-
tern. The atoms or molecules are strongly bound and arranged in a regular manner inside the crystal. Further, 
when a crystal breaks, the broken pieces are all having regular shape. The crystalline solids have directional 
properties, i.e., the physical properties like thermal conductivity, electrical conductivity have different values 
in different directions and therefore they are called anisotropic substances. Crystalline solids may be made 
up of metallic crystals or non-metallic crystals. Examples of metallic crystals are copper, aluminum, silver 
tungsten and examples of non-metallic crystals are crystalline carbon, crystalline polymers. Amorphous sol-

ids have no regular structure. The amorphous solids are those in which atoms or molecules are arranged in an 
irregular manner and does not have any external geometrical shape, even though the atoms or molecules are 
strongly bound to one another. Amorphous solids have no directional properties and therefore they are known 
as isotropic substances. The most important amorphous materials are glasses, plastics and rubbers. The 
structure of the crystalline solids are mainly determined by X-ray diffraction, electron diffraction and neutron 
diffraction, knowing the structural properties of a crystal one can determine thermal, electrical mechanical 
and optical properties of it.

 10.2 CRYSTAL LATTICE AND LATTICE STRUCTURE

A crystal is constructed by the infinite repetation in space of identical structural units. One can replace each 
unit by a geometrical point. The result is a pattern of points having the same geometrical properties as the 
crystal. This geometrical pattern is the crystal lattice or simply lattice.

Lattice points Lattice points denote the position of atoms or molecules in the crystals.

Space lattice An arrangement of an infinite array of points in the form of a two-dimensional or a 
three-dimensional network in a crystal is known as space lattice. In the lattice array (or space lattice), 
every point has surroundings environments identical to that of every other point in the array.
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10.2.1 Unit Cell

The unit cell is the smallest block or geometric figure from which the entire crystal is built up by repetition in 
three dimensions. If we divide the whole crystal into very small entities, we get a group of atoms in the form 
of a definite structure. That group of atoms of definite shape and size is known as unit cell. It is also known as 
fundamental elementary pattern of a crystal because it is repeated again and again to form the lattice structure 
of a crystal. In general an unit cell may be defined as that minimum volume of a solid from which the 
entire crystal can be constructed by translational repetition in three dimensions.
 In order to understand the basic characteristics of a crystal structure, we show a two-dimensional arrange-
ment of the lattice points in Fig. 10.1.
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 Fig. 10.1 Array of points in two dimensions.

 Here we consider the case of a two-dimensional (say in x-y plane) array of atoms in Fig. 10.1. Suppose  
 _
 
›
 a   

and  
 _
 
›
 b   are two fundamental translational vectors along x and y axes. If the parallelogram ABCD is first 

translated through  
 _
 
›
 a   and then through  

 _
 
›
 b  , the parallelogram CEFG is produced. The arrangement of the lattice 

points in the parallelogram produced by the translations is identical with the arrangement in the intial posi-
tion. It is called translational symmetry which is responsible for periodic structure of the lattice. The angle 
between directions of translation among a and b may be or may not be equal to 90°.

 The parallelogram ABCD is called the unit cell. The unit cell in a crystal lattice may be chosen in different 
manners. For examples in Fig. 10.1, instead of ABCD, we could have chosen the parallelogram PQRS and 
KLMN as unit cell.

Primitive Cell 

The primitive cell is defined as a unit cell which has only one atom at each corner of it and no where else in 
Fig. 10.1, the unit cell ABCD has lattice points at each of the four corners only and is called the primitive cell. 
So, all primitive cells are unit cells but all unit cells may or may not be primitive cells.

Non-primitive Cell 

If the cell contains additional one or more atoms with an atom at each corner of the unit cell, these cells are 
called non-primitive cells. In Fig. 10.1, unit cell PQRS is a non-primitive cell.

 In two dimensions, choosing any point as origin, the position of any lattice point in space lattice denoted 
by  

 _
 
›
 r   can be expressed in terms of translational vectors  

 _
 
›
 a   and  

 _
 
›
 b   as

   
 _
 
›
 r   = m 

 _
 
›
 a   + n 

 _
 
›
 b   ...(10.1)
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 In Fig. 10.1 m = 2 and n = 2

 In three dimensions if  
 _
 
›
 a  ,  

 _
 
›
 b   and  

 _
 
›
 c   are three transnational vec-

tors, then we can write lattice vector  
 _
 
›
 r   as

   
 _
 
›
 r   = m 

 _
 
›
 a   + n 

 _
 
›
 b   + o 

 _
 
›
 c   

...(10.2)

where m, n and o are integers.

 The parallelepiped with the sides a, b and c along these three 
vectors constitute the unit cell (Fig. 10.2). By repeated transla-
tions of this unit cell through integral multiples of the vector a, b 
and c, we get the entire crystal structure.

10.2.2 Basis or Motif

A crystal is formed by placing an atom or a group of atoms at 
each lattice point in a regular manner. Such an atom or a group 
of atoms serves as the basic building unit for the entire crystal 
structure and it is termed as basis or motif. The basis may be 
a single atom, two atoms or more. For a single atom, basis is 
called monoatomic, for two atoms, basis is called diatomic and 
so on. In case of Al, basis is monoatomic, in KCl it is diatomic, 
in SnO2 it is triatomic. The crystal structure is formed when a 
lattice is combined with a basis (Fig. 10.3)

 The logical relation is

  Space lattice + Basis = Crystal structure

10.2.3 Bravais Lattices

In 1845, the French crystallographer Bravais first introduced the concept of the three-dimensional lattice 
while explaining the structure of crystal. He showed that only 14 types of space lattices are possible in the 
seven systems of crystals. It has been proved mathematically that there are only 14 independent ways of 
arranging points in three-dimensional space such that each arrangement confarms to the defination of a space 
lattice. Thus the fourteen possible space lattices of the seven crystal systems are: one triclinic, two mono-
clinic, four orthorhombic, two tetragonal, one hexagonal, one rhombohedral and three cubic. The shapes of 
these units are shown in Table 10.1.

 10.3 SYMMETRY ELEMENTS OF A CRYSTALLINE SOLID

The seven crystal system are characterized by three symmetry elements: (a) the centre of symmetry, (b) the 
planes of symmetry, and (c) the axes of symmetry.

 A symmetry operation is an operation performed on an object or pattern which brings it to a position 
which is absolutely indistinguishable from the old position.

 A symmetry element is an operator which performs the symmetry operation.

 (a) Center of symmetry It is a point in a crystal such that any line passing through it meets the 
surface of the crystal at equal distances in both directions. It is also known as the center of inversion. 
Each cubic crystal has one center of symmetry.

Fig. 10.2 A three-dimensional unit cell.
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Fig. 10.3 Basis at every lattice point.



Basic Engineering Physics10.4

 (b) Plane of symmetry An imaginary plane passing through a crystal such that portions on the two 
sides of the plane are exactly alike is known as a plane of symmetry. This is also known as bilateral 

symmetry.

Table 10.1 Fourteen Bravais lattices in three dimensions.

 Lattice parameters

 Sl. Name of the Relation between Interfacial Shape of the Bravais No. of possible Examples

 No. system primitives angles Lattice with Lattice Bravais lattices

     symbol* in the system

 1. Cubic a = b = c a = b = g = 90° 

P

a

c

b
ab
g

I F

 3 NaCl, Cu, Al, Cr etc

 2. Tetragonal a = b π c a = b = g = 90° 

P I

 2 SnO2, TiO3, NiSO4

 3. Trigonal a = b = c a = b = g π 90°  1 Sb, CaSO4, As etc.

 4. Monoclinic a π b π c a = b = 90° π g 

P C

 2 Na2SO4, FeSO4 etc.

 5. Triclinic a π b π c a π b π g π 90° 
P

 1 [CuSO4, 5H2O],

       
K2SO4, K2Cr2O7

 6. Ortho- a π b π c a = b = g = 90° 

P I

 4 KNO3, MgSO4,

  

rhombic

   

F C

  

PbCO3

 7. Hexagonal a = b π c a = b = 90° 

P

120°

 1 AgCl, Mg, Zn etc.

    g = 120°

*p – primitve unit cell, C – base centered, I – Innenzentrierte, a German word meaning body centered F – face centered
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 (c) Axis of symmetry Axis of symmetry is a line passing through the crystal such that if the crystal 
is rotated about this line as axis, it will present the same appearance more than one time during one 
complete revolution. If a cube is rotated about a vertical axis then in one complete revolution of 360° 
there are found to be four positions of the cube which are coincident with its original position. This 
rotation axis is known as an axis of symmetry.

 10.4 ATOMIC RADIUS, COORDINATION NUMBER AND ATOMIC PACKING 
FACTOR (APF) OF CUBIC CRYSTAL SYSTEM

(a) Atomic radius It is defined as half the distance between nearest neighbors in a crystal of a pure 
element. It is denoted by the symbol r. It must be remembered that any two nearest neighboring atoms touch 
each other.

(b) Coordination number (N) The number of equidistant nearest 
neighboring atoms with respect to a particular atom in a given crystal is 
known as coordination number.

 The coordination number for the three types of cubic crystal systems 
can be calculated as follows.

 (i) Simple cubic crystal In simple cubic crystal each corner 
atom is surrounded by 6 atoms at a distance a. There are 12 atoms at 
distances  ÷ 

__
 2   a and so on. In Fig. 10.4a, there are 4 nearest neighbours 

(shown as 1, 2, 3 and 4) of a particular atom 0 in its own plane and there 
are 2 more atoms, one directly above and the other one directly below 
(shown as 5 and 6).

 Hence the coordination number in this case is 6.

 (ii) Face centered cubic crystal In a face centered 
cubic crystal any corner atom O (Fig. 10.4b) is surrounded by 

4 atoms at a distances   a ___ 
 ÷ 

__
 2  
   each. One can draw three mutually 

perpendicular planes through the corner atom O. In each 

plane, it will have 4 nearest neighbors at a distance   a ___ 
 ÷ 

__
 2  
  . So, 

in three dimensions, the immediate neighboring atoms at a 

distance   a ___ 
 ÷ 

__
 2  
   is 12.

 Thus, the coordination number in this case is 12. 

 (iiii) Body centered cubic crystal In a body centered cubic crystal, 

each body centered atom is surrounded by eight atoms at a distances   
 ÷ 
__

 3a  
 ____ 

2
   

(Fig. 10.4c). The other atoms are present at a greater distances.

 Hence, the coordination number of an atom in a body centered cubic 
crystal is 8.

5

23

6x

1

Z

Y
4

0

Fig. 10.4 (a) Simple cubic crystal.

Y

X

Z

O

Fig. 10.4 (b) Face centered cubic structure.

O

Fig. 10.4 (c) Body centered 
cubic structure.
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(c) Atomic packing factor (APF) It is the ratio of the volume occupied by the atoms in a unit cell (v) 
to the total volume of the unit cell (V) is termed as atomic packing factor (APF). Greater the coordination 
number, higher is the volume of APF and more closely packed will be the crystal structure. The atomic 
packing factor for SC, BCC and FCC crystals are 0.52, 0.68 and 0.74 respectively.

 10.5 CUBIC CRYSTAL SYSTEM

We shall now discuss briefly the crystal structures of many materials which are relatively simple. The sim-
plest form of seven crystal systems is cubic crystal system. The cubic structure is the simplest known type 
of array in which the atoms take positions at the corners of the cube. There are three types of cubic crystals. 
These are given below:

 (a) Simple Cubic (SC) crystal

 (b) Body-Centered cubic (BCC) crystal

 (c) Face Centered cubic (FCC) crystal

(a) Simple cubes (SC) crystal This is the simplest and easiest structure of the crystal system. In an 
SC crystal, there is one atom, at each of the eight corners of the cube [Fig. 10.5(a, b)]. In an SC crystal the 
coordination number is six. In this case, each corner atom has four neighbors in the same plane, one vertically 
above and one immediately below, giving a total of six nearest neighboring atoms.

 The atom at a corner of the unit cell is shared by the eight different unit cells having the common corner 
point. There is no atom inside the unit cell.

 Therefore, the effective number of atom per unit cell = 8 ×   1 __ 
8
  

  = 1 atom

 Thus, SC cells are primitive cells.

 From Fig. [10.5(c)], AB represent the atomic radius and if a is the lattice constant, then r =   a __ 
2
  .

 Considering an atom as a hard sphere of radius r, the volume of an atom is   4 __ 
3
   p r3. So, volume of all the 

atoms in the unit cell is

  v = 1 ×   4 __ 
3
   p r3 and volume of the unit cells V = a3.

\  atomic packing factor (APF) =   v 
__ 
V

   =   4 __ 
3
     p r3

 ____ 
a3

   =   
  4 __ 
3
   p r3

 _____ 
(2r)3

  

   =   p __ 
6
   = 0.52 or 52%

 Thus the packing fraction is about 52% and hence this structure is a loosely packed one. Polonium exhibits 
this structure.
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(a) (b) (c)

a r= 2

a

Br r
A

a

a

a

Fig. 10.5 Simple cubic crystal.

(b) Body centered cubic (BCC) crystal The crystal structure of BCC is shown in Fig. (10.6a) which 
contains an atom at the center of the cube apart from eight atoms at the corners. Each atom in this structure 
has eight neighbors [Fig. 10.6(a, b)]. For BCC, the coordination number is eight. Since, there are eight 
surrounding unit cells for any corner atom, their eight body centred atoms form the nearest neighbors for any 

corner atom. The number of atoms in each unit cell of this type are as follows: one center atom and 8 ×   1 __ 
8
   = 1 

corner atoms. Hence the number of atoms per unit cells = 1 + 1 = 2. Therefore, BCC cells are not primitive 

cells. From Fig. 10.6(c) AD = 4r, so we can write

  AC2 = AB2 + BC2 = a2 + a2 = 2a2

 In the triangle ACD, AD2 = AC2 + CD2

   = 2a2 + a2 = 3a2

or,  AD =  ÷ 
__

 3   a.

or,  4r =  ÷ 
__

 3   a or, a =   4 ___ 
 ÷ 

__
 3  
   r

 The volume of an atom is   4 __ 
3
   p r3. So, the volume of all atoms in the unit cells is

  v = 2 ×   4 __ 
3
   p r3 =   8 __ 

3
   p r3

 Volume of all the unit cell is V = a3 =   (   4r
 ___ 

 ÷ 
__

 3  
   )  3  =   64r3

 ____ 
3 ÷ 

__
 3  
  

\  atomic packing factor, APF =   v 
__ 
V

  

   =   8 __ 
3
   p r3 ×   

3 ÷ 
__

 3  
 ____ 

64r3
  

   =   
 ÷ 

__
 3  
 ___ 

8
   p = 0.68

   = 68%

 It means that 68% space of the unit cell is occupied by the atom and the rest 32% space is void space.

 Elements like Fe, Na, K, Cr, Li exhibit this structure.
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(a) (b) (c)

C

a

a

a

B

D

A

4r

Fig. 10.6 Body centered cubic (BCC) crystal.

(c) Face centered cubic (FCC) crystal The crystal structure of FCC is shown in Fig. 10.7 (a, b), 
which contains six atoms at the centers of each of the six faces of the cube, in addition to eight atoms at 
the eight corners. In an FCC crystal the coordination number is twelve. In this case, each corner atom has 
four neighbors atoms as has been shown in Fig. 10.7(b). One can draw three mutually perpendicular planes 
passing through a corner atom. So the total number of nearest neighbors is 12.

 Each of the six face-centered atoms is shared by the two adjoining cubes. Hence, a total of   6 __ 
2
   = 3 such 

atoms belong to the unit cell. Therefore, the effective number of atoms per unit cell of FCC is 3 + 1 = 4

 Thus FCC unit cells are not primitive cells.

 From Fig. 10.7(c), in the triangle ABC

  AC2 = AB2 + BC2 = a2 + a2 = 2a2

 But AC = 4r

 Therefore, (4r)2 = 2a2 or, a =  ÷ 
__

 8   r

 The volume of an atom is   4 __ 
3
   p r3. So, volume of all atoms in the unit cell is

  v = 4 ×   4 __ 
3
   p r3 =   16 ___ 

3
   p r3

 Volume of the unit cell is V = a3 =   (  ÷ 
__

 8   r )  3 

\ atomic packing factor, APF =   v 
__ 
V

   =   16 ___ 
3
     p r3

 ______ 
  (  ÷ 

__
 8   r )  3 

   =   p
 ____ 

3 ÷ 
__

 2  
  

   = 0.74 or 74%

 Thus, the packing fraction is about 74% and the rest 26% space is void space. Hence, this structure is a 
loosely packed one. Elements like Cu, Ag, Pb, Ca, Al, etc., exhibit this structure.
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(a) (b) (c)

a

a

4r
r

A

C

B

Fig. 10.7 Face centered cubic (FCC) crystal.

Table 10.2 Properties of some crystal structures.

 Sl. No Properties Simple Cube (SC) Body Centered Face Centered Cube (FCC)

     Cube (BCC)

 1. Unit cell volume a3 a3 a3

 2. No. of atoms per unit cell 1 2 4

 3. Coordination number 6 8 12

 4. Nearest neighbouring a   
 ÷ 

__
 3  a
 ____ 

2
     a ___ 

 ÷ 
__

 2  
  

  distance (2r)

 5. Density of packing 52% 68% 74%

  (APF)

 6. Example Polonium Iron, Barium, Chromium, Aluminium, Copper Lead
    Sodium, Tungsten Gold

 10.6 RELATION BETWEEN THE DENSITY (r ) OF CRYSTALLINE 
MATERIAL AND LATTICE CONSTANT (a ) OF A CUBIC LATTICE

Let us consider a cubic crystal with lattice constant a and density of the material r. The volume of the unit cell 

is equal to a3. If n be the number of atoms (or no. of lattice points) per unit cell and MA be the atomic weight 

then mass of a unit cell = n   
MA

 ___ 
N

  , where N is the Avogadro’s number. Again mass of each unit cell is r a3

 So r a3 =   
n MA

 ____ 
N

  

or,  a =   (   n MA
 ____ 

Nr
   )  1/3

  ...(10.3)

 This is the relation between lattice constant and density of the material of a cubic lattice.

 For Simple Cubic lattice (SC), n = 1.



Basic Engineering Physics10.10

 So, a =   (   MA
 ___ 

Nr
   )  1/3

  ...(10.4)

 For body centered cubic lattice (BCC) n = 2

 So, a =   (   2 MA
 _____ 

Nr
   )  1/3

  ...(10.5)

 For face centered cubic lattice (FCC) n = 4

 So, a =   (   4 MA
 _____ 

Nr
   )  1/3

  ...(10.6)

 10.7 NOMENCLATURE OF CRYSTAL DIRECTIONS

One basic necessity in crystal analysis is to have a system of notation for directions in a crystal. Let us indi-

cate the direction  
 ___

 
›
 OP  in Fig. 10.8(a). The distance from O to P can be obtained by going along the x-axis 

a distance u times the unit distance a, then along the y-axis a distance v times the unit distance b and then 
in the z-direction distance w times the unit distance c. If u, v and w are the smallest integers the direction 
of  

 ___
 
›
 OP  is written [uvw] with square brackets. Fig. 10.8(b) gives the notation for some important direction in a 

cubic crystal. The square brackets are used to specify a direction with commas. The digits in square brackets 
indicate the indices of the direction.

O

P

y

x

z

ua

vb

wc

(a)

z

y

x

[001]
[111]

[010]O

[1
00

] [110]

[101]

(b)

Fig. 10.8 Crystal directions in 3D: (a) Direction of  
 ___

 
›
 OP .  (b) Some important directions in cubic lattice.

 A negative index is indicated by a bar over the digit. For example, positive x-axis has indices of [100] (read 
one zero zero not one hundred) whereas negative x-axis has indices of [100].

 10.8 MILLER INDICES

It is often necessary to identify planes passing through a space lattice. Orientation of planes in crystal may 
be described in terms of their intercepts on the three axes. For example, plane. ABC [Fig. 10.9(a)] has inter-
cepts of 4 axial units on x-axis and 4 axial unit on y-axis and 2 axial unit on z-axis. Thus, the coordinates of 
intercepts are (4, 4,2). However, as suggested by Miller, it is more useful to describe the orientation of a plane 
by the reciprocal of its numerical perimeters rather than by its linear parameters. These reciprocals when 
converted to whole numbers are called Miller indices. Hence, Miller indices of the crystal plane ABC of Fig. 

10.9(a) are  (   1 __ 
4
   :   1 __ 

4
   :   1 __ 

2
   )  or (1 1 2).
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A¢

C ¢

B ¢
y

z

x

3
4
c

b
2a

2

(a) (b)

A
B

y

z

x

C

Fig. 10.9 Lattice plane intercepting the three crystallographic axes.

 Now, consider plane A¢ B ¢ C ¢ [Fig. 10.9(b)] whose 

intercepts expressed in axial units are   a __ 
2
  ,   b __ 

2
  ,   3c

 ___ 
4
  . Its 

numerical parameters are   1 __ 
2
  ,   1 __ 

2
   and   3 __ 

4
  . Hence, its Miller 

indices which are nothing but reciprocal of its numeri-

cal parameters  (   1 __ 
  1 __ 
2
  
   :   1 __ 

  1 __ 
2
  
   :   1 __ 

  3 __ 
4
  
   )  or  ( 2, 2,   4 __ 

3
   )  or (6 6 4) or 

(3 3 2). In a cubic crystal (100) is equal to the set of its 
six faces (100), (010), (001), (100), (010) and (001). The symbols for a family of parallel planes is <hkl>. So 
we can define Miller indices of a crystal plane as the reciprocals of the intercepts of a plane on the crystal-
lographic axes when it is reduced in form of smallest numbers.

10.8.1 Procedure for Finding Miller Indices 

 (i) Find the intercepts of the plane on the three coordinate axes prefererably crystallographic axes. Let 
these are x1, y1, z1 along x, y, and z axes respectively.

 (ii) Then express them in terms of the axial units. Let these be x1 = ua, y1 = vb and z1 = wc.

 (iii) Next take the numerical parameters of the plane, i.e., u : v : w. The numerical parameters must be in 
whole numbers.

 (iv) Find the ratio of their reciprocals  (   1 __ u   :   1 __ v   :   1 __ w   ) .
 (v) Convert these reciprocals into whole numbers by multiplying each with their LCM to get the smallest 

whole number.

 (vi) Denote the results in the form of (hkl) which called Miller indices of the plane.

Fig. 10.10 Shows some important planes in a 
cubic crystal system.

z

x
y

z

x y

z

x yz

x

y

z
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z

x y

(100) (110) (111)

(002)
(100)
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 10.9 PERPENDICULAR DISTANCE BETWEEN SUCCESSIVE PLANES IN 
A CRYSTAL LATTICE

Suppose that the plane shown in Fig. 10.11 belongs to a family of 
planes whose Miller indices are (hkl). Let us consider any lattice 
point O as origin. Let ON = d perpendicular distance from the origin 
to the plane, which is known as interplaner distance of the family of 

the planes. The intercepts of the plane on the three axes are OA =   a __ 
h
  , 

OB =   b __ 
k
   and OC =   c __ 

l
  .

 Let the direction cosines of ON be cos a, cos b and cos g where

  cos a =   d
 ___ 

OA
   =   d __ 

  a __ 
h
  
  

  cos b =   d
 ___ 

OB
   =   d __ 

  b __ 
k
  
  

  cos g =   d
 ___ 

OC
   =   d __ 

  c __ 
l
  
  

 Since cos2 a + cos2 b + cos2 g = 1 ...(10.7)

or,    d2

 ____ 
  (   a __ 
h
   )  2 

   +   d2

 ____ 
  (   b __ 

k
   )  2 

   +   d2

 ____ 
  (   c __ 

l
   )  2 

   = 1

or,  d2  [   h2

 __ 
a2

   +   k
2

 __ 
b2

   +   l
2

 __ 
c2

   ]  = 1

or,  d =   1 ______________  

  (   h2

 __ 
a2

   +   k
2

 __ 
b2

   +   l
2

 __ 
c2

   )  1/2

 

    ...(10.8)

 This equation gives the distance between successive plane in a crystal lattice.

 For cubic lattice a = b = c

\  d =   a
 ___________ 

 ÷ 
_________

 h2 + k2 + l2  
   ...(10.9)

 10.10 IMPORTANT FEATURES OF MILLER INDICES

 (i) All equally spaced parallel planes have the same index number (hkl)

 (ii) A crystal plane parallel to one of the crystallographic axis has intercepts at infinity and index of zero 
for that axis. 

z

B

C

o

A

x

y
b k/

a h/

g

a
b N

c
l

Fig. 10.11 Interplaner distance of 
the family of the planes.
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 (iii) Miller indices do not define a particular plane but a set of parallel planes.

 (iv) A plane passing through the origin is defined in terms of parallel plane having non-zero intercepts.

 (v) It is only the ratio of the indices which is of importance, i.e., the (6 2 2) planes are the same as (3 1 
1) planes.

 10.11 X-RAYS

In 1895, W Roentgen found that a highly penetrating radiation of unknown nature is produced when fast 
electrons impinge on matter. These rays are em waves of very short wavelength and known as X-rays. The 
faster the original electrons, the more penetrating the resulting X-rays and the greater the numbers of electrons, 
the greater the intensity of the X-ray beam.

 10.12 ORIGIN OF X-RAYS

When high-speed (about 10% of the velocity of light) electrons from the cathode of an X-ray tube strike 
the target, the electrons penetrate the atoms of the target and remove an electron from the inner shells by 
collision. This is illustrated in Fig. 10.12(a), where an electron is knocked out of the K shell. We know that 
K, L, M .... electron shells correspond to n = 1, 2, 3 .... When a tightly bound electron is missing in the inner-
most K shell, the vacant position of that electron is occupied by an electron from next higher level and emits a 
photon of energy hv. Such X-rays produce K lines [Fig. 10.12(b)]. Now an electron from M shell jumps into L 
shell vacancy and as a consequence, there is emission of X-rays of another frequency known as L lines. This 
process continues until the uppermost shell is reached where an electron jumping gives rise to visible light. 
So, it is possible for a single atom to emit X-rays of different wavelengths. The continuous X-ray spectrum 
is obtained due to slowing down of high speed electrons as they pass close to the nuclei of the atoms within 
the target of the X-ray tube. As the electron passes through the atom, it is attracted by the positive charge of 
the nucleus and is deflected in its path. The process is shown in the Fig. 10.13. The electron is deaccelerated 
during its deflection in the strong field of the nucleus. The kinetic energy lost during this retardation is 
transformed into electromagnetic radiation in the form of X-rays of continuously varying wavelengths. These 
X-rays form continuous spectrum when analyzed by Bragg spectrometer. Let the electron is slowed down to 
a velocity v ¢ from the initial velocity v. Considering the conservation of energy, we get

    1 __ 
2
   mv

2 –   1 __ 
2
   mv ¢2 = hv ...(10.10)

e
–

e
–

(a)

e
–

(b)

X-ray

ka-line

Fig. 10.12 Transition of an electron from L-shell to K-shell at the time of radiation.
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 The highest frequency is possible when the electron is com-
pletely stopped by the atom. In this case, we have

    1 __ 
2
   mv

2 = hvmax ...(10.11)

 Minimum limiting wavelength lmin is obtained when the 
entire kinetic energy of the bombarding electron is converted 
to X-ray energy.

 If V be the accelerating potential, then

    hc
 ____ 

lmin

   = eV

\  lmin =   hc
 ___ 

eV
   ...(10.12)

 This is known as Duane Hunt law

 10.13 X-RAY SPECTRUM

There are two types of X-ray spectrum

 (a) Continuous X-ray spectrum (b) Characteristic (or line) X-ray spectrum

10.13.1 Continuous X-ray Spectrum

The X-ray spectrum which consists of all possible wave-
lengths between a maximum and minimum values and 
depending solely on the applied voltage across the X-ray 
tube called as continuous X-ray spectrum.

 Some of the important features of the continuous 
X-rays:

 (i) The continuous spectrum produced because the de- 
acceleration of high velocity electrons while pass-
ing near the positively charged nucleus of an atom 
of the target material.

 (ii) The shortest wavelength limit can be given by,

   lmin =   12400 ______ 
V

   Å

 (iii) lmin is independent of the target material.

 (iv) The intensity of X-rays increases at all wavelengths 
as the accelerating voltage is increased (Fig. 10.14)

10.13.2 Characteristic X-ray Spectrum

The X-ray spectrum which has a line spectrum consisting of definite wavelengths depending on the charac-
teristics of the target material and superimposed on the continuous spectrum is called the characteristic X-ray 
spectrum (Fig. 10.15)

Fig. 10.13 Origin of continuous spectrum.
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Fig. 10.14 Intensity (I) vs. wavelength of 
X-rays emitted from a target 
element at different voltages.
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 Some important features of the characteristic X-rays spectrum are as follows:

 (i) It is produced when innermost electrons are removed from the atom of the target and the position of 
the electron is taken by the electron of outer orbits.

 (ii) In this case discrete spectral lines constitute K-series; L-series and M-series, etc. (Fig. 10.16).

 (iii) K-series constitute hard X-rays (X-ray with high penetrating power) and L, M series form soft X-rays 
(X-ray with low penetrating power)

 (iv) There is a regular shift towards shorter wavelength in the K-spectrum as atomic number of the target 
is increased.

 10.14 MOSELEY’S LAW

Moseley carried out study of characteristic X-rays spectra of various 
metallic elements and observed that if the square root of the fre-
quency v of the most intense spectral line, i.e., K series line is plotted 
against the atomic number Z, then a straight line graph is obtained 
(Fig. 10.17) for each and every element. The graph is known as 
Moseley diagram. The relationship between frequency and atomic 
number Z as

  v μ (Z – b)2

or   ÷ 
__

 v   = a (Z – b) ...(10.13)

where a and b are constant for a particular series but varies from one 
series to another.

 An exact form of Moseley’s law is

    1 __ 
l

   = R(Z – b)2  (   1 __ 
n1

2
   –   1 __ 

n2
2
   )  ...(10.14)

where n1 and n2 are principal quantum numbers and R is the Rydberg constant.

Fig. 10.15 X-ray spectrum of Mo at different voltage. 
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Fig. 10.16 Formation of K-series, L-series and 
M-series of characteristic X-rays 
spectrum in energy level diagram

Fig. 10.17 Variation of  ÷ 
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 n   with 
atomic number (Z).
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10.14.1 Importance of Moseley’s Law

Moseley’s law gives the guideline that the elements in periodic table must be arranged according to their 
atomic number. The physical and chemical properties of an element is decided by the atomic number and 
not the atomic weight. Moseley’s law predicted the existence of new elements like hafnium (72), technetium 
(43), promethium (61), etc. by the indication of gaps in Moseley diagram. This law also help to determine the 
atomic number of rare earth elements and predicted proper position of these elements.

 10.15 ABSORPTION OF X-RAY BY A MATERIAL

When a narrow beam of monochromatic X-rays passes through matter, some part of it is absorbed while the 
rest is transmitted. If a sheet of any substance is interposed in the path of a homogeneous beam of X-rays, its 
intensity decreases. Let I0 and I be the intensity of X-rays before and after it passes through the sheet of thick-

ness x. We know that the rate of decrease of intensity with thickness  ( i.e., –   dI
 ___ 

dx
   )  is proportional to I, then

  –   dI
 ___ 

dx
   μ I or,   dI

 ___ 
dx

   = – m I ...(10.15)

where m is called linear absorption coefficient of the absorber.

or,    dI
 __ 

I
   = – m dx

 Integrating both sides, we have

   Ú 
I0

  
I

     dI
 __ 

I
    = – m  Ú 

0
   

x

  dx 

  log   I __ 
I0

   = – m x.

  I = I0 e
– m x ...(10.16)

which shows that the intensity of X-rays decreases exponentially with 
thickness of the material (Fig. 10.18)

 10.16 BRAGG’S LAW

When a monochromatic X-ray impinges upon the atoms in a crystal lattice, the crystal acts as a series of 
parallel reflecting planes and each atom acts as a source of scattering radiation of the same wavelength. The 
intensity of the reflected beam at certain angles will be maximum when the path difference between two 
reflected wave’s from two different planes is an integral multiple of l.

10.16.1 Derivation of Bragg’s Law

Consider a set of parallel planes of atom at a spacing d between two successive planes (Fig. 10.19). Let a 
beam of monochrometic X-ray of wavelength l be incident on the first plane at a glancing angle q. Let us 
consider two parallel rays PQR and P ¢Q ¢R ¢ in the beam reflected by two atoms Q and Q ¢. The ray P ¢Q ¢R ¢ 
has a longer path then the ray PQR. To get the path difference, perpendicular QT and QS on P ¢Q ¢ and Q ¢R ¢ 
respectively. Then the path difference between the two rays is

Fig. 10.18 Variation of intensity 
with thickness of the 
material.
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  d = TQ ¢ + Q ¢S
   = d sin q + d sin q

   = 2d sin q ...(10.17)

 The two rays will reinforce each other and produce maximum 
intensity if 

  2d sin q = nl ...(10.18)

where n = 1, 2, 3, .... For n = 1 we get first order and for n = 2 we 
get second order maximum respectively. The equation 2d sin q = 
nl is known as Bragg’s equation and represents Bragg’s law.

10.16.2 Determination of Lattice Constant: 
(Bragg Spectrometer Method)

There are various methods of determining the lattice constants, such as law spot, powdered crystal, Bragg 
X-ray spectrometer, rotating crystal, etc. Here we describe the Bragg spectrometer method.

 The schematic arrangement of Bragg’s spectrometer is shown in 
Fig. 10.20. X-ray from X-ray tube are narrowed to obtain a fine pencil 
of beam by passing through slits S1 and S2. The beam is now allowed to 
fall on a crystal C mounted on a circular turn table of the spectrometer 
and it position can be recorded by the vernier V capable of moving 
along the circular scale S. The reflected beam then passes through slits 
S3 and enters ionization chamber through a narrow window w made of 
aluminium. The ionization chamber is simply a container for gas or 
vapour with two electrodes. One of the electrodes is connected to the 
positive terminal of H.T. battery and the negative terminal connected 
to quadrant electrometer. The turn table and ionization chamber are 
linked together in such a way that when the turn table rotates through 
an angle q, the ionization chamber turns through 2q. The X-rays enter-
ing the ionization chamber ionize the gas which deflect the electrometer and gives the intensity of the reflected 
X-ray.

 The ionization current is measured for different values of glancing angle q. A plot is then obtained between 
q and the ionization current [Fig. 10.21]. For certain values of q, 
the intensity of ionization current increases abruptly.

 Again from Bragg’s law

  2d sin q = nl ...(10.19)

 The Bragg’s angles at which reflection has a maximum are 
determined with the help of this apparatus. Let us consider the 
first order reflection from three different planes of the crystal are 
q1, q2 and q3. From Eqn. (10.19), we get

  l = 2d1 sin q1 = 2d2 sin q2 = 2d3 sin q3

or,  d1 : d2 : d3 =   l
 _____ 

sin q1
   :   l

 _____ 
sin q2

   :   l
 _____ 

sin q3
   ...(10.20)

Fig. 10.19 Bragg’s reflection of X-rays 
from the atomic plane.
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Fig. 10.20 Bragg’s spectrometer.
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 In the case of KCl crystal, Bragg obtained the maxima of reflected X-rays (l = 0.71Å) at glancing angles 
q1 (5.22°), q2(7.3°) and q3 (9.05°) respectively using three different reflecting planes.

 So, from Eq. (10.20)

  d1, d2, d3 = 1 :   1 ___ 
 ÷ 

__
 2  
   :   1 ___ 

 ÷ 
__

 3  
   ...(10.21)

 This result shows that KCl is simple cubic crystal. In this way, Bragg’s law can be utilized to analyze 
different types of crystal structure.

Crystallography

Example 10.1  Draw the planes (0 1 2), (1 1 2), (0 2 2) in a FCC structure.

Sol.

  

X Y

Z

O

(a)

Plane (012)

O

X Y

Z

(b)

Plane (112)

O

X Y

Z

(c)

Plane (022)

Fig. 10.22 Plane (0 1 2), Plane (1 1 2) and plane (0 2 2) in a cubic crystal system.

 (a) Plane (0 1 2) Here h = 0, k = 1, l = 2 the reciprocals are   1 __ 
0
  ,   1 __ 

1
   and   1 __ 

2
  , i.e., μ, 1 and 0.5. Drawing 

the plane with intercepts μ, 1 and 0.5 along x, y and z-axis respectively, we obtain the plane 
(0 1 2) as shown in Fig. 10.21(a).

 (b) Plane (1 1 2) Here h = 1, k = 1, and l = 2. The reciprocals of h, k and l are   1 __ 
1
  ,   1 __ 

1
   and   1 __ 

2
  ; 

i.e., 1, 1, 0.5. Now we can draw the plane with intercepts 1, 1 and 0.5 along x, y and z axes 

respectively [Fig. 10.22(b)]

 (c) Plane (0 2 2) Here h = 0, k = 2 and l = 2. The reciprocals of h, k and l are   1 __ 
0
  ,   1 __ 

2
   and   1 __ 

2
  , i.e., 

μ, 0.5 and 0.5. Drawing the plane with intercepts μ, 1 and 0.5 along x, y, z axes respectively, we 
obtain the plane (0 2 2) as shown in Fig. 10.22(c)

Example 10.2  Calculate the interplaner spacing d of a planes (1 1 1) in a simple cubic lattice of 
side a.   [WBUT 2003, 2004, 2007]

Sol.  Interplaner spacing dhkl =   1 ______________  

  (   h2

 __ 
a2

   +   k
2

 __ 
b2

   +   l
2

 __ 
c2

   )  1/2

 

  

Worked-out Examples
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  Here h = k = l = 1 and a = b = c

  \ d111 =   1 _______ 
(3/a2)1/2

   =   a ___ 
 ÷ 

__
 3  
  

Example 10.3  The distance between (100) planes in a body centered cubic structure is 0.232 nm. What is 
the size of the unit cell? What is the radius of the atom? [WBUT 2006]

Sol.  If the radius of the atom is r of a BCC crystal then r =   
 ÷ 

__
 3  a
 ____ 

4
  , where a is lattice constant

  For BCC d100 =   a __ 
2
  

or,   a = 2d100 = 2 × 0.232

    = 0.464 nm

and   radius r =   
 ÷ 

__
 3  a
 ____ 

4
   =   

 ÷ 
__

 3  
 ___ 

4
   × 0.464 = 0.20 nm.

Example 10.4  Copper has FCC structure and the atomic radius is 0.1278 nm. Calculate its density and the 
interplanar spacing for (3 2 1) planes. Taking the atomic weight of copper as 63.5. [WBUT 2005]

Sol.  For a cubic crystal, the lattice constant

   a =   (   n MA
 _____ 

r N
   )  1/3

 

  For FCC n = 4 (number of atom per unit cell)

   M = 63.5

   N = 6.023 × 1023/g mole

   r = density

  Again for FCC a =   4 ___ 
 ÷ 

__
 2  
   r

   r = atomic radius = 0.1278 nm

    = 0.1278 × 10–7 cm

  So, density r =   nM
 ____ 

Na3
  

    =   4 × 63.5  ______________________________   

6.023 × 1023 ×   (   4 × 0.1278 × 10–7

  _______________ 
 ÷ 

__
 2  
   )  3 

   gm cm–3

    = 8.926 g/cm3

  The interplaner spacing for (3 2 1)

   d =   a
 _____________  

(h2 + k2 + l2)1/2
   =   

  4 ___ 
 ÷ 

__
 2  
   × 0.1278 × 10–7

  ________________  
 ÷ 

__________

 32 + 22 + 12  
   = 0.0966 nm
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Example 10.5  In a crystal, a lattice plane cuts intercepts of 2a, 3b and 6c along the axes, where a, b and 
c are primitive vectors of the unit cell. Determine the Miller indices of the plane.

Sol.  We know that if the given plane cut intercepts pa, qb and rc along the three axes, we have

   pa : qb : rc = 2a : 3b : 6c

  \ p : q ; r = 2 : 3 : 6

  \   1 __ p   :   1 __ q   :   1 __ r   =   1 __ 
2
   :   1 __ 

3
   :   1 __ 

6
   = 3 : 2 : 1

  So Miller indices of the plane are (3 2 1)

Example 10.6  Find the interplanar distance of (1 1 0) plane and (1 1 1) plane of Nickel crystal. The radius 
of Nickel atom is 1.245 Å.

Sol.  Nickel has FCC structure. So lattice constant 

   a =   4 ___ 
 ÷ 

__
 2  
   r r is the radius of Nickel

    =   4 × 1.245 ________ 
 ÷ 

__
 2  
   = 3.52 Å

  Therefore, the interplanar distance of (1 1 0) plane is

   d110 =   3.52 ___________ 
 ÷ 

_________

 12 + 12 + 0  
   = 2.49 Å

  The interplanar distance of (1 1 1) plane is

   d111 =   3.52 ___________  
 ÷ 

__________

 12 + 12 + 12  
   =   3.52 ____ 

 ÷ 
__

 3  
   = 2.03 Å

Example 10.7  If the potential difference applied across an X-ray tube is 12.4 kV and the current through 
it is 2 mA. Calculate (i) the number of electrons striking the target per second, and (ii) the speed with which 
they strike it.

Sol. (i) Current I = 2 mA = 2 × 10–3 A

    = ne where n is the number of electrons striking the target per second

so   n =   I __ e   =   2 × 10–3

 _________ 
1.6 × 10–19

   = 1.25 × 1016

 (ii) If v is the speed with which electrons strike the target

     1 __ 
2
   mv

2 = Ve

   v =  ÷ 
____

   2Ve
 ____ m     =  ÷ 

_______________________

     2 × 1.6 × 10–19 × 12.4 × 103

   _______________________  
9.1 × 10–31

    

    = 6.6 × 107 m/s
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Example 10.8  If the energy levels of K, L, M state of Pt are 78 KeV, 12 KeV and 3 KeV respectively, then 
calculate the wavelengths of ka and kb lines emitted from Pt. (h = 6.626 × 10–34 JS; C = 3 × 108 m/s).

[WBUT 2008]

Sol.  Energy of K level, EK = 78 KeV = 78000 × 1.6 × 10–19 J

   L level EL = 12 KeV = 12000 × 1.6 × 10–19 J

   M level EM = 3 KeV = 3000 × 1.6 × 10–19 J

  So, wavelength of ka line 

   la =   hc
 _______ 

EK – EL

   =   6.63 × 10–34 × 3 × 108

   _________________________   
(78000 – 12000) × 1.6 × 10–19

   = 0.188 Å

  Wavelength of kb line lb =   hc
 _______ 

EK – EM

   =   6.63 × 10–34 × 3 × 108

  ________________________   
(78000 – 3000) × 1.6 × 10–19

  

    = 0.165 Å

Example 10.9  The first order reflection from the plane of NaCl is obtained at an angle 2q = 20° with 
incident beam. If d = 2.82 Å, calculate the wavelength of X-ray used.

Sol.  From Bragg’s equation

   2d sin q = nl

  For n = 1 2d sin q = l

  Here 2q = 20°, q = 10° and d = 2.82 × 10–10 m

   l = 2 × 2.82 × 10–10 sin 10°

    = 9.791 × 10–11 m = 0.979 Å

Example 10.10  A beam of X-rays of wavelengths 0.842 Å is incident on a crystal at a glancing angle of 
8°35¢, when first order Bragg’s reflection occurs. Calculate the glancing angle for the third order reflection. 

[WBUT 2002, 2007]

Sol.  From Bragg’s equation 2d sin qn = nl ...(1)

  For 1st order reflection, n = 1, q1 = 8°35¢, l = 0.842 × 10–10 m

  So, the interplaner distance

   d =   nl
 _______ 

2 sin q1
   =   0.842 × 10–10

  ___________  
2 × sin 8°35¢

   = 2.8 Å

  For third order n = 3, from Eq. (1)

   2 × 2.8 × 10–10 × sin q3 = 3 × 0.842 × 10–10

or,   q3 = 26.8° = 26° 48¢

Example 10.11  Can X-rays be diffracted from a single slit of width 0.1 mm? Explain. [WBUT 2005]

Sol.  The wavelength of X-ray is in between 1 Å to 100 Å, i.e., 10–7 mm to 10–5 mm respectively. So, the 
wavelength of X-rays is not comparable to the width of the single slit. Hence X-rays can’t be dif-
fracted by a single slit of width 0.1 mm.
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Example 10.12  The energy gap in Ge is 0.72 eV. Find the maximum wavelength of a radiation which can 
cause transition from the valance band to conduction band. [WBUT 2007]

Sol.  We know that band gap energy

   Eg =   hc
 ____ 

lmax

  

or,   lmax =   hc
 ___ 

Eg

   =   6.62 × 10–34 × 3 × 108

  __________________  
0.72 × 1.6 × 10–19 m

   m = 17.276 × 10–7 m = 0.017 Å

Example 10.13  The spacing of a planes in a crystal is 1.2 Å and the angle for the first-order Bragg’s 
reflection is 30°. Determine the energy of the X-rays beam in eV. [WBUT 2005]

Sol.  From Bragg’s equation 2d sin q = nl

  Here n = 1 and q1 = 30° d = 1.2 Å

  So, the wavelength of the incident beam,

   l =   2d sin q
 _______ n   =   2 × 1.2 × sin 30°  ______________ 

1
   = 1.2 Å

  The energy of the incident X-ray beam

   E =   hc
 ___ 

l
   =   6.62 × 10–34 × 3 × 108

  ____________________  
1.2 × 10–10 × 1.6 × 10–19

   eV

    = 10.35 × 103 eV = 10.35 KeV.

Example 10.14  Electrons are accelerated by 344 volts and are reflected from a crystal. The first-order 
reflection maximum occurs when glancing angle is 30°. Determine the spacing of the crystal.

Sol.  Wavelength l =   h
 ___ 

mv
   =   h

 ______ 
 ÷ 

_____
 2mVe  
  

  Here m = 9.1 × 10–31 kg, V = 344 V, e = 1.6 × 10–19 C

  So, l =   6.62 × 10–34

  ______________________________   
 ÷ 

_____________________________

   2 × 9.1 × 10–31 × 344 × 1.6 × 10–19  
  

    = 0.66 × 10–10 m

  According to Bragg’s law

   2d sin q = nl

  Here n = 1, q = 30° and l = 0.66 × 10–10 m

  So, d =   0.66 × 10–10

 __________ 
2 sin 30°

   = 0.66 × 10–10 m = 0.66 Å

Example 10.15  Ka radiation if molybdenum (z = 42) has a wavelength of 0.72 Å. Find the wavelength of 
the corresponding radiation of copper (z = 29).



Crystallography 10.23

Sol.  From Moseley’s law v = a (z – b)2

  or,   c __ 
l

   = a (z – b)2

  \   1 __ 
l

   μ (z – 1)2 [From ka line b = 1]

  \   
lcu

 ___ 
lmo

   =   
(Zmo – 1)2

 _________ 
(Zcu – 1)2

   =   
(42 – 1)2

 ________ 
(29 – 1)2

   =   
(41)2

 _____ 
(28)2

  

  or, lcu = 0.72 ×   (   41 ___ 
28

   )  2  = 1.54 Å

Example 10.16  The linear absorption coefficient for Al for X-rays having l = 0.32 Å is 1.62 cm–1. Find 
the thickness of the absorber needed to cut down the intensity of the beam to 1/20 of the initial value.

Sol.  If Io be the initial intensity of the X-ray beam is reduced to I in traversing a distance x in absorber 
then

   I = I0 e
– m x where m is the linear absorption coefficient.

  Now   I __ 
I0

   = e– m x

  Here   I __ 
I0

   =   1 ___ 
20

  , so   1 ___ 
20

   = e– m x = e– 1.62x

or,   e1.62 x = 20

or,   1.62 x = 2.3026 log 20

  \ x =   2.3026 × 1.301  _____________ 
1.62

   = 1.85 cm.

Example 10.17  The X-ray analysis of crystal is made with monochromatic X-rays of wavelength 0.58 Å. 
Bragg’s reflections are obtained at an angles of (i) 6.45° (ii) 9.15° (iii) 13°. Calculate the interplanar spacing 
of the crystal.

Sol.   From Bragg’s law,

     d __ n   =   l
 ______ 

2 sin q
  

 (i)   d __ n   =   0.58 ___________ 
2 × sin 6.45°

   = 2.568 Å ...(1)

 (ii)   d __ n   =   0.58 ___________ 
2 × sin 9.15°

   = 1.817 Å ...(2)

 (iii)   d __ n   =   0.58 _________ 
2 × sin 13°

   = 1.288 Å ...(3)

  It is clear from Eqs. (1) and (3) that the value of d/n in Eq. (1) is almost twice to that of Eq. (3). This 
shows that angles 6.45° and 13° represent the first- and second-order reflection maxima from one set 
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of parallel planes. The spacing may be obtained either by putting n = 1 in Eq. (1) or n = 2 in Eq. (3). 

Hence   d __ 
1
   = 2.568 Å which is equal to the interplanar spacing of the crystal.

  Now the glancing angle (9.15°) used in Eq. (2) refers to some other set of reflecting planes. Their 

interplanar spacing is given by   d __ 
1
   = 1.817 Å.

Part 1: Multiple Choice Questions

 1. The fundamental building block whose repetition in space generates a crystal is termed as

 (a) primitive cell (b) unit cell (c) non-primitive cell (d) None of these

 2. Primitive cell is equal to a

 (a) unit cell   (b) unit cell in the case of simple cubic lattice

 (c) unit cell in the case of BCC lattice (d) unit cell in the case of FCC

 3. Lattice plus basis form the

 (a) lattice structure (b)  crystal structure (c) unit cell (d) None of these

 4. In case of simple cubic structure, coordination number is 

 (a) 5 (b) 6 (c) 2 (d) 1

 5. Which of the following element shows simple cubic structure?

 (a) Na (b) Ca (c) Polonium (d) None of these

 6. FCC lattice unit cell which consists of atoms has

 (a) 2 atoms (b) 1 atom (d) 4 atoms (d) 5 atoms

 7. A crystal is equivalent to

 (a) n-dimensional grating  (b) three-dimensional grating

 (c) one-dimensional grating (d) two-dimensional grating

 8. In case of FCC structure, coordination number is

 (a) 8 (b) 12 (c) 5 (d) 6

 9. Among the cubic lattices, which has the closest packing?

 (a) FCC (b) SC (c) BCC (d) DC

 10. The nearest neighbor distance in the case of BCC structure is [WBUT 2008]

 (a)   
a ÷ 

__
 3  
 ____ 

3
   (b)   

a ÷ 
__

 2  
 ____ 

3
   (c)   2a

 ___ 
 ÷ 

__
 3  
   (d)   2a

 ___ 
 ÷ 

__
 2  
  

 11. Assuming that the atoms in a crystal are spheres of equal size and touching each other, it can be 
shown that the atomic radius of BCC is equal to [WBUT 2007]

 (a)   a ___ 
 ÷ 

__
 2  
   (b)  ÷ 

__
 3     a __ 
4
   (c)  ÷ 

__
 3     a __ 
2
   (d)   a

 ____ 
2 ÷ 

__
 2  
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 12. The primitives of crystal are 1.2 Å, 1.8 Å, 2Å along the three axes where a plane with Miller indices 
(2 3 1) cut intercept 1.2 Å along X-axis. What will be the lengths of intercept along Y and Z axis?

[WBUT 2008]

 (a) 1.5 Å and 5 Å (b) 1.9 Å and 2.5 Å (c) 1.2 Å and 4Å (d) 1.5 Å and 4 Å

 13. The number of bravais lattices are

 (a) 12 (b) 14 (c) 13 (d) 10

 14. The interplanar spacing of (111) planes in a simple cubic lattice of side a is

 (a)   a __ 
2
   (b)   a ___ 

 ÷ 
__

 3  
   (c)   a ___ 

 ÷ 
__

 2  
   (d) a

 15. The atomic packing factor for SC structure is

 (a) 52 % (b) 75 % (c) 74 % (d) 68 %

 16. The coordination number in case of NaCl structure is

 (a) 8 (b) 6 (c) 4 (d) 2

 17. The atomic packing factor for FCC structure is

 (a) 74 % (b) 68 % (c) 52% (d) None of these

 18. The Miller indices are used for

 (a) identifying crystal direction (b) notation of crystal planes

 (c) notation of different crystals (d) identifying the density of packing

 19. In NaCl crystal, the unit cell contains

 (a) 4 molecules (b) 6 molecules (c) 8 molecules (d) None of these

 20. Miller indices of a plane which cut intercepts of 2, 3 and 4 units along the three axes are
[WBUT 2006]

 (a) (6, 4, 3) (b) (2, 3, 4) (c) (3, 2, 1) (d) (2, 3, 2) 

 21. The planes (111) and (222) are

 (a) parallel to each other   (b) perpendicular to each other

 (c) antiparallel to each other (d) None of these

 22. (111) planes of cubic crystal is [WBUT 2005]

 (a) perpendicular to the X-axis (b) perpendicular to the Y-axis

 (c) perpendicular to the Z- axis (d) None of these

 23. The atomic packing factor for BCC structure is 

 (a) 74 % (b) 68 % (c) 52 % (d) None of these

 24. Origin of continuous X-ray is due to the process of  [WBUT 2007]

 (a) ionization   (b) inner orbital transition

 (c) bremsstrahlung   (d) None of these

 25. Which of the following wavelengths falls in the X-ray range? [WBUT 2006]

 (a) 1 nm (b)  100 nm (c) 0.001 nm (d) 1000 nm

 26. The production of characteristic X-rays can be considered as

 (a) inverse of photoelectric effect (b) inverse of pair production

 (c) Compton effect   (d) None of these
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 27. If lL and lK are wave length of L and K X-rays respectively, then [WBUT 2005]

 (a) lL < lK (b) lL > lK (c) lL = lK (d) lK = 4lL

 28. When two parallel rays of X-rays of wavelength l, are incident at an angle q on a crystal with lattice 
separation d, constructive interference would be observed when (n is an integer) [WBUT 2006]

 (a) nl = 2d sin q (b) nl = d sin q (c) nl = d sin 2q (d) nl = 2d sin 2q

 29. The line spectra are

 (a) superimposed on the continuous spectra (b) not superimposed on the continuous spectra

 (c) lies under the continuous spectra (d) None of these

Answers

 1. (b) 2. (b) 3. (b) 4. (b) 5. (c) 6. (c) 7. (b) 8. (b)

 9. (a) 10. (a) 11. (b) 12. (c) 13. (b) 14. (b) 15. (a) 16. (b)

 17. (a) 18. (b) 19. (a) 20. (a) 21. (a) 22. (d) 23. (b) 24. (c)

 25. (a) 26. (a) 27. (b) 28. (a) 29. (a)

Short Questions with Answers

 1. What are crystallographic directions?
  The crystallographic direction is a line joining any two points of the space lattice related to the crystal 

structure.

 2. Define (i) lattice points, (ii) space lattice, (iii) unit cell, (iv) primitive cell, and (v) non-primitive 
cell.

  Refer to Section (10.2) and (10.2.1).

 3. What are Bravais lattices?
  It has been proved mathematically that there are only fourteen independent ways of arranging points 

in three dimensional space such that each arrangement confirms to the definition of a space lattice. 
Thus the fourteen possible space lattices of the seven crystal systems are called Bravais lattices.

 4. What are 2D and 3D space lattices?
  2D space lattice is defined as an infinite array of points in two-dimensional space in which every 

point has the same environment with respect to all other points. In two dimensions, choosing any 
point as origin, the position of any lattice point in space lattice denoted by  

 _
 
›
 r   can be expressed in 

terms of translational vectors a and b as

    
 _
 
›
 r   = m 

 _
 
›
 a   + n 

 _
 
›
 b  

  where m and n are arbitrary integers. In Fig. 10.1, m = 2, n = 2. 3D space lattice is defined as infi-
nite array of points in three-dimensional space in which every point has the same environment with 
respect to all other points.

  In three dimensions, if  
 _
 
›
 a  ,  

 _
 
›
 b   and  

 _
 
›
 c   are three transnational vectors along x, y and z axes, respectively 

then we can write lattice vector  
 _
 
›
 r   as

    
 _
 
›
 r   = m 

 _
 
›
 a   + n 

 _
 
›
 b   + o 

 _
 
›
 c  

  where m, n, and o are integers.
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 5. Why production X-ray is called inverse of photoelectric effect?
  In case of production of continuous X-ray, kinetic energy of an electron is converted into the energy 

of the emitted photon. Similarly, in photoelectric effect, the energy of incident photon is absorbed 
by an electron through inelastic collision and emission of electron takes place from the surface of a 
metal. So, some energy of incident photon is converted into the kinetic energy of the electron. Hence 
we can say that production of X-ray as the inverse process of photoelectric effect.

 6. What is white X-rays?
  We know that there are two types of X-rays. One has a line spectrum and is called characteristic X-ray. 

The other has a continuous spectrum and is known as white or continuous X-rays. White X-rays are 
produced by the slowing down of the high-speed electrons in their motion through a substance. This 
process is also known as bremsstrahlung.

 7. Why are X-ray used in crystal diffraction?
  The crystal constitutes a three-dimensional grating of periodic array of atoms. The inter-atomic spac-

ing in a crystals is of the order of 1Å. So, to observe diffraction in crystal, wavelength of radiation 
used should be of the same order of interatomic spacing.

  Since, the wavelength of X-rays (  0.1 Å to 100 Å) are comparable with interatomic spacing, so 
X-rays are used for diffraction in crystals.

Part 2: Descriptive Questions

 1.   (a) Define the terms unit cell, space lattice, and basis.

 (b) What are the differences between crystalline and amorphous solid?

 2.   (a) Define primitive unit cell. Are all unit cells are primitive?

 (b) What do you mean by Bravais lattice? How many Bravais lattices are there in three 
dimensions?

 3. Describe simple crystal system with necessary diagrams.

 4. Define atomic packing factor. Calculate it for BCC and FCC structure.

 5. What are Miller indices and what is their importance?

 6. Find the distance between adjacent planes in crystal lattice.

 7. Show that in cubic crystal of side a, the interplaner spacing between consecutive parallel planes of 
Miller indices (hkl) is [WBUT 2005, 2007]

   dhkl =   a
 ___________ 

 ÷ 
_________

 h2 + k2 + l2  
  

 8. Find out the packing fraction for FCC structure. Find out the expression for the separation between 
the planes with Miller indices h, k, l and lattice constant a for a simple cubic structure.

[WBUT 2008]

 9. (a) Find the Miller indices of a plane which intercepts at a, b/2, 3c in a simple cubic unit cell. 
[WBUT 2004]

 (b) Draw the planes and directions denoted by (100) (110) and (102) of a cubic structure.

 10. Calculate the atomic packing fraction and atoms per unit cell in crystals having (i) SC (ii) BCC (iii) 
FCC structure considering the atoms as hard sphere. [WBUT 2004]
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 11. Write a short note on Bravais lattice and Miller indices. [WBUT 2002]

 12. Write a short note on X-ray diffraction and Bragg’s law. [WBUT 2003]

 13.   (a) Distinguish between continuous and characteristic X-ray spectra.

 (b) Explain and derive Bragg’s law of X-ray diffractions from a crystal. [WBUT 2005]

 14. Describe the origin of characteristic X-rays.

 15. If m is the linear absorption coefficient of X-rays, prove that m =   0.693 _____ x1/2
   where x1/2 is the half value of 

thickness of the substance. [WBUT 2004]

 16. Draw continuous X-ray spectra for two different applied voltages. What will happen when the applied 
voltage is sufficiently high?

Part 3: Numerical Problems

 1. Sodium chloride crystallizes in FCC structure. The density of NaCl is 2180 kg/m3. If the atomic 
weight of sodium and chlorine are 23 and 35.5 respectively. Calculate the distance between two 
adjacent atoms.   [2.815Å]

 2. A crystal of NaCl mounted on a Bragg spectrometer reflects the Ka line of X-rays at an angle of 60° 
in the first order. Given the following data, calculate the wavelength of the X-ray Ka line.

  [Density (r) = 2.17 g/cc, mol. wt. of NaCl (M) = 58.63]

  [Hints: d =   (   M
 ____ 

2Nr
   )  1/3

 , Glancing angle = 90° – angle of reflection = 90 – 60 = 30°]  [2.82Å]

 3. A powder pattern is obtained for lead with radiations of l = 1.54 Å. The (220) reflection is observed 
at Bragg angle q = 32°. What is the lattice parameter of the lead? Assume that given reflection is the 
first order reflection? [4.1 × 10 – 10 m]

 4. Determine the spacing between (i) (100) planes, (ii) (110) planes, and (iii) (111) planes in a NaCl 
crystal having the lattice constant a = 5.64 Å. [5.64 Å, 3.39 Å, 3.26Å]

 5. The potential difference across in X-ray tube is 105 volt. What is the maximum frequency emitted 
X-rays?   [2.4 × 1019 Hz]

 6. In an X-ray diffraction experiment, the second-order glancing angle was 30°. Calculate the glancing 
angle for the first order and third order. [q1 = 14° 29¢, q3 = 48° 33¢] 

 7. A X-ray tube operates at 20 kV. Find

 (a) the maximum speed of the electrons striking the anticathode, and

 (b) the shortest wavelength of X-ray produced.



APPENDIX

A
Angular Concept

What is an Angle?

The answer of this easy question is not that easy. Let us try to understand what does it mean. The concept 

of an angle does not exist in one-dimensional case. In two dimensional case, by angle we mean separation 

of two intersecting lines. To be more specific – an angle is one sense of separation between two intersecting 

lines which remains same if even the lines are extended up to infinity (Fig. A1.1).

C

A

B

D

qO

(a)

C

A D

O d1 d2

H

F

G
E

B

(b)

Fig. A1.1 Separation of two intersecting lines: (a) In terms of angle ( ). (b) In terms of the distance between 
two equidistant points on two lines from the point of intersection.

 If one wants to express the separation in terms of distance one can follow the method given below: 

 Let us select two pairs of equidistant points which are equidistant from the point of intersection O. For one 

pair of points E and F the distance is d1 and for the other pair of points G and H it is d2, where d1 π d2 but the 

angular separation q between the two lines remains the same throughout.

 The unit of measurement of angle is radian (symbol is c or rad) in all systems of measurement like second 

which is the unit for time in all systems of measurement. If the angle between two intersecting lines is 90º or 

100g (g stands for grade), then in radian one can express it as   
pc

 __ 
2
   or   

p
 __ 

2
   rad. Radian is called a pseudounit as it 

does not have any representation in dimensional analysis.



Basic Engineering PhysicsA1.2

Solid Angle As has been stated above the counter part of two-dimensional angle (planar angle or simply 

angle) is the solid angle in three dimension. It is usually denoted by the Greek letter W. It is the cone that 

an object subtends at a point in space. It is a measure of how big an object appears to an observer looking 

from the said point in space. For example, a small object, which is nearer to the observer could subtend the 

same solid angle as a large object which is far away from the observer. The solid angle is proportional to 

the surface area S, of a projection of that object onto a sphere centered at the point where the observer lies, 

divided by the square of the radius, R, of the said sphere or it is exactly equal to the surface area, S, of the 

aforesaid projection of an object on to a sphere of unit radius centered at the point where the obsever lies. 

Symbolically, one can represent it by the following equation:

  W = K   
S
 ___ 

R2
  

where K is a constant of proportionality. A solid angle is related to the surface of a sphere in the same way as 

an ordinary angle or planar angle is related to the circumference of a circle. If the proportionality constant is 

chosen to be unity, then the unit of solid angle in the SI system is steradian (denoted by sr). Thus, the solid 

angle of a sphere measured from a point in its interior is 4p sr, and the solid angle subtended at the center of 

a cube by one of its six surfaces is one-sixth of that (i.e., 4p/6 sr) or 2p/3 sr.

 In general, one can define a solid angle as follows (Fig. A1.2): 

  d W =   
dA¢

 ___ 
r2

   =   
dA cos q

 ________ 
r2

  

or,  d W =   
dA¢

 ___ 
r2

   =   
 
_
 r  ◊ d 

__

 A 
 _____ 

r3
  

where d W is the solid angle subtended by any sur-

face area dA at the point O in space. Here dA¢ is the 

projection of dA on the plane which is normal to OR 

and passes through the poin O¢

i.e., dA¢ = dA cos q.

 For a spherical surface whose radius of curva-

tuae is OO¢ = r

  dA¢ = 4pr2 and q = 0,

so the solid angle subtended by the surface of the 

sphere having radius r is given by

  W =  Ú 
s

   

 

     
dA cos q

 ________ 
r2

    = 4p sr.

O ¢

q

q

P

R

Q

O

r

dr

dA¢ dA

r

n

Fig. A1.2 A solid angle d  at the point O 
subtended by the surface dA¢ which 
is normal to the bisector OR of angle 

POQ.
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B
Coherence of Light

Coherence is the predictable correlated motion of two waves when there is a fixed amplitude and phase 

relationship between them. If two light waves, which are coming from two different sources are coherent, 

then these two sources are also said to be coherent. In other words, coherence is related to definite phase 

relationship between two waves (or sources) at different points of space and time. For a source to be coherent, 

it must be able to emit radiations of single frequency or the frequency spread must be very small. And also 

the wave-front spreading from the source must be able to maintain a constant shape. Thus we can categorize 

coherence into two types—temporal coherence and spatial coherence.

(a) Temporal Coherence 

The temporal coherence implies the possibility of predicting the phase and the amplitude at a certain space 

point at different time instants. An ideal monochromatic wave represented by a simple harmonic function 

extends between – μ and + μ in time at a fixed point in spce. The amplitude remains constant while the phase 

varies linearly with respect to time. So, one can predict its amplitude and phase at any time. Such a wave is 

claimed to be completely temporally coherent. But a real light source emits light in short pulses called 

wavetrains. When an excited atom goes to a lower state or to the ground state, it emits a pulse during a time 

of the order of D t = 10–8 s. There will be no phase relationship between the pulses coming out of different 

atoms because various atoms of a source emit radiations in a random manner. Yet, at a given point of space 

one can predict the phase and amplitude at two different points of time if the same wavepulse still passes 

through that point. Thus, D t is the longest time span over which one can make such prediction. For the time 

span D t, the light is said to be coherent and the time D t = t
c
 is known as coherence time.

 In order to understand coherence time, let us consider Young’s double slit experiment as shown in 

Fig. B1.1.
 The pattern of interference observed around the point P at time t is due to the superposition of the two 

waves emanating from S1 and S2 at points of time t – r1/c and t – r2/c respectively, where the variables r1 and 

r2 are the distances S1 P and S2 P respectively.

 Now, if

    
r2 – r1

 _____ 
c
   << tc ...(1)
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then the two waves which are arriving at P from S1 and S2 will have a definite phase relationship. As a result 

an interference pattern of good contrast will be obtained. And on the contrary, if the path difference (r2 – r1) 

is sufficiently large as compared to tc , then

    
r2 – r1

 _____ 
c
   >> tc ...(2)

and the waves arriving at P from the slits S1 and S2 will not have any fixed phase relationship and any inter-

ference pattern will not be seen. But the central fringe will have a good contrast if r1 = r2. The length of the 

wavepulse or the coherence length Lc is defined as

  Lc = tc × C [where c is speed of light] ...(3)

 The temporal coherence can be related to the line width. By Fourier analysis of the wavetrains of finite 

duration, one can show that a wavetrain is equivalent to a large number of harmonic waves having their fre-

quencies within a certain interval of frequency D v about a central frequency v. The frequency spead or line 

bandwidth D v is related to the coherence time tc by the following equation:

  Dv =   
1
 ___ 

t c
   ...(4)

 Thus, narrow bandwidth indicates that the coherence time is long. For a wave to be perfectly monochro-

matic D v = 0 and tc = •. Thus, a monochromatic wave is completely temporally coherent.

(b) Spatial Coherence 

The spatial coherence refers to the phase relationship between two 

light waves present at two space points at the same point of time. If 

there is a point source S then two equidistant points P and Q (which 

are not along the same line with S) will always have a definite phase 

relationship [Fig. B1.2].

 But if one gradually increases the size of the source S then after 

sometime the points P and Q will fail to maintain definite phase 

relationship. The lateral dimension of the source upto which the 

radiations from the source remain coherent determines the spa-

tial coherence. That is, the spatial coherence depends on the size of 

the source.

Fig. B1.1 Young’s double slit experiment. The interference pattern at point P and around at time t is due to 
light waves emanating from S1 and S2 at time t – r1/c and t – r2/c.
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Fig. B1.2 Points P and Q which are 
equidistant from the source 
S can maintain definite 
phase relationship.
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 In order to understand the concept of spatial coherence let us consider the Young’s double slit experiment 

again with two independent point-sources S and S¢ which do not have any phase relationship [Fig. B1.3]. 

Let S1 and S2 be two slits separated by a distance 2d from one another. Each of the sources produces its own 

interference pattern on screen S¢1 S ≤2. Let SS1 be equal to SS2 and hence S1O is equal to S2O. So, the source S 

produces a maximum around the point O on the screen S¢1S≤2. But the intensity at O due to the other source 

S¢ depends on the optical path difference S¢S2 – S¢S1. From the figure, we can write

  S¢S2 =  [D2 + (d + l )2] 
  
1
 __ 

2
  

  ª D  [ 1 +   
1
 __ 

2
     (   d + l

 ____ 
D

   )  
2
  ] 

and S¢S1 =  [D2 + (d – l )2] 
  
1
 __ 

2
  

  ª D  [ 1 +   
1
 __ 

2
     (   d – l

 ____ 
D

   )  
2
  ] 

\  S¢ S2 – S¢S1 = 2   
dl

 __ 
D

   ...(5)

 Now, if S¢S2 – S¢S1 =   
l

 __ 
2
  

then,   
2dl

 ___ 
D

   =   
l

 __ 
2
  

 Hence l =   
1
 __ 

2
   ×   

l D
 ___ 

2d
   ...(6)

Fig. B1.3 Young’s double slit experiment with two independent point sources S and S¢ at a distance l.

 The source S¢ produces a minimum at 0 whereas the source S produces a maximum. Eventually no inter-

ference pattern can be observed for the separation l of the sources S and S¢ given by the Eq. (6).
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 Now, if we get an extended source having linear dimension   
lD

 ___ 
2d

   instead of   
1
 __ 

2
   ×   

lD
 ___ 

2d
   (= l), then for every 

point on the source we may get an independent point at a distane l  ( =   
1
 __ 

2
   ×   

lD
 ___ 

2d
   ) . The above analysis indicates 

that no interference pattern can be obtained. Good interference fringes can be obtained so long as the linear 

dimension l of the source is such that 

  l <<   
lD

 ___ 
2d

   ...(7)

 Equivalently, for a source of width l definite phase relationship can exist between S1 and S2 if the separa-

tion between them is given by

  2d <<   
lD

 ___ 
l
   ...(8)

 Since the angle subtended by the source SS¢ at 0¢ is   
l
 __ 

D
   = q, the above condition (Eq. (8)) can be expressed 

as

  2d <<   
l

 __ 
q

   ...(9)

 Thus, if the distance between the slits S1 and S2 is increased from zero the interference fringes vanish 

when

  2d ~   
l

 __ 
q

   ...(10)

 The distance   
l

 __ 
q

   = lw gives the lateral distance upto which the beam may be assumed to be spatially coher-

ent. The quantity lw =   
l

 __ 
q

   is called lateral coherence width.

 For a circular source lw is given by

  lw =   
1.22l

 _____ 
q

   ...(11)

 We can conclude from the above analysis that by using ordinary non-coherent source such as electric bulb 

or the sun, it is possible to make almost spatially coherent beam by passing the light through a small hole of 

size much less than lw, the lateral coherence width.

 Though, theoretically the output of one laser is expected to be perfectly coherent, but in reality, it does 

not show perfect coherence because all photons are not instigated by the original stimulating photon which 

initiates the stimulated emission.



APPENDIX

C
Relativistic Concept

(Special Theory of Relativity)

Introduction

Einstein put forward the special theory of relativity in 1905. This theory had revolutionized physical concepts 

during the twentieth century. Let us present a brief discussion of the special theory of relativity here as the 

concepts of dependence of mass on velocity, mass energy equivalence and energy-momentum relation are 

included in the syllabus of quantum physics. Physics is the ‘science of measurements’ of various physical 

quantities. The special theory of relativity reveals that the measurements depend on the state of motion of 

both the observer and the objects that are being observed. When the idea of relativity is incorporated into 

mechanics, one gets a new subject called relativistic mechanics. And in relativistic mechanics we come 

across some peculiar phenomena when the constituent particles move with a high velocity comparable to that 

of light. The theory of relativity enables one to understand the high energy phenomenon in microscopic as 

well as macroscopic world.

Frame of Reference

Any physical phenomenon takes place in space and time. It is not possible to investigate any physical 

phenomenon without introducing a reference frame relative to which all observations will be made. A 

reference frame may be defined as the system of coordinate axes which is considered to be fixed with respect 

to which the position of a particle is measured. 

 There are two types of reference frames—(a) inertial frame of reference, and (b) non-inertial frame of 

reference. 

(a) Inertial frame of reference It is such a frame which is either at rest or in motion with uniform 

velocity. Newton’s laws of motion hold good in the inertial frame of reference.

(b) Non-inertial frame of reference It is such a reference frame which moves with acceleration in a 

straight line or rotates. 
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Space and Time Frame 

To determine the exact location and the exact time of occurence of an event, we need time (t) as a coordinate 

along with three space coordinates (x, y, z).

 A frame of reference which has four coordinates x, y, z and t in called a space-time reference frame. The 

space coordinates (x, y, z) represent a ‘point’ in space and the space coordinates (x, y, z) along with time 

coordinate (t) represent an event in space and time, i.e., the coordinates (x, y, z, t) represent an event.

Inertial Reference System

If we consider a reference system at rest, then this system as well as all other reference systems moving with 

respect to it with uniform velocities are called inertial reference systems.

Galilean Transformation

It is a method of transformation of an event from one inertial frame to another one. Let us consider two iner-

tial frames of reference represented by S and S ¢. Let the frame S be at rest and the frame S ¢ be moving with 

a constant velocity ‘v’ along the positive x-direction (Fig. 1).

vt

Y

Z Z¢

X X ¢

x¢

O

P

Y ¢

Æ V

Fig. C1.1 Two inertial reference frames.

 Let an event occur at the point P. The coordinates of P with respect to the frames S and S ¢ are (x, y, z, t) 

and (x ¢, y ¢, z ¢, t ¢) respectively. At the time t = 0 the origins of S and S ¢ are coincident at O. As the frame S ¢ 
is moving with the constant velocity V with respect to S, the origin O ¢ of S ¢ gets shifted from O of S by a 

distance vt during time t. As there is no motion along Y -and Z-axes, we can write the follow transformation 

equations (Fig. C1.1): 

  x ¢ = x – vt ...(1)

  y ¢ = y ...(2)

  z ¢ = z ...(3)

  t ¢ = t ...(4) 

 These four equations are called galilean transformation equations.

 The coordinates (x, y, z, t) when expressed in terms of the coordinates (x ¢, y ¢, t ¢, t ¢) give us the following 

four equations:

  x = x ¢ + vt ...(5)

  y = y ¢
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  z = z ¢

  t = t ¢

 These four equations are known as inverse galilean transformation equations.

 Now, differentiating Eqs. (1), (2), (3) and (4) with respect to time, we get

   ¢ =  – v v ¢x = vx – V

   ¢ =   fi v ¢y = vy  ...(6)

   ¢ =  v ¢z = vz

where  =   
dx

 ___ 
dt

   and  ¢ =   
dx

 ___ 
dt

  

 Equation (6) implies that the veloity of a particle is different in two different systems of reference.

 The set of Eqs. (6) may be used to transform velocity from one reference frame to another one.

 Differentiating Eqs. (6), one gets

   ¢x = x

   ¢y = y  ...(7)

and  ¢z = z

i.e.,  ¢ = 

   ¢ =  

 

...(8)

and  ¢ = 

where  =  =   
d2x

 ___ 
dt2

  

 So,  from Eqs. (7) or (8), it is observed that the acceleration of a particle is invariant under the galileon 

transformation.

 Let m be the mass of the particle at the point P and F be the force acting on it in the inertial frame S. 

\  F = m

 Similarly in the inertial frame S ¢, we get 

  F ¢ = m  ¢

\  F = F ¢ [   =  ¢]

 So, Newton’s laws of motion remain unchanged (or invariant) under the Galilean transformation. So, in 

general, the laws of mechanics remain same in all inertial frames of reference. 

Michelson–Morley Experiment

Michelson and Morley assumed that light waves propagate through a hypothetical medium (called ether) 

with a speed of c = 3 × 108 ms–1 which is supposed to be present every where. The earth moves through the 

ether with a linear speed of v = 3 × 104 ms–1 approximately. As the earth moves around the sun, we also move 

through ether with the same speed. If two beams of light are sent out such that one travels in the direction 

of motion of the earth and the other moves at right angles to that of the earth, Then these two beams would 

require different times for round-trip journeys through the same distance. If this time–difference could be 

measured, one could determine the velocity of earth with respect to ether that is one can detect the motion of 

the earth through ether by performing one optical experiment on the surface of earth it self. 

 To perform the experiment, a Michelson inter ferometes was used (Fig. C1.2).
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Fig. C1.2 The Michelson–Morley experiment.

 A beam of light from the source S is made incident on a semi-silvered glass plate P kept inclined at an 

angle of 45º with the incident beam. Each incident beam is split up into two beams. One of the two beams 

is reflected by glass plate P and the other one is transmitted through the glass plate P. The reflected light 

beam travels towards mirror M1 and is reflected back by M1 towards the glass plate P. A part of this beam is 

then transmitted through glass plate P and enters the telescope T. The other part of the incident beam (which 

is transmitted) travels towards the mirror M2 which reflects the beam back towards the glass plate P. A part 

of this beam is then partially reflected into the telescope T. In the actual arrangement of the interferometer, 

another glass plate (not shown) is introduced in the path of the transmitted beam in order to make the paths 

of the two light beams equal in glass. The two beams enter the telescope along a coincident path and interfere 

with each other. A pattern of interference having bright and dark fringes is obtained. 

 Let both of the mirrors (M1 and M2) be at the same distance D from the glass plate P. If the apparatus 

remains stationary in ether, there the two beams take the same time to return back to glass plate P and accord-

ingly meet in the same phase at the glass plate as well as telescope. But, the earth along with the apparatus is 

moving with a velocity V. As can be seen, the incident beam and the apparatus move in the same direction, 

the incident beam strikes the glass plate when it is in the position P. As the apparatus is in motion, the paths 

of the reflected and the transmitted beams and their reflections at the mirrors M1 and M2 will be as has been 

shown by the dotted lines. Obviously the time taken by the two waves for their ‘round trip’ journeys through 

the same distance will not be equal. 

 The transmitted beam travels towards the mirror M2 with relative velocity c – v. And having got reflected 

at M2, it travels towards the glass plate P with a velocity c + v. Hence, the required time for its round trip is 

given by

  t1 =   
D
 _____ 

c – v
   +   

D
 _____ 

c + v
   =   

2Dc
 ______ 

c2 – v2
  

or  t1 ª   
2D

 ___ c    ( 1 +   
v

2

 __ 
c2

   )  ...(9)

 The time taken by the [\ v < < c] reflected beam for its round–trip is given by 

  t2 = 2t ¢ ...(10)

 When t ¢ is the time required by the beam to travel from P to A¢. 
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 Now, from the triangle PA¢ M, one gets

  c2 t ¢2 = v2t ¢2 + D2

or,  t ¢2 =   
D2

 ______ 
c2 – v2

   

or,  t ¢ =   
D
 ________ 

 (c2 – v2) 
  
1
 __ 

2
  

 

  

or,  t ¢ ª   
D

 __ 
C

    ( 1 +   
v

2

 ___ 
2c2

   )  ...(11)

 Hence t2 = 2t ¢ =   
2D

 ___ c    ( 1 +   
v

2

 ___ 
2c2

   )  ...(12)

 From Eqs. (9) and (12), we get the difference in the times required by the two beams for their round trips 

is given by

  t1 – t2 =   
Dv

2

 ____ 
c3

   ...(13)

 A time difference of one period (T) would amount a path difference of l (one wavelength), which will in 

turn, amount to a displacement of one fringe across a particular point (i.e., the cross-point of the cross-wires) 

in the field of view of the telescope. Hence, a time difference (t1 – t2) =   
Dv

2

 ____ 
c3

   causes   
Dv

2

 ____ 
c3T

   =   
Dv

2

 ____ 
c2 l

   fringes to be 

displaced across the cross-point of the cross-wires. Here the relation CT = l has been used. The displacement 

of the fringes, in this case, cannot be seen since the apparatus is at rest with respect to the observer all the 

time. Hence, no information regarding the time difference between the two paths can be obtained with an 

apparatus which is stationary on the earth. For this reason, the apparatus is then slowly turned through 90º 

so that the two light beams interchange their paths. This is equivalent to introduction of an additional path 

difference which would make the displacement of the fringes noticeable. Because of this act of rotation   
2Dv2

 _____ 
c2 l

   

fringes should be displaced.

 In the Michelson–Morley experiment effective distance was 11 m, i.e., D = 11 m. The wavelenght of light 

l = 5.9 × 10–7 m, v = 3 × 104 ms–1 and C = 3 × 108 ms–1.

 So,   
2Dv

2

 _____ 
c2 l

   = 0.37. Thus, 0.37 fringe was expected to be displaced across the cross-point of the cross-wires. 

Their apparatus was capable of noticing even 0.01 fringe, i.e., one hundredth of a fringe. The observed dis-

placement was extremely small as compared to the theoretical value of 0.37 fringe–width. So, the result was 

not consistent. The experiment was performed in different reasons of the year and at different places. But, the 

result was the same. Thus, the motion of the earth with respect to ether cannot be detected.

 The negative result led them to the following conclusions: (i) the hypothesis of existence of ether was ren-

dered untenable by demonstrating that ether has no measurable properties, and (ii) the speed of light in free 

space is constant irrespective of the motion of the source or the observer. 
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Einstein’s Special Theory of Relativity

Due to invariance of the velocity of light in all inertial reference frames as has been seen above, Einstein put 

forward his special theory of relativity in 1905. The special theory of relativity is based on the following two 

postulates: 

 (i) All the basic laws of physics remain same in all inertial frames of reference.

 (ii) The speed of light in vacuum is same in all inertial frames of reference irrespective of the motion of 

the source relative to the observer. 

 The consequence of the first postulate is that there is no universal (or absolute) reference frame. The 

second postulate is the consequence of the experiment of Michelson and Morley. 

Lorentz Transformation

A set of transformation equations which satisfy the postulates of the special theory of regativity is known as 

the set of Lorentz transformation equations. This set provides us with a method of obtaining the coordi-

nates of a point in a certain reference frame relative to another inertial reference frame and vice versa. 

 The galilean transformation equations are as follows. 

  x ¢ = x – vt

  y ¢ = y  ...(14) 

  z ¢ = z 

and t ¢ = t

 And the velocity transformation equation are given by

  ux ¢ = ux – v 

  uy ¢ = uy  ...(15)

  uz ¢ = uz

 From Eq. (15), we can get the idea that these equations violate the first postulate of the special theory of 

relativity. If we consider the velocity of light in the two inertial frames S and S ¢ to be c and c ¢ respectively, 

then from Eq. (15), we get

  c ¢ = c – v ...(16) 

 Here, we have considered different velocities of light in different reference frames this is not acceptable in 

case of the special theory of relativity. So, in order to satisfy the postulates of the special theory of relativity, 

we must get a set of better transformation equations than the galileon transformation equations which are 

termed as Lorentz transformation equations as mentioned above.

 In order to develop these equations, let a possible relation between x and x ¢ be of the form 

  x ¢ = k (x – v t) ...(17)

where k is a constant of proportionality. The constant k does not depend on x and t but it may be a function of 

V. The relation (17) is linear in x and x ¢ and it can be easily reduced to the form x ¢ = x – v t which is correct 

in newtonian mechanics if k = 1 when v << c. The inverse relation of Eq. (17) can be written as 

  x = k ¢ (x ¢ + v t ¢) ...(18) 

 [Note: The interchange of primed and unprimed variables.] 

 In this new transformation we are not taking t = t ¢ relation. That is in Lorentz transformation t ¢ π t and v 

has been replaced by –v. The other relations are as in case of galileon transformation, i.e., 
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  y ¢ = y 

and z ¢ = z  ...(19) 

 From Eqs. (17) and (18), we get 

  x = k¢ (x ¢ + v t ¢)

or,  x = k¢ [k (x – v t) + v t ¢]

or,  x = kk ¢ (x – v t) + k ¢ v t ¢ 

or,  k ¢ v t ¢ = – kk ¢ (x – v t) + x

or,  k ¢ v k ¢ = kk ¢ v t – kk ¢x + x

or,  t ¢ = kt + (– kk ¢ + 1)   
x
 ___ 

v k
  

or,  t ¢ = kt + (1 – kk ¢/k ¢v ) x ...(20) 

 In order to determine the value of k and k ¢, we use the second postulate. Let at t = 0, the origin of the two 

systems S and S ¢ coincide with each other. Let this instant correspond to t ¢ = 0. Suppose that a light signal 

is given out from the common origin of the frames S and S ¢ at t = t ¢ = 0. The signal propagates in the two 

systems satisfying the equations 

  x = ct ...(21)

and x ¢ = ct ¢ ...(22) 

 Let us replace x ¢ and t ¢ in Eq. (22) by using Eqs. (17) and (20),

\  k (x – v t) = ckt +  (   1 – kk ¢
 ______ 

k ¢v 

   )  cx

 Hence, x = ct  [   
(1 + v /c)

 _____________  

1 –  (   1
 ___ 

kk ¢
   – 1 )    c __ 

v
  

   ]  ...(23)

 Now, comparing Eqs. (21) and (23), we can write

  1 =   
(1 + /c)

 _____________  

1 –  (   1
 ___ 

kk ¢
   – 1 )    c __ 

v
  

  

or,  1 –  (   1
 ___ 

kk ¢
   – 1 )    c __    = 1 +    __ c  

or,   ( 1 –   
1
 ___ 

kk ¢
   )    c __    =    __ c  

or,  1 –   
1
 ___ 

kk ¢
   =   

2

 __ 
c2

  

or  kk ¢ = 1/ ( 1 –   
v

2

 __ 
c2

   ) 
or,   ÷ 

___

 kk ¢   =   
1
 _______ 

 ÷ 
_____

 1 –   
v

2

 __ 
c2

    

   ...(24)
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 As can be seen in Eq. (24), kk ¢ depends on v2 (and not on v), the relative velocity of S ¢ with respect to S. 

 In fact, we cannot choose between the two reference frames S and S ¢ without taking account of the sign of 

v. But the sign of v does not affect the dependence of kk ¢ on v. So, we choose 

  k = k ¢ =   
1
 _______ 

 ÷ 
_____

 1 –   
v

2

 __ 
c2

    

   ...(25) 

 Substituting there values of k and k ¢ in Eqs. (17) and (20) and including Eq. (19), we get the following set 

of equations:

  x ¢ =   
x – vt

 _______ 

 ÷ 
_____

 1 –   
v

2

 __ 
c2

    

  

  y ¢ = y

  z ¢ = z 

  t ¢ =   

t ¢ –   
vx

 __ 
c2

  

 _______ 

 ÷ 
_____

 1 –   
v

2

 __ 
c2

    

   

...(26)

 The set of Eqs. (26) is known as Lorentz transformation equations. The inverse Lorentz transformation can 

now be written as 

  x =   
x ¢ + vt ¢

 _______ 

 ÷ 
_____

 1 –   
v

2

 __ 
c2

    

  

  y = y ¢ 

  z = z ¢  

  t =   

t ¢ +   
vx ¢

 ___ 
c2

  

 _______ 

 ÷ 
_____

 1 –   
v

2

 __ 
c2

    

   ...(27)

 Thus, the measurement of position and time are found to depend upon the frame of reference of the 

observer concerned. It v << c, we get the galileon transformation from Lorentz transformation. 

Addition of Velocities

Let us consider a body which is moving with respect to both the frames S and S ¢. An observer in the frame S 

measures the Components of Velocity  
__

 V  of the body as

  Vx =   
dx

 ___ 
dt

  , Vy =   
dy

 ___ 
dt

   and Vz =   
dz

 __ 
dt

   ...(28)

 And an observer in the frame S ¢ maker the following measurements of the velocity  
__

 V  ¢ of the body as 

  V ¢x =   
dx ¢

 ___ 
dt ¢

  , V ¢y =   
dy ¢

 ___ 
dt ¢

   and V ¢z =   
dz ¢

 ___ 
dt ¢

   ...(29) 



Relativistic Concept C1.9

 Now, from Lorentz transformations, we get 

  dx ¢ =   
dx – vdt

 _______ 

 ÷ 
_____

 1–   
v

2

 __ 
c2

    

  

  dy ¢ = dy 

  dz ¢ = dz  ...(30) 

  dt ¢ =   

dt –   
vdx

 ___ 
c2

  

 _______ 

 ÷ 
_____

 1 –   
v

2

 __ 
c2

    

  

\  V ¢x =   
dx ¢

 ___ 
dt ¢

   =   
dx – vdt

 _______ 

dt –   
vdx

 ___ 
c2

  

  

or  V ¢x =   
Vx – v 

 
________ 
1 –   

v
 __ 

c2
   Vx

   ...(31) 

 The y–component of velocity is 

  V ¢y =   
dy ¢

 ___ 
dt ¢

   =   
dy
 __________ 

  

 ( dt –   
v
 __ 

c2
  dx ) 
 __________ 

 ÷ 
_____

 1 –   
v

2

 __ 
c2

    

  

  

or  V ¢y =   

Vy  ÷ 
_____

 1 –   
v

2

 __ 
c2

    

 _________ 

1 –   
Vx v

 ____ 
c2

  

   ...(32) 

 Similarly, V ¢z =   

Vz  ÷ 
_____

 1 –   
v

2

 __ 
c2

    

 _________ 

1 –   
Vx v

 ____ 
c2

  

    ...(33) 

 The Eqs. (31), (32) and (33) constitute transformation equations for velocity. 

 If the velocity of the frame S ¢ with respect to the frame S is V and V << c, then from Eqs. (31), (32) and 

(33), we get 

  V ¢x = Vx – v 

  V ¢y = Vy  ...(34) 

  V ¢z = Vz 

 Which are galileon transformation equation for velocities. 
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 The inverse transformations equations for velocities are as follows: 

  Vx =   
V ¢x + v 

 
_______ 

1 +   
vVx

 ___ 
c2

  

  

  Vy =   
V ¢y  ÷ 

_______

 1 – v2\c2  
 ___________ 

1 +   
vV ¢x

 ____ 
c2

  

    ...(35)

and Vz =   
V ¢z  ÷ 

_______

 1 – v2/c2  
  ___________ 

1 +   
vVx

 ___ 
c2

  

  

 Suppose that a ray of light is emitted in the frame S ¢ (which is moving with a velocity v with respect to 

the frame S) in the same direction as that of its own motion with respect to S, then V ¢x = c. The observer in the 

frame S would measure the velocity of the emitted light ray as 

  Vx =   
V ¢x + v

 _______ 

1 +   
vV ¢x

 ____ 
c2

  

  

or,  Vx =   
c + v

 ______ 
1 +   

vc
 __ 

c2
  
   =   

c + v
 _____ 

1+   
v
 __ c  
   =   

c(c + v)
 _______ 

(c + v)
   

\  Vx = c

 If velocity of light is c in the frame S ¢, then it is also c in the frame S. This is consistent with the second 

postulate of the special theory of relativity. 

Variation of Mass with Velocity

In classical mechanics, mass is considered to be constant. But in relativistic, mechanics it can vary with 

respect to time. So, logically we can assume that 

mass will be a function of velocity. 

\ m = m(u) where u is the velocity with which the 

mass is moving. If u = 0, then m = m0, the rest mass. 

 To determine the dependence of mass on velocity, 

we shall consider a collision of two bodies and fur-

ther assume that the law of conservation of momen-

tum and the law of conservation of relativistic masses 

of the particles are valid.

 Let us consider two bodies each of mass m ¢ mov-

ing in opposite directions along the X ¢–axis with 

velocities u ¢ and –u ¢ as observed from S ¢ (Fig. 

C1.3).

O

S

Y Y ¢

S ¢

Æ V

O¢
X

X ¢

1 2

u ¢ – u ¢

m¢ m¢

Fig. C1.3 Variation of mass with velocity.



Relativistic Concept C1.11

 Let there two bodies collide and coalesce into one single body.

 The body thus formed will be at rest according to the law of conservation of momentum in the frame S ¢. 

 If the collision is observed from the frame S, the Velocities of the two bodies will be given by

  u1 =   
u ¢ + v

 _______ 

  
1 + u ¢v

 ______ 
c2

  

   ...(36) 

and u2 =   
– u ¢ + v

 _______ 

1 –   
u ¢v

 ___ 
c2

  

   ...(37) 

 Let m1 and m2 be the masses of the two bodies with respect to S. 

 The mass of the combined body is 

  m = m1 + m2 ...(38) 

 The body of mass m moves with a velocity v along the positive x-direction with respect to the frame S as 

it is at rest in S ¢. 

 From the law of conservation of momentum

 We can write,

  m1 u1 + m2 u2 = mv ...(39)

or,  m1  [   
u ¢ + v

 _______ 

1 +   
u ¢v

 ___ 
c2

  

   ]  + m2  [   
–u¢v

 ______ 

1–   
u¢v

 ___ 
c2

  

   ]  = (m1 + m2) v

or,    
m1

 ___ m2
    [   

u ¢ + v
 _______ 

1 +   
u ¢v

 ___ 
c2

  

   ]  +  [   
–u ¢ + v

 ______ 

1 –   
u ¢v

 ___ 
c2

  

   ]  =  (   
m1

 ___ m2
   + 1 )  v

or,    
m1

 ___ m2
    [   

u ¢ + v 
 

_______ 

1 +   
u ¢v

 ___ 
c2

  

   ]  –   
m1

 ___ m2
   v = v +   

u ¢ – v
 

_______ 

1 –   
u¢v 

 
___ 
c2

  

  

or,    
m1

 ___ m2
    [   u ¢  ( 1 –   

v 
2

 ___ 
c2

   ) 
 __________ 

1 +   
u ¢v 

 
____ 
c2

  

   ]  =   

u ¢  ( 1 –   
v 

2

 ___ 
c2

   ) 
 __________ 

1 –   
u ¢v 

 
____ 
c2

  

  

or,    
m1

 ___ m2
   =   

1 + u ¢v /c2

 _________ 
1 – u ¢v /c2

   ...(41)

 Now, divinding both sides of Eq. (36) by c, we get 

    
u1

 __ c   =   
(u ¢ + v )

 __________ 

c  ( 1 +   
u ¢v 

 
____ 
c2

   ) 
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or,    
 u 

1
  2 
 __ 

c2
   =   

(u ¢ + v )2

 ____________  

c2   ( 1 +   
u ¢v 

 
____ 
c2

   )  
2

 

  

or,  1 –   
 u 

1
  2 
 __ 

c2
   = 1 –   

(u ¢ + v )2

 ___________  

c2   ( 1 +   
u ¢v 

 
____ 
c2

   )  
2

 

  

or,  1 –   
 u 

1
  2 
 __ 

c2
   =   

c2   ( 1 +   
u ¢v 

 
____ 
c2

   )  
2

  – (u ¢ + v )2

  _____________________  

c2   ( 1 +   
u ¢v 

 
____ 
c2

   )  
2

 

  

Hence, 1 –   
 u 

1
  2 
 __ 

c2
   =   

 ( 1 –   
v 

2

 ___ 
c2

   )   ( 1 –   
u¢2

 ___ 
c2

   ) 
  _______________  

  ( 1 +   
u ¢v 

 
____ 
c2

   )  
2

 

  

or,   ÷ 
______

 1 –   
 u 

1
  2 
 __ 

c2
     =  ÷ 

________________

    

 ( 1 –   
v 

2

 ___ 
c2

   )   ( 1 –   
u ¢2

 ___ 
c2

   ) 
  _______________  

 ( 1 +   
u ¢v 

 
____ 
c2

   ) 
    

or,   ( 1 +   
u ¢v 

 
____ 
c2

   )  =  ÷ ________________

    

 ( 1 –   
v 

2

 ___ 
c2

   )   ( 1 –   
u ¢2

 ___ 
c2

   ) 
  _______________  

 ( 1 –   
 u 

1
  2 
 __ 

c2
   ) 

     ...(42) 

 Similarly, from Eq. (37), we get

   ( 1 –   
u ¢v 

 
____ 
c2

   )  =  ÷ ________________

    

 ( 1 –   
v 

2

 ___ 
c2

   )   ( 1 –   
u ¢2

 ___ 
c2

   ) 
  _______________  

 ( 1 –   
 u 

2
  2 
 __ 

c2
   ) 

     ...(43)

 Now, substituting these values in Eq. (41), we get 

    
m1

 ___ m2
   =    

 ÷ 
_______

 1 –    
 u  

2
  2 
 ___ 

c2
    

 ________ 

 ÷ 
______

 1 –   
 u 

1
  2 
 __ 

c2
     

   ...(44) 
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 If the velocity of the mass m2 with respect to the frame S be zero, i.e., u2 = 0, then its mass m2 can be 

denoted by mo. The symbol mo gives the (rest) mass of the second body when it is at rest with respect to the 

frame S. 

 Let u 1 = v, i.e., the velocity of the first body with respect to the frame S is v.

 So, the Eq. (44) can be written as follows (by denoting m1 by m):

    
m

 ___ mo
   =   

1
 _______ 

 ÷ 
______

 1 –   
v

2

 ___ 
c2

    

  

\  m =   
mo
 _______ 

 ÷ 
______

 1 –   
v

2

 ___ 
c2

    

   ...(45) 

 This gives the variation of mass with respect to velocity.

 The momentum is defined as 

  mv =   
mo
 _________ 

 ÷ 
________

 1 – v2/c2  
   v

 The momentum is conserved in the theory of relativity also. 

 In relativistic form Newton’s second law of motion is written as 

  F =   
d
 __ 

dt
   (mv) =   

d
 __ 

dt
    (   

mo v
 

______ 

1 –   
v

2

 __ 
c2

  

   ) 
Mass and Energy Relation 

The kinetic energy T of a moving body is the work done in giving it that state of motion starting from rest. 

 So, the kinetic energy T ¢ is given by 

  T =  Ú 
0

   

t

   Fdr  

where F is the component of force parallel to dr. 

 Now, we can express force as 

  F =   
d
 __ 

dt
   (mv)

\  T =  Ú 
0

   

t

      
d(mv)

 _____ 
dt

   dr 

or,  T =  Ú 
0

   

mv

  vd (mv)   [ \   
dr

 __ 
dt

   = v ] 

or,  T =  Ú 
0

   

v

  vd   
mo v

 
_______ 

 ÷ 
______

 1 –   
v

2

 __ 
c2
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or,  T ¢ =   
mo v

2

 _______ 

 ÷ 
______

 1 –   
v

2

 __ 
c2

    

   – mo  Ú 
0

   

v

    
vdv
 

_______ 

 ÷ 
______

 1 –   
v

2

 __ 
c2

    

    [Integrating by parts] 

or,  T ¢ =   
mo v

2

 _______ 

 ÷ 
______

 1 –   
v

2

 __ 
c2

    

   + mo c
2  (  ÷ 

______

 1 –   
v

2

 __ 
c2

     – 1 ) 

or,  T =   
mo v

2

 _______ 

 ÷ 
______

 1 –   
v

2

 __ 
c2

    

   + mo c
2  ÷ 

______

 1 –   
v

2

 __ 
c2

     – mo c
2

or,  T =   
mo v

2 + mo c
2 – mo v

2

  _________________  

 ÷ 
______

 1 –   
v

2

 __ 
c2

    

   mo c
2

or,  T =   
mo c

2

 _______ 

 ÷ 
______

 1 –   
v

2

 __ 
c2

    

   – mo c
2

or,  T = mc2 – mo c
2 ...(46) 

or,  T = Dmc2 where Dm = m – mo 

 So, the kinetic energy of a body is the increase in mass multiplied by the square of the speed of light in 

free space. 

 Equation (46) can be written as 

  mc2 = T + mo c
2

i.e., total energy of a body is equal to sum of its kinetic energy and rest mass energy. 

 If we represent total energy by E and the rest mass energy by Eo, then Eq. (46) can be written as 

  E = Eo + T        ...(47) 

where E = mc2 and Eo = mo c
2

 The equation E = mc2 expresses the universal equivalence of mass and energy. 

 It is also called Einstein’s mass energy relation. 

 One can easily convert the kinetic energy T to its classical value 1/2 mv
2 as follows:

  T = mc2 – mo c
2

or,  T =   
mo c

2

 _______ 

 ÷ 
______

 1 –   
v

2

 __ 
c2

    

   – mo c
2

or,  T ¢ = mo c
2  [   

1
 _______ 

 ÷ 
______

 1 –   
v

2

 __ 
c2

    

   – 1 ] 
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or,  T = mo c
2  [   ( 1 –   

v
2

 __ 
c2

   )  –   
1
 __ 

2
  

  – 1 ] 

or,  T = mo c
2  ( 1 +   

1
 __ 

2
     
v

2

 __ 
c2

   + ... – 1 )  [Neglecting higher terms as classically v << c]

or,  T =   
1
 __ 

2
   mo v

2 ...(48) 

Energy–Momentum Relation 

As stated earlier, the relativistic momentum (p) of a moving particle of mass m is given by 

  p = mv =   
mo v

 
_______ 

 ÷ 
______

 1 –   
v

2

 __ 
c2

    

   ...(49) 

 The total relativistic energy is given by

  E = mc2 =   
mo
 _______ 

 ÷ 
______

 1 –   
v

2

 __ 
c2

    

   c2 ...(50) 

 So, by using Eqs. (49) and (50), we can write

  E2 – p2 c2 =   
 m o  

2  c4

 _______ 

 ( 1 –   
v

2

 __ 
c2

   ) 
   –   

 m o  
2  v2 c2

 _______ 

 ( 1 –   
v

2

 __ 
c2

   ) 
  

or,  E2 – p2 c2 =  m o  
2  c4  {   1 – v2/c2

 ________ 

 ( 1 –   
v

2

 __ 
c2

   ) 
   } 

or,  E2 – p2 c2 =  m o  
2  c4

or,  E2 =  m o  
2  c4 + P2 c2

\  E =  ÷ 
___________

  m o  
2  c4 + p2 c2   ...(51) 

 Equation (51) gives the relation between the total relativistic energy (E) and the momentum (P) of the 

body.

 The equation E2 – P2 c2 =  m o  
2  c4 is an invariant. 

 If the rest mass of a particle is zero, then Eq. (51) reduces to 

  E = pc





APPENDIX

D
Experiments

EXPERIMENT NO. 1

Aim To determine wavelength of sodium light having formed Newton’s rings.

Apparatus Traveling microscope, support for glass-plate inclined at an angle of 45°, plano-convex lens, 

thin glass plate, source of sodium light and spherometer.

L2

G2

G1

Tr. M.

L1

Sl

S

Fig. D1.1a Newton’s ring experimental set up. L1: Biconvex lens, L2: Planoconvex lens, G1: Glass plate inclined 
at 45°, G2: Horizontal glass plate, S: Sodium lamp, SL: slit, Tr. M.: Traveling Microscope.

Working Formula

  l =   
 D n + m  2

   –  D n  
2 
 _________ 

4Rm
  

where Dn + m = diameter of (n + m)th ring.

  Dn = diameter of nth ring.

and R = radius of curvature of the convex surface of the plano-convex lens.
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Procedure

 1. Place the sodium vapor lamp in such a way that its light passing slit remains at the focus of a vertical 

biconvex lens. The light rays coming out of the lens will be parallel.

 2. The inclined glass plate (inclined at 45°) will reflect the light beam vertically downward.

 3. The plano-convex lens is placed under the inclined glass plate on another horizontal glass plate so 

that its plane surface remains on top and the spherical surface lies on the horizontal glass plate. There 

will be an air film between the lens and the glass plate.

 4. Light rays reflected from the spherical surface of the plano-convex lens and the horizontal glass plate 

are received through the traveling microscope.

 5. Circular rings are formed in the thin air film between the plano-convex lens and the horizontal glass 

plate.

 6. Adjust the microscope to see the bright (and dark) rings distinctly.

 7. Make one of the cross-wires (vertical one) tangent to a bright ring (say 10th) at the right side. Take 

the reading from the scale attached to the microscope. Then move the cross-wire towards left and 

make it tangent at the right of the seventh ring and take the reading. Similarly, take the reading on the 

right side of the fourth ring.

 8. Moving the cross-wire in the same direction take readings on left sides of the fourth, seventh and 

tenth rings.

 9. Measure the radius of curvature (R) of the curved surface of the plano-convex lens using spherometer 

(usually it is given).

 10. The observation for diameters (D) of the rings are tabulated as in Table D.1 (given below):

Observations

Table D.1 To measure the diameters of the rings.

No. of rings Microscope reading Dm = x ~ y (cm) Dm
2  (cm2)

 Left (x) Right (y)

 MSR LC VSR Total MSR LC VSR Total

Calculations

  l =   
 D n + m  2

   –  D n  
2 
 _________ 

4m R
   (cm)2

 Plot the graph between  D n  
2  and the number of rings (n). Measure the slope (S) of the line which is given 

  s =   
D ( D n  

2 )
 ______ 

Dn
  

\ wavelength, l =   
 D n + m  2

   –  D m  2 
 _________ 

4nR
   =   

D( D n  
2 )
 _____ 

4D nR
   =   

S
 ___ 

4R
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i.e., l =   
s
 ___ 

4R
  

Results

Percentage Error

Discussions

Aids to Viva Voce

Q.1 What is interference of light?

Ans. When two light beams pass through the same region of space, the intensity due to each individual 

beam cannot be observed. Instead, a modified intensity is observed which is the result of superposition of the 

two beams. This phenomenon is known as interference of light.

Q.2 What are the required conditions for interference of light?

Ans. The sources of light from which light beams participate in interference must be coherent and 

monochromatic and the frequencies of the light waves involved should be equal or almost equal.

Q.3 How are Newton’s rings formed?

Ans. Newton’s rings are formed due to interference between two light rays—one reflected by the front 

surface of an air film and the other reflected from the back surface of the air film.

Q.4 State the condition for which the center of the ring system will be bright or dark.

Ans. If the ring system is viewed through reflected light the center of the ring system is dark. On the other 

hand, if the system is viewed through the transmitted light, the center becomes bright. In the present case the 

center of the ring system is dark as it is viewed through reflected light.

Q.5 What is the harm if white light is used instead of monochromatic light?

Ans. The rings will be colored and few in number.

 On what factors does the diameter of the rings depend?

Ans. The diameter of the rings depends on: 

 (i) the serial number of the concerned ring, 

 (ii) the wavelength of the light used, and 

 (iii) the radius of curvature of the plano-convex lens.

Q.7 Can you measure the refractive index of a liquid by this experiment?

Ans. Yes, in that case, a few drops of the liquid are to be poured on the glass plate and over those drops the 

plano-convex lens is to be placed. Newton’s rings will be formed in the liquid. Applying the formula,

  l  =   
( D m+n  

2
   –  D m  2

  )
 __________ 

4Rn
   m 

The refrative index m can be found

 Hence, the refactive index of the liquid is given by

Fig. D1.1b

D
2

n

Dn

n

D(Dn

2
)
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  m =   
4x lR

 _________ 
 D m+n  

2
   –  D m  2

  

  Q.8 How can you measure the radius of curvature of the plano-convex lens?

Ans. The radius of curvature of the lens can measured with the help of a spherometer.

Q.9 Can you measure the radius of curvature of the plano-convex lens by Newton’s ring experiment?

Ans. Yes, one can measure the radius of curvature the lens by the formula,

  R =   
 D m + n  

2
   –  D m  2

  
 _________ 

4nl 
  

when value of l is given.

Q.10 Why are Newton’s rings circular?

Ans. The air film which we produce in this experiment lies between the spherical surface of a lens and the plane 

surface of the glass-plate. So, the thickness of the film is variable. If one selects a particular thickness of the film 

and makes a round trip maintaing the same thickness, one will find a circle. If one point in this circle is bright, 

then all other points also will be bright. This is the reason for getting circular fringes in this experiment.

EXPERIMENT NO. 2

Aim Determination of the coefficient of viscosity of water by Poiseulle’s Capillary flow method.

Apparatus Constant-head apparatus, capillary tube, beaker, measuring cylinder, stop-watch, rubber tube 

for connection, meter scale, pinch cock and spirit level.

Fig. D1.2 Experimental set up for viscosity measurement.
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Working Formula

  h =   
p r gr4

 ______ 
8l

    (   h __ 
v
   ) 

where h = coefficient of viscosity,

  r = density of the liquid,

  g = acceleration due to gravity,

  r = radius of the capillary tube,

  l = length of the capillary tube,

  h = (h2 – h1) = pressure head,

and v = rate of flow of the liquid (in volume).

Procedure

 1. Measure the length of the capillary tube by using a meter scale.

 2. Measure the radius of the sample capillary tube by using a traveling microscope (usually it is 

given).

 3. Fix the water tank of the viscosity apparatus at a suitable height. Allow the water from the tank to 

come out of the tube slowly. Wait until the levels of water at the two arms of the manometer become 

steady.

 4. Let water flow through the rubber tube slowly by making use of the pinch cock. The water level in the 

nearer arm of the (rubber tube) opening will come down. Fix it at such a level that water flow through 

the capillary tube remains laminar.

 5. Collect water from the output end of the rubber tube in a measuring cylinder for five minutes. Then 

measure the volume of the collected water and from this calculate the flow rate of water (in volume/s). 

Repeat this step three more times having kept the water level different from the first case in the nearer 

arm of the manometer.

 6. Draw a graph of h versus v (the flow rate). The curve should be a straight line passing through the 

origin. If there is a curvature in the curve for higher values of h then use the linear portion of it to 

calculate the slope   
h
 __ 

v
  .

Observations

Table D1.2 Determination of  (   h 
__ 
v
   ) .

No. of obs.  Manometer reading (cm)  Volume (V) Time (t) Flow rate v = V/t

 h1 h2 h = h2 – h1 cm3 (seconds)
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Use of Graph

  The slope =   
Dh

 ___ 
Dv

  

Calculations

Results

Percentage of Error

Discussions

Aids to Viva Voce

Q.1 What is viscosity?

Ans. It is the resistance offered by a fluid to flow when it is subjected to a shear stress.

Q.2 What is coefficient of viscosity?

Ans. The coefficient of viscosity of a liquid may be defined as the tangential force required per unit area to 

maintain unit relative velocity between two layers that are unit distance apart.

Q.3 What is the unit of viscosity?

Ans. The unit of viscosity is ‘poise’ in C.G.S. system of measurement.

Q.4 What is the harm if the pressure difference between the ends of the capillary tube is high?

Ans. If the pressure difference is high, then the flow of the liquid through the capillary tube will not be 

streamlined. In that case, the formula h =   
pr4hrg

 ______ 
8lu

   will not be valid.

Q.5 How does the coefficient of viscosity of water depend on the temperature?

Ans. The coefficient of viscosity decreases with increase in temperature.

Q.6 Why is extra precaution necessary while measuring the radius of the capillary tube?

Ans. The radius occurs in its fourth power in the formula for viscosity. A slight error in its measurement 

will be much magnified and increase the percentage of error in the final result to a high degree.

Q.7 What is the harm if the tube is of wider bore?

Ans. In a tube of wider bore, a slight difference of pressure between the ends of the tube makes the flow of 

water turbulent. It is very difficult to get streamlined flow in wide bore tube.

Q.8 What factors are conducive to streamline flow?

Ans. The required factors are fine bore, high viscosity and low density.
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Q.9 Is the capillary (tube) method suited to determine the viscosity of all liquids?

Ans. It is not suitable for liquids with high viscosity.

Q.10 What should be the value of Reynold’s number the flow of the liquid to be stream-lined?

Ans. The value of Reynold’s number should be less than 2000.

EXPERIMENT NO. 3

Aim To determine the value of unknown resistance by using Carey–Foster’s bridge and also resistance per 

unit length of the bridge wire.

Apparatus Carey–Foster’s bridge, two equal one ohm resistances, power supply unknown resistance, 

table galvanometer, resistance box and plug commutator.

S R

P Q

l2

l1

G

Fig. D1.3 Carey–Foster’s bridge.

Theory Carey–Foster’s bridge connection has been shown in the diagram of Fig. D1.3. If one gets the null 

point at a length l1 from the left end of the bridge wire, then having used wheatstone bridge principle, one 

gets

    
P

 __ 
Q

   =   
S + a + l1 r  ________________  

R + b + (100 – l1)r
   ...(1)

where a and b are end corrections and r is the resistance per unit length of the bridge wire.

 If one interchanges the positions of S and R and gets a null point at a length l2 from the left end, then 

    
P

 __ 
Q

   =   
R + a + l2 r  ________________  

S + b + (100 – l2)r
   ...(2)

 Solving the two Eqs. (1) and (2), one get

  r =   
S – R

 _____ 
l2 – l1

   ...(3)

or,  R = S – r (l2 – l1) ...(4)
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 Now, if one replaces R by a thick metal strip, then R = 0 and Eq. (3) reduces to

  r =   
S
 _______ 

(l2 – l1)
   ...(5)

Procedure

 1. Connect the circuit of Carey–Foster’s bridge as shown in the diagram of Fig. D.3.

 2. Put a fractional resistance box in the extreme left gap and a metal strip in the extreme right gap.

 3. Put two equal resistances P and Q (each of 1 ohm resistance) in the two middle gaps.

 4. Put a small resistance (say, 0.5 ohm) in the box. Measure the null point.

 5. Repeat Step 4 seven more times with different values of small resistance in the resistance box. Note 

these values as l1. 

 6. Interchange the resistance box and the metal strip. Repeat Steps 4 and 5 with same values of the 

resistance. Note these values as l2.

 7. Put the resistance box in the left gap and an unknown resistance (which is to be measured) in the right 

gap. Having put some resistance in the box find out the null point.

 8. Repeat Step 7 with seven other values of resistance. Note the lengths of the bridge wire from left end 

to the null point as l1.

 9. Interchange the resistance box and the unknown resistance. Repeat Steps 7 and 8 seven times. Note 

the lengths of the bridge wire up to the null point from the left end as l2.

 10. Calculate the values r and R from the following two tables:

Observations

Table D1.3a Measurement of r.

No. of obs. S in ohm Position of null point with metal strip at l2 – l1
 r =   

S
 _____ 

l2 – l1
   

Mean r

  right gap l1(cm) left gap l2(cm) (cm) ohm/cm ohm/cm

Table D1.3b Measurement of unknown resistance (R).

No. of obs. S in Position of null point when the unknown resistance is l2 – l1 R = S – r (l2 – l1) Mean R

 ohm right gap l1(cm) left gap l2(cm) (cm) (ohm) (ohm)
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Results

Percentage Error

Discussions

Aids to Viva Voce

Q.1 What is charge?

Ans. It is a property of some fundamental particles due to which two 

similar particles repel each other and two dissimilar particles attract 

each other.

Example Electron, Proton, Positron, etc.

Q.2 What is Wheatstone bridge principle? Explain it with a diagram.

Ans. The Wheatstone bridge is shown in the following diagram. This 

principle states that when there is no current flowing through the galva-

nometer (i.e., zero deflection is obtained) one gets the following relation 

among the four resistances P, Q, R and S:

    
P

 __ 
Q

   =   
R

 __ 
S
  

 This is known as Wheatstone bridge principle.

Q.3 What is a meter bridge? On what principle does it work?

Ans. The meter bridge is a modified Wheatstone bridge where two resistances are replaced by a wire 

of one metre length. And hence it is called a meter-bridge. A meter-bridge is shown in the following 

diagram:

 The meter bridge works on the Wheatstone bridge principle.
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Q.4 Why is the Wheatstone bridge not used in the laboratory? What is the advantage of the meter bridge 

over the Wheatstone bridge?

Ans. The Wheatstone bridge is not used in the laboratory because it takes a long time to achieve balance 

(i.e., condition of no deflection in the galvanometer) in it as resistances have to be changed one at a time. The 

advantage of the meter bridge over the Wheatstone bridge is that one can vary two resistances (R and S) at a 

time by moving the jawkey.

Q.5 What is the disadvantage of the meter bridge?

Ans. In the meter bridge three metallic strips and a one meter long wire are used. The strips and the wire are 

usually made of different metals. For this reason, in the two joints of strip and wire two resistances (a and b) are 

developed. If the values of these two resistances are not determined ahead of the experiment, the meter bridge 

gives an incorrect result. This is the disadvantage of the meter bridge. 

Q.6 What is the advantage of the Carey–Foster’s bridge over the meter bridge?

Ans. In the meter bridge there are two gaps to insert two resistances (P and Q) while in the Carey–Forster’s 

bridge there are four gaps to insert two additional resistances. By interchanging these two additional resistances 

one can obtain additional equations which consist of the resistances a and b. Now one can eliminate a and 

b from the final equation which is used to calculate an unknown resistance. So, one need not bother for the 

values of the resistances a and b. This is the advantage of the Carey–Foster’s bridge over the metre bridge.

Q.7 What is the specific resistance of matter?

Ans. It is the resistance offered by a unit cube of that matter. The relation of the resistance and the specific resis-

tance is given by R = r   
l
 __ 

A
   where R is the resistance, r is the specific resistance and l and A are the length and area 

of cross section of resistance. So, if the sample resistance is a unit cube, then l = 1 unit and A = 1 unit2 

\ in this case, R = r.

Q.8 Can the specific resistance (rs) of the material of the wire be found out from the resistance per unit 

length (r)?

Ans. Yes, the specific resistance rs can be measured from the equation 

  R = rs   
l
 __ 

A
  

In the present case l = 1 meter

  R = rl = r ohm/m and A = pr2 m2

\  r = rs   
l
 ___ 

pr2
   

 Hence, having known r and r in SI units, one can calculate the value of rs which is given by

  rs = pr2r where A = pr 2

Q.9 Can this experiment be used to measure the difference between two resistances? Is there any condition 

for this?

Ans. In theory it is seen that S – R = r(l2 – l1). So, knowing r, l2 and l1, the difference between the two 

resistances S and R can be found out. The limiting condition is that the difference should be less than the total 

resistance of the bridge wire.
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Q.10 What is the relation between r and the diameter (d) of the wire?

Ans. r μ   1 __ 
d2

  , i.e., the resistance per unit length varies inversely with the square of the diameter or radius.

EXPERIMENT NO. 4

Aim Determination of numarical aperture and the energy loss related to optical fiber.

Apparatus Fiber optic analog transmitter and receiver kits, one and five meter PMMA fiber cords and 

in-line SMA adaptors.

Fig. D1.4 Measurement of numerical aperture.

Theory The numerical aperture (Na) of an optical fiber is the amount of light that is collected by it at its 

end.

 The numerical aperture Na = m sin q 

 For air medium m = 1

so,  Na = sin q 

 In the Fig. D1.4, let the light beam from the fiber end A fall on the screen BD = W

\  Na =   
W
 ___________  

(4L2 + W2)1/2
  

where L is the distance between the end A of the optical fiber and the screen BD. W is the diameter of the 

illuminated circle in the screen BD.

 The loss of optical energy is a function of the length of the optical fiber. The loss is expressed in the unit of 

decibel per unit length. Losses also occur in the optical fibers when one joins two fibers by the in-line adaptor. 

In this experiment loss per unit length as well as loss due to fiber-to-fiber joints will be calculated.

 If P0 be the power of the light energy entering an optical fiber of length L and P be the power output, then 

loss due to the fiber is measured as – 10log10  (   P ___ 
P0

   )  in dB. In case of a pure optical fiber, loss is equal to ŒL. 

If A¢ be the loss due to the adaptors, then the total loss is equal to ŒL + A¢. If P01 and P02 are the power losses 

due to fibers of lengths L1 and L2 and P03 is that due to the combination when the fibers are joined with an 

in-line SMA of loss contribution A, then the loss due to fiber of one meter length and the SMA is given by
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P03 – P02

and similarly loss due to the fiber of length five meter and the SMA is given by

P03 – P01

\ loss per unit length, Œ =   
P02 – P01

 ________ 
L2 – L1

   dB/m

 And the loss due to the in-line SMA (fiber-to-fiber joint) is given by

  A = (P03 – P02) – ŒL1, dB/m

Procedure

 1. Connect the one meter optical fiber with the LED part of the transmitter kit so that light is seen to 

pass through the other end. Make the room dark. Then insert the other end of the fiber through the 

hole of the L-shaped numerical aperture measuring kit. Place the circularly calibrated screen plate 

vertically on the marked end of the L-kit. Switch on the machine. Make one circle completely bright 

on the vertical plate by adjusting the intensity knob. Note down the distance L. Measure the value of 

the diameter of the circle (W).

 2. Move the vertical circularly calibrated screen at different positions and note the diameter (W) of the 

completely illuminated circle in each case.

 3. Take out the output end of the fiber from the L-kit and connect it to the power measuring port of 

the receiver kit. Apply an input voltage by turning the set P0 knob. Make sure that the fiber is fully 

stretched without any coiling or bending. Now, measure the input voltage and the output power with 

the help of a multimeter. This loss is P01.

 4. Repeat Step 3 for the five meter fiber. The input voltage should be same as earlier. This power loss is 

P02.

 5. Repeat Step 3 by joining the two fibers by inline SMA. This power loss in P03.

Observations

Table D1.4a Determination of numerical aperture.

 S. No L(mm) W(mm) Na = W/(4L2 + W 2) 
  
1
 __ 

2
  

  Mean Na

  Acceptance angle = sin–1(Na) =

Table D1.4b Calculation of loss of power.

S. No. P01 P02 Œ =   
P02 – P01

 ________ 
L2 – L1

    P 
03

  A0    P 
03

  A1    P 
03

  A3    P 
03

  A5   A = (P03 – P02) – P01

        A0 A1 A3 A5
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Results

Percentage Error

Discussions

Aids to Viva Voce

Q.1 What is optical fiber?

Ans. An optical fiber is a very thin and flexible cylindrical thread of transparent glass or plastic material 

which can guide visible or infrared light over a long distance. It consists of two different refractive index 

profiles, the core and the clad (also known as cladding) as well as an opaque outer profile known as coating 

or jacket. The jacket protects the core and the clad. The refractive index of the core is slightly greater than 

that of the clad to ensure total internal reflection.

Q.2 How does light pass through the optical fiber from one end to the other?

Ans. Light passes through the core of the optical fiber as a result of multiple total internal reflections. The 

greater value of the refractive index of the core than that of the clad ensures the total internal reflection.

Q.3 What is numeral aperture?

Ans. The numerical aperture of an optical fiber is given by the equation Na = mo sin qA where Na is known as 

numerical aperture.

[mo is the refractive index of the medium from which light is loaded at the receiving end of the fiber, qA is the 

angle of acceptance.]

Q.4 What is meant by acceptance angle and acceptance cone of an optical fiber?

Ans. The maximum angle of incidence at the entrance-aperture of the fiber (i.e.) the maximum angle 

between the axis of the fiber and the incident ray of light) for which the light ray is totally internally reflected 

at the core-clad interface and gets propagated through the fiber is called the angle of acceptance (qA). If one 

rotates the incident ray (when the angle between this ray and the axis of the fiber is the angle of acceptance) 

about the axis of the fiber at the entrance-aperture, then a cone is produced. This cone is called acceptance 

cone.

Q.5 Why does light energy get lost while passing through an optical fiber?

Ans. An optical fiber may contain some impurities in its body. This impurity particles may absorb light. 

Besides, due to bending of the fiber while in use, some amount of light gets scattered through the fiber. For 

these and some other reasons, the output light becomes less than the input light. Hence, loss of light takes 

place in an optical fiber.

Q.6 What is the unit of power loss through the optical fiber?

Ans. The power loss through the optical fiber is measured in a practical unit called decibel which is one 

tenth of the unit bel. The symbol for decibel is dB. And the unit decibel is a logarithmic unit. It is defined as 

–10 log10  (   P ___ 
Po

   )  dB where Po is the input power and P is the output power of the fiber. The loss per unit length 

is dB/m.
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Q.7 What is total internal reflection of light? Explain?

Ans. When light passes from a denser medium to a lighter medium, then the angle of refraction is greater 

than the angle of incidence. The angle of incidence for which the angle of refraction becomes 90° is called 

critical angle (qc). If the angle of incidence qi becomes greater than the critical angle, the light no longer gets 

refracted, instead it gets totally reflected in the denser medium of incidence. This phenomenon is known as 

total internal reflection.

Q.8 Express the refractive index of the denser medium in terms of the critical angle.

Ans. If qc be the critical angle in the denser medium, then the angle of refraction in the lighter medium is 

90°. So, the refractive index of the denser medium with respect to the lighter medium is given:

by   lmd =   
sin 90°

 ______ 
sin qc

  or,   lmd
  =   

1
 _____ 

sinqc

  

 If the lighter medium is air, and m the refractive index of the denser medium, then

  m =   
1
 _____ 

sin qc

  

Q.9 Write the expression for numerical aperture in terms of refractive indices of core and clad medium?

Ans. The numerical aperture is given by

  Na =  ÷ 
______

  m 1  
2  –  m 2  

2 

   where m1 is refractive index of the core and m2 is that of the clad.

Q.10 Why should ultra pure glass be used for making optical fiber?

Ans. The glass which is used to make optical fibers should be ultra pure because if impurities like iron, 

copper and chromium are present in the glass, they will produce unacceptable losses at the time of transmis-

sion, which should be avoided.

Q.11 What kind of light is used in optical fibers for sending data for communication?

Ans. Laser is used in optical fiber for sending data for communication as it is highly directional and mono-

chromatic and its intensity is very high.

EXPERIMENT NO. 5

Aim To determine the wavelength of an unknown light by laser diffraction method.

Apparatus Optical table, laser source, diffraction grating and modified spectrometer.

Theory If a parallel beam of light of wavelength l be incident on a diffraction grating, the light beam 

gets diffracted and forms a diffracted pattern in the space. This pattern consists of the zeroth order principal 

maximum and a number of secondary minima and maxima at various orders. The intensity of the maxima 

decreases with increasing the order number. The pattern is shown in the following diagram:
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Zeroth order principal
maximum

First-order secondary
maximum

Second-order secondary
maximum

Fig. D1.5(a) Diffraction pattern due to diffraction grating.

 If qn be the angle of diffraction of nth order secondary maximum, then

  d sin qn = nl

where d is known as grating element. If N be the number of rulings per unit length, then 

  N =   
1
 __ 

d
  .

\  l =   
d sin qn

 _______ n   ...(1)

 If the value of d is known, then one can find out the wavelength l of the unknown light.

Procedure

 1. Place the grating vertically on the prism table of the modified spectrometer. Switch on the laser 

source so that laser beam is incident on the grating. Due to diffraction by the grating a number of 

diffracted beams are seen in the space between the grating and laser detector. These beams can be 

received by the detector.

 2. If one bright beam is received by the detector, then it converts the light signal to equivalent electric 

signal which is seen on the digital meter.

 3. At first by removing the diffraction grating from the prism table, the main light beam is detected. 

This gives the position of the zeroth-order principal maximum. Then the grating is again placed on 

the prism table and consequently many bright spots are seen in the space due to diffraction.

 4. By moving the detector towards right the second-order secondary maximum is received and its posi-

tion is noted from the circular scale of the spectrometer. Then the detector is slowly moved towards 

left and positions of the first-order secondary maximum (right), the central maximum, first order 

secondary maximum (left) and second-order secondary maximum (left) are detected and noted down 

as shown in Table D1.5:

Observations

Table D1.5a Estimation of positions of maxima.

No. of obs. Intensity (Digital Side Order no. Angular position (f)

 meter reading) Left/Right  MSR VSR LC Total

 1  L 2

 2  L 1

 3  C 0

 4  R 1

 5  R 2
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Fig. D1.5b Positions of central, first and second order maxima.

Table D1.5b Measurement of wave length angular position of central maximum fc =.

S. No. Side  Order Number Angular position Angle of  sin q l =   
d sin q ______ n   Mean l

 Left/Right  f diffraction (q)

 – – – – q = f ~ fc
* – nm nm

 1 L 2

 2 L 1

 3 C 0

 4 R 1

 5 R 2

*fc (The angle of zeroth order)

Results

Percentage of Error

Discussions

Aids to Viva Voce

Q.1 What is laser?

Ans. LASER is an acronym for Light Amplification by Stimulated Emission of Radiation. As the name 

suggests, laser is an amplified visible light which is highly monochromatic highly coherent, highly direc-

tional and highly intense.

Q.2 What is diffraction of light?

Ans. The phenomenon of bending of light round the sharp corners and spreading of it into the region of the 

geometrical shadow is called diffraction.
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Q.3 Distinguish between Fresnel and Fraunhofar classes of diffraction.

Ans. In Fresnel diffraction phenomena either the source or the point of observation or both are at finit dis-

tances from diffracting obstacle. Here, the incident wave front is either spherical or cylindrical. Whereas in 

Fraunhofar diffracting phenomena both the source and the of observable are effectively at infinite distance 

from the diffraction obstacle. Here the incident wave front is plane.

Q.4 What is diffraction grating?

Ans. It is an arrangement consisting of a large number of parallel slits of the same width, separated by equal 

opaque space. It is thus a structure of alternate transparent and opaque space.

Q.5 How many types of diffraction gratings are there? What is grating constant?

Ans. There are two types of diffraction gratings: (i) transmission grating and (ii) reflection grating. The 

grating constant (or grating element) is the sum of the widths of the opaque space and the transparent space 

between two consequent corresponding points of a grating. If ‘a’ be the width of the transparent space and ‘b’ 

be the width of the opaque space, then the grating constant ‘d’ is given by d = a + b.

Q.6 What is the relation between grating constant (d) and rulings number per unit length (m).

Ans. The grating number (or rulings) per unit length is given by the following relation:

  m =   
1
 __ 

d
  

Q.7 State the mathematical expression for the intensity of a diffraction grating with N rulings per unit 

length.

Ans. If I be the intensity, then it is given by I = Io   
sin2 X

 _____ 
X2

   ◊   sin2 NY
 _______ 

sin2Y
  

Q.8 What is the difference between prism spectrum and grating spectrum?

Ans. The differences of the aforesaid spectra are given in the following table:

Prism Spectrum Grating Spectrum

(i) It is formed by dispersion. (i) It is formed by diffraction.

(ii) It is bright. (ii) It becomes fainter on increase of order.

(iii) The prism forms only one spectrum. (iii) The grating forms spectra of many orders.

(iv) It depends on the material of the prism. (iv) These are independent of the material of grating.

(v) In most cases it is not pure. (v) These are pure.

(vi)  The resolving power of the prism is small. (vi) The resolving power of the grating is large.

Q.9 How many types of maxima are obtained in case of grating spectra? What are they named?

Ans Two types of maxima are observed: the primary or the principle or the central maximum and sec-

ondary maxima which are large in number. The secondary maxima are distinguished by order numbers. 

The secondary maximum which appears after the primary maximum is called first-order maximum, then 

second-order maximum and so on.

Q.10 Are the grating minima classified? If not why?

Ans The grating minima are not classified like the maxima because all of them have zero intensity.
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EXPERIMENT NO. 6

Aim Determination of Young’s Modulus and bending moment of a beam by using traveling microscope by 

the method of flexure.

Apparatus Two uprights with knife edge, 1 m long metallic rectangular bar, hanger, measuring weights, 

spirit level, traveling microscope, magnifying glass, table lamp, etc.

x x1

d

Fig. D1.6 Experimental bar on knife edges of two uprights.

Theory The experimental bar is shown on the knife edges of two uprights in the Fig. D1.6. If one attaches 

a load of mass m to the hanger, the depression of the bar is given by

  x =   
mg l3

 _____ 
4bd3Y

  

fi  Y =   
mg l3

 _____ 
4bd3x

  

where Y = Young’s modulus of the material of the bar (dyne/cm2),

  l = length of the bar between the two knife edges,

  g = acceleration due to gravity,

  b = breadth of the bar (cm), 

  d = depth of the beam (cm).

 and x = xi ~ xo = depression

 The bending moment is given by 

  Mb =   
Y Ig

 ____ 
R

   =   
1
 ____ 

12R
   (Y × b × d3) (where Ig is the moment of inertia of the bar)

where 

  R =   
d2

 ____ 
2D x

   – D x ª   
d2

 ____ 
2D x

  

and d is the distance between the midpoint of the bar and the point concerned where the bending moment is 

to be calculated.

  D x = x ~ x1

where x1 is the depression at d.
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Procedure

 1. Measure the breadth and depth of the rectangular bar with the help of slide callipers.

 2. The midpoint of the bar is marked as O and each side of it is marked at an interval of 10 cm.

 3. Place the knife edges under the 50 cm mark at both sides of the midpoint. The length of the bar 

between the knife edges (l) is 1 metre.

 4. Focus the traveling microscope on the indicator of the hanger. Take the reading on the vertical scale. 

This is the depression with zero load.

 5. Apply 0.5 kg load and find the shifted reading of the indicator.

 6. Increase the load up to to 3.5 kg in steps of 0.5 kg and take the reading of the indicator in each case.

 7. Determine the difference of position at each value of load with respect to that of zero load. This will 

give the depression corresponding to the load.

 8. Plot a graph of depression against the load. This should be a straight line passing through the origin. 

Get the slope of this curve.

 9. Place the hanger at a point d cm apart from the midpoint at the right of it. Take two readings with zero 

and 1 kg load.

Measurements

  Length of the bar, l = ... cm

  Breadth of the bar, b = ... cm

  Depth of the bar, d = ... cm

 Least count of Traveling microscope scale = ... cm

Observations

Table D1.6a Measurement of depression for Young’s modulus calculation.

S. No. Load Travelling microscope readings Mean Depression

 M  During increasing load   During decreasing load

 (kg) MSR (cm) VSR TR (cm) MSR (cm) VSR TR (cm) (cm) x (cm)

 1

 2

 3

 4

 5

 6

 7

Table D.16b Measurement of depression for calculation of bending moment.

Sl. No. Load Reading of center Depression Reading of right Depression

 (kg) MSR VSR Total x MSR VSR Total x1

 1 0

 2 1
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  Dx = x1 ~ x

  R =   
d2

 ____ 
2D x

  , Bending moment Mb =   
1
 ____ 

12R
   (Y × b × d3)

Results

Percentage of Error

Discussions

Aids to Viva Voce

Q. 1 What is Young’s modulus?

Ans. It is the ratio of longitudinal stress to longiludinal strain, i.e., Young’s modulus Y is given by

  Y =   
Longitudinal stress

  ________________  
Longiludinal strain

  

 Its unit is dyne/cm2 or newton /m2.

Q.2 What is longitudinal stress?

Ans. Its is the force applied along the length of an object (usually wire) per unit area of cross section.

Q.3 What is longiludinal strain?

Ans. It is the elongation in length of the object per unit original length. So, it is a pure ratio and has no 

unit.

Q.4 What is elasticity?

Ans.  It is the property of a solid material due to which a solid body changes its shape and size under action 

of a deforming force, but recovers its original configuration when the forces is removed.

Q.5 What is elastic limit? Explain it with a diagram.

Ans. It is the maximum stress, which a solid body can sustain without undergoing any permanent 

deformation. The elastic limit is shown in the following diagram.

 The value F1 of the applied force indicates the elastic limit.



Experiments D1.21

Q.6 While measuring, which quantity in the above experiment would you take utmost care of and why?

Ans. One should be very careful while measuring the length and depth of the bar because these appear in 

the expression with power 3. A small error in their measurement will cause a large error in the calculation of 

Young’s modulus Y.

Q.7 What is the nature of the load depression graph? Why should it pass through the origin?

Ans It is a straight line. As zero load produces zero depression, the straight line passes through the origin.

Q.8 If the experiment is performed with a wire what will happen to the diameter of the wire if the length 

increases? What is the relevant elastic constant called?

Ans The diameter of the wire will decrease. The relevant elastic constant is called Poisson’s ratio.

   Poisson’s ratio =   
Lateral strain

  ________________  
Longitudinal strain

  

Q.9 What is the unit of Young’s modulus and Poisson’s ratio?

Ans The unit of Young’s modulus is dynes/cm2 and that of Poisson’s ratio is none because it is a pure a  

ratio, hence a pure number.

Q.10 On what factor does Young’s modulus depend? Will its value be different if a thicker bar is used?

Ans Young’s modulus depends only on the material of the bar. The material remaining the same, Young’s 

modulus will be same whether the bar is thicker or thinner.

Q.11 What is Hooke’s Law?

Ans This law states that stress is directly proportional to strain.

EXPERIMENT NO. 7

Aim Determination of modulus of rigidity of the material of a rod by statical method.

Apparatus Rigidity measuring apparatus, screw gage, slide calipers, weights and meter scale.

Theory The modulus of rigidity of the material of the rod is given by

  h =   
180 ldg

 _______ 
p2r4

    [   
m

 __ 
f

   ] 

where l = effective length rod = l2 – l1,

  g = acceleration due to gravity,

  d = diameter of the pulley,

  r = radius of the rod,

  m = mass of the weight placed at pan,

 and f = angular twist = q1 ~ q2.

 The effective length l of the rod is the distance between two marked positions l1 and l2. And f is the twist 

of the length l which is the difference of the twists of the positions l1 and l2 given by q1 and q2 respectively.
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Procedure

 1. Measure the radius of the rod with the help of a screw gauge.

 2. Measure the diameter of the pulley with the help of a slide calipers.

 3. Note the value of the effective length from the scale attached.

 4. Put weights in the pan in steps of 0.5 kg. Determine the values of q1 and q2 from the protractors 

attached to the rod. Similarly take the reading while unloading. Take the average of loading and 

unloading values.

 5. Repeat Steps 3 and 4 for another value of effective length.

 6. Draw a graph of the angular twist versus the load for each value of the effective length.

Measurement

  Effective length of the rod l = ... cm

  Diameter of the rod 2r = ... cm

  Diameter of the pulley d = ... cm

Observations

Table D1.7a Measurement of twist for l = x cm.

No. of obs. 
Load

  Load increasing  Load decreasing Average angle  f =

 (kg)  (degree)  (degree) (degree) (degree) q1 ~ q2

  q ¢1 q ¢2 q ¢¢1 q ≤2 q1 =   
q ¢1 + q ≤1

 _______ 
2
   q2 =   

q ¢2 + q≤2
 ________ 

2
   

(degree)
      

 

 1

 2

 

 

 8

Table D1.7b Measurement of twist for l = y cm.

No. of obs. 
Load

  Load increasing  Load decreasing Average angle  

 (kg)  (degree)  (degree) (degree) (degree) q1 ~ q2

  q ¢1 q ¢2 q ¢¢1 q ≤2 q1 =   
q ¢1 + q ≤1

 _______ 
2
   q2 =   

q ¢2 + q≤2
 ________ 

2
   

(degree)
      

 

 1

 2

 

 

 8
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Graph Plot two graphs for two values of l. Plot f (= q1 ~ q2) versus load.

Calculations

Percentage Error

Discussions

Aids to Viva Voce

Q.1 What is a rigid body? Is there any perfectly rigid body in nature?

Ans It is a body which does not undergo any deformation on application of a deforming force on it. 

There is no body in nature which can be called a perfectly rigid body.

Q.2 What parameter is used to express the level of rigidity?

Ans The modulus of rigidity is used to express the level of rigidity of a material body.

Q.3 Why is this method of determination of modulus rigidity called statical method?

Ans A method of performing an experiment is called statical method when all the parameters used are 

statical. In the present experiment the related physical quantities (i.e., parameters) are all statical, so it is a 

statical method.

Q.4 What is a statical parameter or statical physical quantity?

Ans It is a parameter which can be measured only when the body under observation remains static. 

Q.5 What the unit of angle in different systems of measurement?

Ans The unit of measurement of angle in all systems of measurement is the radian like that of time.

Q.6 What is radian?

Ans. It is the amount of angle subtended by an arc of a circle at the center, which is equal in length to the 

radius of the circle.

Q.7 In the CGS system of measurement, the unit of angle is radian but you are measuring the angle in 

degrees and using it directly in the formula. So, will your result not be wrong?

Ans. No, because the formula of the experiment has been modified in such a way that it will be automati-

cally converted to radian.

Q.8 What is the practical unit of measurement of an angle.

Ans. Degree is the practical unit of angle. (180° = p radian).

Q.9 In the equation of the modulus of rigidity the length and radius of the rod are involved. What change in 

the value of the modulus would you find when the quantites are changed?

Ans. No change; because the modulus of rigidity depends on the material and not on the length or radius.

Q.10 Does temperature have any effect on the modulus of rigidity of a rod?

Ans The modulus of rigidity decreases with the rise of temperature (Also see Aid to Viva Voce of 

Experiment No. 8).
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EXPERIMENT NO. 8

Aim To determine the modulus of rigidity of the material of a wire by dynamical method. 

Apparatus A torsional pendulum, a cylindrical mass, slide calipers, screw gauge and stop-watch.

Theory The time period of oscillation of a trosional pendulum is given by

  T = 2p  ÷ 
__

   
I
 __ 

C
     ...(1)

where I is the moment of inertia of the pendulum bob, C is the moment of the torsional couple per unit angle 

which again can be expressed as

  C =   
h p r4

 _____ 
2L

   ...(2)

where h is the modulus of rigidity of the material of the wire of the torsional pendulum, r is its radius and 

L is the effective length. For a cylindrical bob the moment of inertia is given by

  I =   
1
 __ 

2
   MR2 ...(3)

where M and R the mass and radius of the cylinder.

 From Eqs. (1), (2) and (3) the modulus of rigidity can be determined as

  h =   
8p L

 ____ 
T2r4

    (   1 __ 
2
   MR2 ) 

where T2 =  T 
1
  2  ~  T 

2
  2  = The difference of the squares of the time periods with and without putting the cylindrical 

mass on the platform of the pendulum.

Procedure

 1. Measure the radius of the wire at several places with the help of a screw gauge.

 2. Measure the effective length of the pendulum.

 3. Measure the diameter of the cylindrical bob with the help of a slide calipers.

 4. Mass of the cylinder is usually supplied.

 5. Rotate the cylindrical bob at a small angle about the suspension wire having put it on the pan and 

then leave it to oscillate freely. This will initiate a torsional oscillation in the bob. Measure the time 

period of this oscillation (T1) with the help of a stop-watch.

 6. Repeat Step 5 without putting the bob on the platform. Measure the time period T2.

 7. Repeat Steps 5 and 6 two more times.

Measurements

  Diameter of the suspension wire d = 2r = ...

  Length of the suspension wire l = ..

  Mass of the cylinder M = ...
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Observations

Table D1.8a Time period of oscillation (with the cylinder on the pan).

No. of obs. No. of oscillations Time taken for n Time period T = t/n Mean time period

 observed (n) oscillation t (second) (second) (second)

 1

 2

 3

Table D.8b Time period of oscillation without the cylinder on the pan

No. of obs. No. of oscillations Time for n Time period T = t/n Mean time period

 observed (n) oscillation t (second) (second) (second)

 1

 2

 3

Results

Percentage of Error

Discussions

Aids to Viva Voce

Q.1 What is modulus of rigidity?

Ans It is the ratio of shear stress to shear strain.

Q.2 What are shear stress and shear strain?

Ans Shear stress is the tengential force per unit area while shear strain is the change in angle per unit origi-

nal angle. 

Q.3 What is a torsional pendulum?

Ans It is a device consisting of a disc mounted on one and torsionally flexible elastic wire whose other end is 

held fixed. If the disc is twisted and released, it undergoes oscillatory motion, provided the torque in the wire 

is proportional to the angle of twist.

Q.4 What is moment of inertia?

Ans It is the sum of the products formed by multiplying the mass of each element of a body by the square 

of its distance from the axis of rotation [I = Úr2dm]. 

Q.5 What is a dynamical physical quantity or parameter?

Ans It is a physical quantity which is related to the motion of a body. For example, velocity, acceleration, 

etc.

Q.6 Why is this method of determination of modulus of rigidity called dynamical method?

Ans A method of determination of a physical quantity is called dynamical method if at least one of the 

physical parameters involved is dynamical. In this experiment the time period of oscillation is a dynamical 

physical parameter and for this reason it is a dynamical method.
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Q.7 Which quantity in this experiment should be measured with greatest care?

Ans. The radius of the wire should be measured with greatest care because it appears in the formula with 

fourth power. A small error in the measurement of radius will increase the error in the final result fourfold.

Q.8 Should you take a large number of oscillations or a small number will do?

Ans. If a smaller number of oscillations is taken, the time involved will be smaller and the corresponding 

to the error in determining the time will be greater. On the other hand, if a large number of oscillations is 

taken the process will be unnecessarily lengthy. So the number of oscillations should preferably be restricted 

somewhere between 20 and 30.

Q.9 Is it necessary that the oscillations have small amplitude like a simple pendulum? If not, why?

Ans There is no restriction on the amplitude of oscillation, particularly when the wire is fairly thin and long, 

provided the elastic limit is not crossed over.

Q.10 What is the harm if the suspension wire does not coincide with the axis of the cylinder?

Ans In that case, the rotation of the cylinder will not take place with the suspension wire, as axis and the 

formula  ( I =   
1
 __ 

2
   M R2 )  for the determination of its moment of inertia will not apply.

Q.11 Should the wire of suspension be long?

Ans It should be fairly long. In which case the time period will be longer (Also see the Aids to Viva Voce 

of Experiment No. 7).

EXPERIMENT NO. 9

Aim To determine the dispersive power of the material of the given prism.

Apparatus Spectrometer, prisms, mercury vapor lamp and spirit label.

Theory The dispersive power of the material of a prism is given by

  Pd =   
mb – mr

 ______ 
m – 1

  

where,

  mb = refractive index of the material of the prism for blue color,

  mr = refractive index of the material of the prism for red color, and

  m = average of mb and mr.

S

Collimotor

Prism table

Telescope

Prism

A

B C

V2

V1
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Fig. D1.9(a) Experimental set-up of dispersive power of the material of a prism. (b) Angle of minimum 
deviation of red, yellow and violet light.

 Refractive index for blue color is given by

  mb =   

sin  (   A + dmb
 _______ 

2
   ) 
  ___________ 

sin (A/2)
  

and that for red color is given by

  mr =   

sin  (   A + dmr
 _______ 

2
   ) 
  ___________ 

sin (A/2)
  

where, dmb and dmr are the angles of minimum deviation for blue and red color, respectively, and A is the angle 

of the prism.

 So, the dispersive power of the material of the prism is given by

  Pd =   
mb – mr

 __________ 

  
mb + mr

 ______ 
2
   – 1

  

Procedure

 1. Measure the vernier constant of the spectrometer.

 2. Level the spectrometer. Switch on the light source. Adjust the width of the slit so that it is narrow 

enough but bright. Place the prism on the prism table with one refracting side of the prism facing the 

collimator and the other side facing the telescope. Adjust the collimator and the telescope for parallel 

rays using Schuster’s method.

 3. Turn the prism table and adjust the telescope to bring the cross-wire to the minimum deviation 

position of the bright blue line. Take readings from both the scales (i.e., scales at two sides of the 

spectrometer).

 4. Repeat Step 3 for the bright red line.

 5. Remove the prism from the prism table. Rotate the telescope to bring the cross-wire on the direct 

light beam. Take readings from the scales of both sides. The difference between the readings in 

Step 3 and this step will give the value of the minimum deviation for blue light. And the difference 

between the readings in Step 4 and this step will give the minimum deviation for red light.
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 6. Place the prism on the prism table facing the collimator in such a way that the light rays fall on 

both the transparent faces equally and get reflected from these faces. Rotate the telescope to get the 

reflected rays from one of the faces and take readings. Move the telescope to receive the reflected 

ray from the other face and take readings. Difference of these two readings will be equal to twice the 

angle of the prism.

Observations

  Vernier constant =   
1 smallest div. in. MS

  __________________  
No. of div. in VS

  

Table D1.9a Determination of minimum deviation angle.

Color of Vernier – I Vernier – II Mean

light
 MSR VSR Total V1 dm = V1 – V01 MSR VSR Total V2 dm = V2 – V02 (unit)

 (unit)  (unit) (unit) (unit)  (unit) (unit)

Blue

Red

Direct    V01    V02

Table D1.9b Determination prism angle.

No. of Reading with telescope on Reading with telescope on

vernier left side (R1) right side (R2) 2A = R1 ~ R2 Mean 2A

 MSR VSR Total MSR VSR Total unit unit

 (unit)  (unit) (unit)  (unit)

Vernier I

Vernier II

Calculation

Percentage Error

Discussions

Aids to Viva Voce

Q.1 What is a spectrometer?

Ans It is an optical instrument for studying a spectrum. For example, spectrum of a prism . A spectrometer 

has the following four parts: (i) collimator, (ii) telescope, (iii) prism table and (iv) circular scale.

Q.2 Why is sodium light used in this experiment? Can any other light be used?

Ans Sodium light is monochromatic and can be easily produced. This is the reason why sodium light is 

used. As a matter of fact, any monochromatic light can be used.
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Q.3 Why are telescopes and collimators focussed for parallel rays?

Ans If the incident rays are either converging or diverging but not parallel, the distance of the image from 

the prism will vary with the change of position of the prism. As a result if the image is focussed at a given 

position of the prism, it will be out of focus in another position. But if the collimator and the telescope are 

focussed for parallel rays, the image will remain focussed in all positions of the prism.

Q.4 How does wavelength change between red and violet? What about change of frequency?

Ans The wavelength (l) of red light is the longest while that of violet light is the shortest. On the other 

hand, frequency (v) of red light is the shortest and that of violet is the longest.

Q.5 How do crown and flint glasses compare with respect to dispersion?

Ans Flint glass being denser than crown glass produces more dispersion. Hence, a flint glass prism is pref-

erable in the experiment of measurement of dispersive power.

Q.6 What is dispersion of light ? 

Ans It is the act of splitting the various color components of light by using a prism and a spectrometer. The 

split rays of different colors is seen in a spectrum. 

Q.7 What is dispersive power of an oplical element? On what factor does it depend? 

Ans It is a measure of the power of a medium to separate different color components of light. 

 It is given by

  w =   
m2 – m1

 ______ 
m – 1

   where u =   
m1 + m2

 _______ 
2
   

  The dispersive power of a device (like prism) depends on the material of the device.

Q.8 Is dispersive power of a material constant?

Ans. No it depends on the range of wavelengths considered. Dispersive power of a material for the range 

between the two wavelengths l1 and l2 will not be equal to that for the range between the wavelengths l1 

and l3.

Q.9 What do you mean by irrational dispersion?

Ans Let us take two prisms of the same refracting angle but made of different materials. While light is 

incident on both of them and their spectra are received side by side on the same screen. The spectra will be 

found to possess the following characteristics:

 (i) Although the screen is placed at equal distances from the prisms, yet their spectra are not of same 

width. 

 (ii) Even if the extreme colors, viz. red and violet of the two spectra are made to coincide, the other (inter-

mediate) color will not coincide, i.e, one spectra is not an exact duplicate of the other. For these special 

features of the prism spectrum, the dispersion produced by a prism is called irrational spectrum. 

Q.10 How can you get rational dispersion?

Ans We can get rational dispersion by dispersion grating. 



Basic Engineering PhysicsD1.30

EXPERIMENT NO. 10

Aim To determine the wavelength of sodium light by using Fresnel’s bi-prism.

Apparatus Optical bench with four uprights, sodium vapor lamp, bi-prism, convex lens, slit and eye-piece 

with a micrometer.

Fig. D1.10 (a) Optical bench (b) Formation of fringes with a bi-prism.

Theory Light rays from sources (Fig. D.10(b)) appear to be diverging from the two halves of the Fresnel’s 

bi-prism leading to the formation of two virtual images S1 and S2. Light rays from the two virtual images 

interface on the focal plane and form alternating dark and bright fringes. And the fringe-width is given by

  x =   
Dl ___ 
d
  

or,  l =   
dx

 ___ 
D

   ...(1)

where, l is the wavelength of sodium light, D is the distance between the virtual source S1 and S2 and the 

screen (i.e., the eye-piece of the micrometer) and d is the distance between S1 and S2.
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 If a convex lens is placed between the eye-piece and the bi-prism and its position is changed, then for two 

positions real images of the virtual sources can be seen through the eye-piece. In these two positions, if the 

separations between the real images are d1 and d2, then one can have

  d =  ÷ 
____

 d1d2   ...(2)

 Equation (1) can be used as the working formula.

Procedure

 1. Make the bed of the optical bench horizontal by adjusting it with the help of a spirit level and leveling 

screws. 

 2. Bring the centers of the slit, the bi-prism and the eye-piece at the same height.

 3. Move the bi-prism close to the slit.

 4. The eye-piece is focused on the cross-wires which are usually at right angles to each other. The cross-

wires are turned till one of them appears vertical to the observer’s eye.

 5. Make the central edge of the bi-prism parallel to the slit. Make the slit narrow and get it illuminated 

with sodium light.

 6. Look through the eye-piece and see whether a bright patch is seen or not. If it is not seen, then rotate 

the top of the upright (carrying the bi-prism) about the vertical axis and move the upright a little at 

right angle to the bench so as to bring the bright patch in the field of view.

 7. Rotate the bi-prism in its own plane by the tangent screw till the fringes are seen and become quite 

clear. Now, the edge of the bi-prism has become parallel to the slit.

Measurement of the fringe width (x)

 (i) Determine the list count of the eye-piece.

 (ii) Adjust the distance of the eye-piece till the fringes appear quite distinct and broad enough to count 

them.

 (iii) Set the vertical cross-wire on one of the bright fringes and note the reading on eye-piece scale.

 (iv) Then set the cross-wire on consecutive 20 fringes and take both main scale and micrometer 

readings.

Measurement of D The distance between the slit and the eye-piece gives you the measure of D1 or D2 

depending on the case.

Measurement of d

 (i) For this part, keep the distance between the eye-piece and the slit slightly more than four times the 

focal length of the convex lens. Do not alter the positions of the slit and the bi-prism.

 (ii) Introduce the convex lens between the bi-prsim and the eye-piece and place it near the eye-piece. 

Move the lens towards the bi-prism till two sharp images of the slit are seen.

 (iii) Measure the distance d1 between two images of the slit by the eye-piece micrometer.

 (iv) Move the lens towards the bi-prism till two images are seen again.

 (v) Measure the distance d2 between these two images.

 (vi) For measurement of d1 and d2 use a lens of good quality so that the images become free from chro-

matic defects.

 (vii) Carry out the measurement of d1 and d2 with great accuracy because even a slight error in this measure-

ment can considerably adversely affect the result.
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Observations Least count of the micrometer is given by

  LC =   
1 division of micrometer

  _____________________  
No. of division of the CS

   =   
l
 __ n  

Table D1.10a Measurement of fringe width x.

No. of  Micrometer reading (a) No. of  Micrometer reading (b) Width for Mean One fringe 

fringe s MS VS Total fringe s MS VS Total 10 fringe width for width

   (a) (cm.)    (b) (cm) (a ~ b) 10 fringe 

         W  x = (W/10) 

        (cm) (cm) (cm)

 1    11

 2    12

 3    13 

 4    14

 5    15

 6    16 

 7    17

 8    18

 9    19

 10    20

Measurement of D

 Position of upright carrying slit = ... cm

 Position of upright carrying eye-piece = ... cm

 Observed value of D: cm

Table D1.10b Measurement of d =  ÷ 
____

 d1d2   .

SL. Micrometer reading d =  

No.
 1st Position of lens 2nd Position of lens  

d2

  ÷ 
____

 d1d2         Mean

  Image 1   Image 2  d1  Image 1   Image 2  cm cm. d

 MS VS Total MS VS Total cm MS VS Total MS VS Total   cm

   (cm)   (cm)    (cm)   (cm)

1.

2.

Calculations

Percentage of Error

Discussions
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Aids to Viva Voce

Q.1 What is interference of light?

Ans See Aids to Viva Voice of Experiment No. 1.

Q.2 What are the required conditions for interference of light?

Ans See Aids to Viva Voce of Experiment No. 1.

Q.3 What are coherent sources?

Ans These are sources in which there is a constant phase difference between waves emitted from different 

parts of the source.

Q.4 How are the coherent sources produced?

Ans Coherent sources are produced by placing two parallel slits in front of a real source of monochromatic 

light. In the present experiment, the two virtual images s1 and s2 of the slit s (acting as real source) act as two 

coherent sources. They are produced by refraction at the two halves of the bi-prism.

Q.5 Where are the fringes formed in this experiment? What types of fringes are they?

Ans The fringes are produced any-where in the space where the two beams superpose. These are called 

non-localized fringes.

Q.6 What will happen if the slit is illuminated by white light?

Ans The fringes except the central band will be colored. The central band will be white. The colored bands 

will have red on the outside and violet on the inside.

Q.7 Are the dark and bright fringes equally spaced?

Ans Yes; that is a characteristic of the fringes produced by a bi-prism.

Q.8 Why do you not take measurements with dark fringes?

Ans Measurements can be done by setting the cross-wire in the middle of dark bands but such setting is 

more difficult and entails a greater probability of error than its setting in a bright fringe. This is why measure-

ments are not done with dark fringes.

Q.9 What will happen if the slit and the edge of the prism are both turned horizontal instead of being turned 

verlical?

Ans Fringes will be formed in the vertical direction. A micrometer screw, capable of moving in a horizontal 

direction only, will not be able to measure the width of such fringes.

Q.10 Do you know any other method, based on interference, for determining the wavelength of light?

Ans Yes; Lloyd’s mirror method, Newton’s ring method, Michelson’s interferometers method are the other 

methods, based on interference of light, which may be employed to determine the wavelength of light.

   

  

       

   





APPENDIX

E
Useful Physical Constants

 Rest mass of electron me 9.1 × 10–31 kg

 Charge of electron e –1.6 × 10–19 c

 Specific charge of electron e/me 1.758 × 10–11 c/kg

 Rest mass of proton mp 1.673 × 10–27 kg

 Charge of proton ep + 1.6 × 10–19 c

 Speed of light in vaccum c 3 × 108 m/s

 Planck’s constant h 6.63 × 10–34 Js

 Boltzmann constant k 1.38 × 10–23 J/K

 Universal gas constant R 8.314 J/(k mol)

 Gravitational constant G 6.6720 × 10–11 Nm2/kg2

 Avogadro’s number NA 6.023 × 1023 mol–1

 Refractive index of water mw 1.33

 Refractive index of glass mg 1.50

 Viscosity of water (20°C) hw 1.002 × 10–3 Ns/m2

 Standard atmospheric pressure PS 1.013 × 105 Nm–2

 Bohr radius r 5.29 × 10–11 m = 0.53 Å

 Compton wavelength of electron lc 2.42 × 10–12 m

 Permittivity of free space e0 8.85 × 10–12 F/m

 Permeability of free space m0 4p × 10–7 H/m

 Slefan’s radiation constant s 5.67 × 10–8 w/m2 K4

 Rydberg constant Rd 1.09737 × 107 m

 Young’s modulus of steel YS 2.1 × 1011 Pa





Model Question Papers

MODEL QUESTION PAPER – 1

Group A 

Multiple-Choice-Type Questions

 1. Choose the right alternatives for any ten of the following:

 (i) For a particle executing S.H.M. the phase difference between displacement and velocity

 (a) p (b) 0 (c)   p __ 
2
   (d)   p __ 

4
  

 (ii) The quality factor of a series L-C-R circuit is 

 (a)   1 ______ 
 ÷ 

____
 RLC  
   (b)   1 __ 

R
    ÷ 

__

   L __ 
C

     (c)  ÷ 
___

   RL
 ___ 

C
     (d)  ÷ 

____
 RLC  

 (iii) Two sources will be coherent if they 

 (a) have constant wavelength (b) have a constant phase difference

 (c) have a constant amplitude (d) None of these

 (iv) The resolving power of a grating, having N number of total rulings in nth order is 

 (a)   n __ 
N

   (b) nN (c)   N __ n   (d) None of these

 (v) Optic axis is a direction along which 

 (a) the ordinary ray travels faster than the extraordinary ray

 (b) the extraordinary travels faster than the ordinary ray

 (c) both the extraordinary and the ordinary ray travel with same velocity

 (d) None of these

 (vi) In lasing action, the spontaneous emission does not depend on

 (a) the number of atoms present in the excited state

 (b) the intensity of the incident light 

 (c) Both of them

 (d) None of these

 (vii) If a hologram breaks into pieces, each piece can reproduce

 (a) the entire image (b) the half image (c) one third image (d) one fourth image
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 (viii) The de Broglie wavelength of a moving electron subjected to a potential V is

 (a)   1.26 ____ 
 ÷ 

__
 V  
   Å (b)   12.26 _____ 

 ÷ 
__

 V  
   Å (c)   12.26 _____ 

V
   Å (d)   12.26 _____ 

 ÷ 
__

 V  
   Å 

 (ix) The wavelength of which the spectral energy density of emitted radiation at temperature T from 
a black body attains maximum value proportional to

 (a)   1 __ 
T

   (b) T (c) T 4 (d) T 3/2

 (x) Origin of continuous x-rays is due to the process of 

 (a) ionization   (b) inner orbital transition

 (c) bremsstrahllung   (d) None of these

 (xi) The number of Bravais lattices are

 (a) 12 (b) 14 (c) 13 (d) 10

 (xii) In the recording of the hologram one superimposes

 (a) object wave and reference wave (b) two object waves

 (c) two reference waves   (d) None of these

 (xiii) The product of group velocity (vg) and phase velocity (vp) of de Broglie waves is

 (a) c (b) c2 (c) less than c (d) None of these

 (xiv) Uncertainty principle is the consequence of 

 (a) wave nature of particle (b) wave particle duality

 (c) particle nature of wave (d) particle-particle interaction

Group B
Short-Answer-Type Questions

Answer any three of the following. 

 2. Write down the differential equation of a series LCR circuit driven by a sinusoidal voltage. Identify 
the natural frequency of this circuit. Find out the condition that this circuit will show an oscillatory 
decay and find out the relaxation time.

 3. (a) Define temporal and spatial coherence.

 (b) In a Newton’s ring experiment the diameter of the 4th and 12th rings are 0.4 cm and 0.7 cm 
respectively. Find the diameter of the 20th dark ring. [0.908 cm]

 4. (a) What is population inversion? Explain

 (b) What are the basic principle of holography?

 5. (a) Show that in cubic crystal of side a the interplaner spacing between consecutive parallel planes 
of Miller indices (hkl) is

   dhkl =   a
 ___________ 

 ÷ 
_________

 h2 + k2 + l2  
  

 (b) Can x-ray be diffracted from a single slit of width 0.1 mm? Explain.

 6. Draw a neat diagram of ruby laser. Discuss the operation of a ruby laser with the help of energy 
diagram.
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Group C 

Long-Answer-Type Questions

Answer any three questions.

 7. (a) In a Young’s double-slit experiment, the angular width of a fringe found on a distant screen is 
0.1°. The wavelength of light used is 6000 Å. What is the spacing between the slits?

[3.44 × 10–2 cm]

 (b) Show that interference phenomenon does not violate the principle of conservation of energy.

 (c) What is meant by the resolving power of an optical instrument?

 (d) Calculate the minimum number of lines in a grating which will just resolve the lines of wave-
lengths 5890 Å and 5896 Å in the second order. [491]

 (e) Discuss the phenomenon of double refractions.

 8. (a) Write down Planck’s radiation law and hence obtain Wien’s displacement law.

 (b) Why do unmodified lines appear in compton scattering?

 (c) Show that a free electron at rest cannot absorb a photon.

 (d) Show that the de Broglie wavelength for a material particle of rest mass m0 and charge q associ-
ated from rest through a potential difference of V volts relativistically is given by 

   l =   h
 ___________________  

  [ 2m0 qV  ( 1 +   
qV
 ______ 

2m0c
2
   )  ]  ½ 

  

 9. (a) Describe the Davisson and Germer experiment giving emphasis on the interpretation of the 
result of the experiment.

 (b) The maximum uncertainty in the position of an electron in a nucleus is 2 × 10–14m. Find the 
minimum uncertainty in its momentum, given h = 6.63 × 10–34 JS. [212.6 ×10 kg ms–1]

 (c) What do you mean by Bravais lattice? Find the Miller indices of a plane which intercepts at 

a,   b __ 
2
  , 3c in a simple cubic unit cell.

 (d) Starting from de Broglie’s hypothesis show that the group velocity associated with particle is the 
same as the particle velocity.

 10. (a) Define Einstein’s A and B coefficients and deduce their mutual relation.

 (b) If the wavelength of radiation of a ruby laser is 694.3 nm, what is the energy of the photon emit-
ted?   [1.787 eV]

 (c) Define metastable state.

 (d) Why is laser needed for holography?

 (e) State some of the applications of holography.

 11. (a) Define free vibration. Can a real vibrator vibrate completely freely. If not why?

 (b) What is the difference between amplitude resonance and velocity resonance?

 (c) What is the vital-factor (quality factor) of a forced oscillator?
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 (d) A voltage having r.m.s value Vrms = 100 volts is applied to a series resonant circuit with resis-
tance R = 10 W, inductance L = 10 mH and capacitance C = 1 mF. Calculate the natural frequency 
and current at resonance in the circuit.

 (e) If y = f1(x – vt) + f2 (x + vt) where f1 and f2 are the two functions then show that y satisfies wave 
equation.

MODEL QUESTION PAPER – 2

Group A
Multiple-Choice-Type Questions

 1. Choose the right alternatives for any ten of the following:

 (i) The time period (T) of a damped vibration is

 (a)   2p
 _________ 

 ÷ 
________

 2k2 – w0
2  
   (b)   2p

 ________ 
 ÷ 

_______

 w0
2 – k2  

   (c) 2p  ÷ 
______

 w0
2 – k2   (d) None of these

 (ii) If visible light is used to study the Compton effect then Compton shift will be 

 (a) negative (wavelength of the scattered light will be lesser)

 (b) more positive than what is observed with X-ray

 (c) zero

 (d) positive but not detectable in the visible window

 (iii) Origin of continuous X-ray is due to the process of

 (a) ionization   (b) inner orbital transition

 (c) bremsstrahlung   (d) None of these

 (iv) In a ruby laser, population inversion is achieved by

 (a) optical pumping   (b) inelastic atom-atom collisions

 (c) chemical reaction   (d) applying strong electric field.

 (v) A stone is dropped from the top of a building. What happens to the de Broglie wavelength of the 
stone as it falls?

 (a) it increases (b) it decreases (c) remains constant (d) de Broglie

 (vi) Assuming that the atoms in crystal are spheres of equal size and touching each other, it can be 
shown that atomic radius of bcc is equal to

 (a)   a __ 
2
   (b)  ÷ 

__
 3     a __ 
4
   (c)  ÷ 

__
 3     a __ 
2
   (d)   a

 ____ 
2 ÷ 

__
 2  
  

 (vii) Holography is a method in which one

 (a) record the amplitude only (b) records the phase only

 (c) not only records the amplitude but also the phase of the light wave

 (d) None of these

 (viii) Davision and Germer studied electron diffraction with nickel crystal and found a first-order peak 
at 65° with electron beam of 54 eV. If, instead a 216 eV beam were used them the peak would 
have been at 

 (a) 27° (b) 54° (c) 130° (d) 260°
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 (ix) A light ray is passing through a calcite crystal. If the plane of vibration of the light ray is perpen-
dicular to the optical axis then the ray

 (a) is an O-ray   (b) is an E-ray

 (c) has both non-zero O and E components (d) cannot propagate through the crystal.

 (x) The color of the laser output in case of ruby laser.

 (a) violet  (b) blue  (c) red (d) green

 (xi) The fringes in Young’s double slit experiment are

 (a) equally spaced   (b) not equally spaced

 (c) partially equally spaced (d) None of these

 (xii) Missing order in the interference maxima in Fraunhofer double-slit pattern occurs if the

 (a) slit width is decreased

 (b) slit width is constant, but the slit separation is increased

 (c) slit width increased

 (d) None of these

 (xiii) Wien’s displacement law could explain the distribution of thermal radiation in the spectrum of 
black body radiation in the region of

 (a) higher wavelength   (b) lower wavelength

 (c) middle wavelength   (d) None of these

 (xiv) Uncertainty principle has significance only in

 (a) macroscopic world     (b) microscopic world

 (c) both macroscopic and microscopic world   (d) None of these

Group B

Short-Answer-Type Questions

Answer any three of the following.

 2. Establish the differential equation of simple harmonic motion. A point mass m is suspended at the 
end of a massless wire of length l and cross-sectional area A. If the Young’s modulus of elasticity of 
the wire be Y then obtain the frequency of oscillation for the simple harmonic motion along the verti-
cal line.

 3. Do interference phenomena violate the principle of conservation of energy? What happens to fringe 
width if the double slit set up is immersed in water?

 4. In a lasing process, the ratio of population of two energy states E1 and E2 (E2 being a metastable state) 
is 1:1.009 × 1025. Calculate the wavelength of the laser beam at a temperature of 320 K.

 5. A beam of x-rays of wavelengths 0.842 Å is incident on a crystal at a glancing angle of 8° 35¢, when 
first-order Bragg’s reflection occurs. Calculate the glancing angle for the third-order reflection.

 6. Derive an expression for Compton shift in wavelength for a photon scattered from a free electron at 
an angle q.



Basic Engineering PhysicsM1.6

Group C

Long-Answer-Type Questions

Answer any three questions.

 7. (a) Define logarithmic decrement. And derive a relation for it.

 (b) In a Newton’s ring experiment, the diameter of 5th dark ring is 0.336 cm and the diameter of the 
15th dark ring is 0.590 cm. Find the radius of the plano-convex lens if the wavelength of the light 
used is 5890 Å.

 (c) Plot a intensity distribution curve for Fraunhofer diffraction due to single slit and find the posi-
tions of maxima and minima.

 (d) Define the resolving power of microscope.

 8. (a) What is the difference between the natures of ordinary and extraordinary rays of light when they 
pass through positive and negative crystals?

 (b) Describe in brief, the working principle of laser?

 (c) Explain He-Ne laser with energy level diagram.

 (d) What is holography? Explain the process of recording and reconstruction of hologram.

 9. (a) State clearly, explaining all the terms, the Plank’s law, Rayleigh–Jeans law and Wien’s displace-
ment law for radiation. Find out the two limits at which the Planck’s formula reduces to the other 
two.

 (b) What is matter wave?

 (c) What is the experimental evident in favour of de Broglie hypothesis of matter waves?

 (d) State and explain the Heisenberg uncertainty principle.

 10. (a) Define atomic packing factor. Calculate it for BCC and FCC structure.

 (b) Draw the planes and directions denoted by (100) (110) and (102) of a cubic structure.

 (c) Distinguish between continuous and characteristic x-ray spectra.

 (d) Calculate the minimum energy of a photon for its existance with in the nucleus of diameter 
10–14 m.

 (e) Discuss the significance and importance of uncertainty principle.

MODEL QUESTION PAPER – 3

Group A

Multiple-Choice-Type Questions

 1. Choose the right alternatives for any ten of the following:

 (i) If wo is the natural frequency of a body and k is the damping constant, then its quality factor is 

 (a) wo/k (b)   
2wo

 ____ 
k
   (c)   

wo
 ___ 

2k
   (d) none of these 
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 (ii) In Young’s double slit experiment, coherent waves are produced by means of 

 (a) division of wave front  (b) division of amplitude

 (c) refraction   (d) None of these 

 (iii) Optic axis is a direction along which

 (a) the extraordinary ray travels faster than the ordinary ray

 (b) the ordinary ray travels faster than the extraordinary ray

 (c) both the extraordinary ray and the ordinary ray travel with same velocity

 (d) None of these

 (iv) The Miller indices are used for 

 (a) identifying crystal direction (b) notation of crystal planes

 (c) notation of different crystals (d) identifying the density of packing

 (v) The de Broglie wavelength of a particle with momentum p is

 (a)   h __ p   (b)   
p
 __ 

h2
   (c)   

p2

 __ 
h
   (d)   h __ 

p2
  

 (vi) Number of oscillation modes for the electromagnetic standing waves of frequency v and v + dv 
or the cavity radiation is proportional to 

 (a) v (b) v2 (c) v3 (d)   hv
 ________ 

ehv/KT – 1
  

 (vii) In Fraunhofer diffraction minima are 

 (a) all perfectly dark   (b) never perfectly dark

 (c) perfectly bright   (d) None of these

 (viii) In case of laser, variation of divergence of a laser beam with distance gives us an idea about its 

 (a) brightness   (b) coherence

 (c) monochromaticity   (d) directionality 

 (ix) Which of the following wavelengths falls in the x-ray range?

 (a) 1 nm (b) 100 nm (c) 0.001 nm (d) 1000 nm

 (x) The virtual image in holography is known as

 (a) pseudoscopic image   (b) orthoscopic image

 (c) photocopy   (d) None of these

 (xi) Compton effect is observed if the target electron is 

 (a) free

 (b) bound to the nucleus

 (c) binding energy is very small compared to the energy of the incident photon

 (d) None of these

 (xii) In case of FCC structure, coordination number is 

 (a) 8 (b) 12 (c) 5 (d) 6
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Group B

Short-Answer-Type Questions 

Answer any three of the following. 

 2. Starting from the equation of plane progressive wave in one dimension, derive the differential equa-
tion of the wave.

 3. In a He-Ne laser transition from 3S to 2P level gives a laser emission of wavelength 632.8 nm. If the 
2P level has energy equal to 15.2 × 10–19 J, calculate the pumping energy required. Assume there is 
no loss.

 4. If the energy levels of K, L and M state of Pt are 78 KeV, 12 KeV and 3 KeV respectively. Calculate 
the wavelength Ka and Kb lines emitted from platinum.

 5. What is the minimum number of lines of a grating which resolves the 3rd order spectrum of two lines 
having wavelengths of 5890 Å and 5896 Å.

 6. What is the minimum kinetic energy of the recoil electron?

  Calculate the maximum energy transferred by the photon to the electron. Is it possible for a photon 
to transfer its whole energy to the electron?

Group C 

Long-Answer-Type Questions 

Answer any three questions.

 7. (a) In a one-dimensional motion a mass 10 gm is acted on by a restoring force 10 dynes/cm and a 
restoring force 2 dynes/cm. Find

 (i) whether the motion is a periodic or oscillatory.

 (ii) the resistance force per unit velocity which will make the motion critically damped.

 (iii) the mass for which the given forces will make the motion critically damped.

 (b) 9 kg of hg is poured into a U-tube of uniform internal diameter of 1.2 cm. It oscillates freely 
about its equilibrium position. Calculate the period of oscillation.

 8. (a) Write down short note on Bravais lattice and Miller indices.

 (b) What do you mean by x-ray spectrum? Draw continuous x-ray spectra for different applied 
voltages.

 (c) An x-ray tube is operated at 50 kV. Find the maximum speed of the electron striking the surface 
of the anode and the shortest wavelength of x-ray produced.

 9. (a) What is grating element? Find out the relation of grating element with the number of rulings.

 (b) What is the Rayleigh criterion of resolution?

 (c) Discuss the phenomena of double refractions.

 (d) A ray of light is incident on a glass of refractive index 1.732 at the polarization angle. Find (i) 
angle of polarization, and (ii) the angle of refraction of the ray.

 (e) State Malus law.



Model Question Papers M1.9

 10. (a) Write down Planck’s radiation law and hence prove Wien’s law.

 (b) Show graphically, how the energy density versus frequency plot of blackbody radiations is 
changed if the temperature is increased.

 (c) Describe briefly the Davisson–Germer experiment. What inferences may we draw from this 
experiment?

MODEL QUESTION PAPER – 4

Group A

Multiple-Choice-Type Questions

 1. Choose the right alternatives for any ten of the following:

 (i) Two mutually perpendicular SHMs with equal time periods but different amplitudes are 
superposed. If the phase difference between these oscillations is 45°, then they form a 

 (a) circle (b) straight line (c) ellipse (d) parabola

 (ii) The center of the Newton’s rings for the transmitted system of a monochromatic source of light 
is 

 (a) dark (b) partially dark (c) bright (d) None of these

 (iii) A plane polarized light of intensity Io is incident on a polarizer. whose axis of polarization is 30° 
with respect to the direction of propagation of the incident light. The intensity of light coming 
out of the polarizer is

 (a) Io (b)   
 ÷ 

__
 3   Io
 _____ 

2
   (c)   

3 Io
 ____ 

4
   (d)   

Io
 __ 

4
   

 (iv) If lL and lK are wavelength of L and K x-rays respectively, then 

 (a) lL < lK (b) lL > lK (c) lL = lK (d) lL = 4lK

 (v) The nearest neighbor distance in the case of BCC structure  is 

 (a)   
a ÷ 

__
 3  
 ____ 

3
   (b)   

a ÷ 
__

 2  
 ____ 

3
   (c)   2a

 ___ 
 ÷ 

__
 3  
   (d)   2a

 ___ 
 ÷ 

__
 2  
  

 (vi) The Compton wave length is 

 (a)   h
 ____ m0 c

   (b)   h
 _____ 

m0 c
2
   (c)   

h m0 ____ c   (d)   h
 _____ 

m0 c
3
  

 (vii) The absorptive power of a blackbody is 

 (a) 1 (b) 0 (c) 2 (d) 3

 (viii) In He-Ne laser, the laser light is emited due to the transition from

 (a) 3s Æ 2p (b) 3s Æ 3p (c) 2s Æ 2p (d) None of these

 (ix)  The reconstruction process in holography produces 

 (a) a virtual image     (b) a real image

 (c) both virtual and real image of the object   (d) None of these
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 (x) Phase velocity and group velocity are equal when the medium is 

 (a) dispersive (b) isotropic (c) non-dispersive (d) None of these

 (xi) For heavy particle

 (a) Dx Dvx 
=   l __ 

2
   (b) Dx Dvx = 0 (c) Dx Dvx 

= a (d) Dx Dvx =   h __ 
2
  

 (xii) The intensity of principle maxima in the spectrum of a grating with N number of lines is propor-
tional to

 (a)   1 __ 
N

   (b) N (c) N2 (d)   1 ___ 
N2

  

Group B

Short-Answer-Type Questions 

Answer any three of the following. 

 2. What are sharpness of resonance and Q-factor? Show that the Q-factor is given by 

   Q =   
w0 L

 _____ 
R

  

  in case of series LCR resonant circuit.

 3. Sodium Light of wavelength 589 nm and 589.6 nm are made incident normally on a grating having 
500 lines per mm. Calculate the angular dispersion of these lines in the spectrum of first order.

 4. State and explain Brewster’s law of polarization clearly indicating the nature of polarization of the 
reflected and refracted ray.

 5. An electron has de Broglie wavelength of 0.15 Å. Compute the phase and group velocities of the 
de Broglie waves. Find the kinetic energy of the electron.

 6. Find the interplanar distance of (110) plane and (111) plane of Nickel crystal. The radius of Nickel 
atom is 1.245 Å.

Group C

Long-Answer-Type Questions

Answer any three questions.

 7. (a) A particle is subject to a harmonic restoring force and a damping force. Its equation of motion is 
given by

  m   d
2x
 ___ 

dt2
   = – sx – k   dx

 ___ 
dt

  

   Under the condition of critical damping, find the expression for displacement as a function of 
time.
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  (b) What do you understand by ‘logarithmic decrement’, ‘relaxation time’ and ‘quality factor’ of a 
weakly damping oscillator?

 (c) Do interference phenomena violate the principle of conservation of energy?

 8. (a) What are the conditions for sustained interference pattern?

 (b) Why two independent source of light of same wavelength cannot produce interference pattern?

 (c) Show that intensity distribution for diffraction in a single slit is given by 

       I = Io  (   sin2 b
 _____ 

b2
   )   [ where b =   Pd sin q

 ________ 
l

   ] 
  where the symbols have their usual significance. Deduce also conditions for maxima and 

minima.

 9. (a) Why do you need population inversion in a laser? 

 (b) Obtain a relation between Einstein’s A and B coefficients. What  are their physical 
significances?

 (c) Define holography and hologram.

 (d) What are object wave and reference wave?

 10. (a) The energy gap in Ge is 0.72 eV. Find the maximum wavelength of a radiation which can cause 
transition from the valence band to conduction band.

 (b) Derive an expression for Compton shift in wavelength for  a photon scattered from a free elec-
tron at an angle q. At which angle will the shift be maximum?

 (c) Show that the de Broglie wavelength of a particle of mass m and kinetic energy EK is given by

   l =   hc
 _______________  

 ÷ 
______________

  EK (EK + 2m0 c
2)  

  

MODEL QUESTION PAPER – 5

Group A

Multiple-Choice-Type Questions

 1. Choose the right alternatives for any ten of the following:

 (i) Example of a weakly damped harmonic oscillator is 

 (a) dead-beat galvanometer

 (b) tangent galvanometer

 (c) ballistic galvanometer

 (d) discharge of a charged capacitor through a resistance.

 (ii) For constructive interference, the phase difference is an  even multiple of

 (a)   p __ 
2
   (b) 2p (c) p (d) None of these

 (iii) In Fraunhofer diffraction, the incident wavefront is 

 (a) plane (b) spherical (c) cylindrical (d) arbitrary shape
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 (iv) When two parellel rays of x-rays of wavelength l, are incident at an angle q on a crystal with 
lattice separation d, constructive interference would be observed when (n is an integer) 

 (a) nl = 2d sin q (b) nl = d sin q (c) nl = d sin 2q (d) nl = 2d sin 2q

 (v) Miller indices of a plane which has intercepts of 2, 3 and 4 units along the three axes are

 (a) (6, 4, 3) (b) (2, 3, 4) (c) (3, 2, 1) (d) (2, 3, 2)

 (vi) All the radiation laws can be shown to be special cases of

 (a) Wien’s law   (b) Stefan–Boltzmann’s law

 (c) Rayleigh–Jeans law   (d) Planck’s law

 (vii) Uncertainty principle is the consequence of 

 (a) wave nature of particle (b) wave-particle duality

 (c) particle nature of wave (d) particle-particle interaction

 (viii) For holography system the exposure time is of the order of

 (a) 5 seconds and depends on the colour of the object

 (b) nearly 2 seconds

 (c) 1 second

 (d) 50 seconds

 (ix) The wavelength of He-Ne laser is 

 (a) 632.8 nm (b) 600 nm (c) 532.8 nm (d) 500 nm

 (x) Number of optic axes in a uniaxial crystal is 

 (a) one (b) two (c) five (d) ten

 (xi) If lr and lnr be the relativistic and non-relativistic wavelength of the electron, then

 (a) lr > lnr (b) lnr = lr (c) lnr > lr (d) lr =   1 ___ 
lnr

  

 (xii) The atomic packing factor for BCC structure is

 (a) 74% (b) 68% (c) 52% (d) None of these

Group B 

Short-Answer-Type Questions

Answer any three of the following. 

 2. A cubical block of side L cm and density d is floating in a water of density r (r > d). The block is 
slightly depressed and released. Show that it will execute SHM and hence determine the frequency 
of oscillation.

 3. In an interference experiment d is the distance between the two coherent sources of light with 
wavelength l and D is the source screen distance. Show that the separation between the two 
consecutive dark bands is given by

   b =   Dl
 ___ 

d
  

 4. Calculate the ratio of the stimulated emission to the spontaneous emission at a temperature 300 K 
for the sodium D line.
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 5. Determine the kinetic energy of a particle for which its de Broglie wavelength becomes equal to its 
Compton wavelength.

 6. X-rays with 1.54 Å are used for the calculation of the d100 plane of a cubic crystal. The Bragg’s angle 
of first-order reflection is 10°. What is the size of the unit cell?

Group C

Long-Answer Type Questions

Answer any three questions.

 7. (a) Derive an expression for the velocity of a forced oscillator. Discuss the variation of velocity 
amplitude with driving force frequency and show its behavior graphically.

 (b) Define temporal coherence and spatial coherence?

 8. (a) What is missing order?

 (b) what you mean by resolving power of an optical instrument?

 (c) A parallel beam of light of wavelength 5890 Å falls normally on a plane transmission grating 
having 4250 lines/cm. Find the angle of diffraction for maximum intensity in first order.

 (d) State Brewster’s law and hence prove that the angle between the reflected and refracted ray is 
90°.

 9. (a) Define (i) unit cell, (ii) space lattice, and (iii) basis.

 (b) Define atomic packing factor. Calculate it for BCC and FCC structure.

 (c) What is white x-ray?

 (d) Show that a free electron at rest cannot absorb a photon.

 (e) Imagine an electron to be somewhere in the nucleus whose dimension is 10–14 m. What is the 
uncertainty in momentum?

 10. (a) What are the difference between ordinary light and laser light?

 (b) What is optical resonator? Discuss it in brief.

 (c) Discuss the operation of a ruby laser system with the help of energy diagram.

 (d) What is hologram? Explain the process of recording and reconstruction of hologram.





OSCILLATIONS (SHM, FDV and FV)

Group A
Multiple-Choice-Type Questions

 1. (i) Two mutually perpendicular SHMs with equal time periods but different amplitudes are super-
posed. If the phase difference between these oscillations is 45°, them they form a

 (a) circle (b) straight line (c) ellipse (d) parabola

 Ans. (c)

  (ii) Motion of a system in critical damped condition is 

 (a) oscillatory (b) damped oscillatory

 (c) harmonic (d) non-oscillatory 

 Ans. (d)

  (iii) A plane wave travels in a medium in the positive X-direction. The displacements of the particles 
are given by,

    y(x, t) = 10 sin 2p (t – 0.2 x) 

   where x and y are measured in metre and t in seconds. The wavelength of the wave is

 (a) 0.2 m (b) 5 m (c) 2p m (d) 0.4 m

 Ans. (b)

Group B
Long-Answer-Type Questions

 1. A particle is subjected to a harmonic restoring force and a damping. Its equation of motion is given 
by

   m   d
2x
 ___ 

dt2
   = – sx – k   dx

 ___ 
dt

  

  Under the condition of critical damping, find the expression for displacement as a function of time. 
You can justify why this condition (critical damping) corresponds to the fastest non-oscillatory 
decay?

 Ans. Refer to Section 2.4 of Chapter 2.

Solved WBUT Questions of 2008
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 2. Establish the equation of a forced harmonic oscillator. Solve this equation to obtain the amplitude 
of steady state oscillations. What is Q-factor of a forced oscillator? The amplitude of an oscillator of 

frequency 200 cps falls to   (   1 ___ 
10

   )  th  of its initial value after 2000 cycles, Calculate its relaxation time, 

quality factor, time in which its energy falls to   (   1 ___ 
10

   )  th  of its initial value.

 Ans. Refer to Sections 3.3 and 3.7 of Chapter 3 and the solution of the problem is given below:

  Here, frequency n = 200 cs–1

    Time period T =   1 __ 
n

   =   1 ____ 
200

   second 

  Ratio of final amplitude Af to initial amplitude Ai is given by

     
Af

 __ 
Ai

   =   1 ___ 
10

  

   The time period to complete 2000 oscillations (t1) is given by

   t1 =   2000 _____ 
T

   =   2000 _____ 
200

   = 10 seconds

  Initial amplitude, Ai = Ae–bt

   and the final amplitude Af = Ae–b (t + t1)

  \   
Af

 __ 
Ai

   =   A e –b(t + t1)  ________ 
Ae–bt

  

  or,   1 ___ 
10

   =  e –bt1 

  or, 10–1 =  e –bt1 

  or, –  log e  
10  = – bt1

  or, bt1 =   1 _____ 
 log 10  

e
  
  

  \ b =   1 ______ 
t1  log 10  

e
  
   =   1 _________ 

10 × 0.432
  

  or, b = 0.230

   \ The relaxation time tr is given by 

   tr =   1 ___ 
2b

   =   1 ____ 
0.46

  

  or, tr = 2.174 second

  The quality factor Q is given by

   Q =   w ___ 
2b

   =   2pn
 ____ 

2b
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  or, Q =   2p × 2000 _________ 
0.46

   = 2730.4

   Let t2 be the time during which the energy falls to   (   1 ___ 
10

   )  th  of its initial value,

  \ Ef =   1 ___ 
10

   Ei

  Again Ef = Ei  e –2bt2 

  or,   
Ei

 ___ 
10

   = Ei  e –2bt2 

  or, 10–1 =  e –2bt2 

  or, –1 = – 2bt2  log 10  
e
  

  or, 2bt2  log 10  
e
   = 1

  or, t2 =   1 _________ 
2b ×  log 10  

e
  
  

  or, t2 =   1 ___________ 
0.46 × 0.432

  

  or, t2 = 5.032 second

OPTICS (Interference, Diffraction and Polarization) 

Group A
Multiple-Choice-Type Questions

 1. (i) The electromagnetic wave is called transverse because

 (a) the electric field and the magnetic field are perpendicular to each other

 (b) the electric field is perpendicular to the direction of propagation

 (c) the magnetic field is perpendicular to the direction of propagation

 (d) both the electric field and the magnetic field are perpendicular to the direction of 
propagation

 Ans. (d)

  (ii) Optic axis is a direction along which

 (a) the extraordinary ray travels faster than the ordinary ray

 (b) the ordinary ray travels faster than the extraordinary ray

 (c) both the extraordinary ray and the ordinary ray travel with same velocity

 (d) None of these

 Ans. (c)

  (iii) A plane polarized light of intensity I0 is incident on a polarizer whose axis of polarization is 30° 
with respect to the direction of propagation of the incident light. The intensity of light coming 
out of the polarizer is 

 (a) I0 (b)   
 ÷ 

__
 3  I0 ____ 

2
   (c)   

3I0 ___ 
4
   (d)   

I0 __ 
4
  

 Ans. (c)
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  (iv) The radii of the Newton’s rings (Rn) depend on the wavelength of the incident light (l) and the 
radius of curvature of the convex surface of the plano-convex lens (r) as follows:

 (a) Rn increases with l and decreases with r.

 (b) Rn increases with r and decreases with l.

 (c) Rn increases both with l and r.

 (d) Rn decreases both with l and r 

 Ans. (c)

  (v) The relation between the path difference (Dl) and phase difference (Df) is 

 (a) Df =   2p
 ___ 

l
   Dl   (b) Df =   p __ 

l
   Dl

 (c) Dl =   2p
 ___ 

l
   Df   (d) Dl =   p __ 

l
   Df

 Ans. (a)

  (vi) In Fraunhoffer diffraction, the incident wave front is

 (a) plane (b) spherical (c) cylindrical (d) of arbitrary shape

 Ans. (a)

  (vii) The separation between diffraction lines (D) for the pattern formed by a transmission grating 
depends on the number of rulings per inch (n) and the wavelength of the incident light (l) as

 (a) D increases with n but decreases with l

 (b) D decreases with n but decreases with l

 (c) D increases both with n and l

 (d) D decreases both with n and l

 Ans. (c)

  (viii) Double slit interference pattern is the limiting case of double slit differaction pattern when the

 (a) distance between the slit, tends to zero.

 (b) distance of the source and the slit tend to infinity.

 (c) slit widths tend to zero.

 (d) distance between the slits tends to infinity

 Ans. (c)

  (ix) A light ray is passing through a calcite crystal. If the plane of vibration of the light ray is 
perpendicular to the optical axis the ray 

 (a) is an O-ray,

 (b) is an E-ray

 (c) has both non-zero O and E components

 (d) cannot propagate through the crystal 

 Ans. (a)

  (x) A source of light emits lights of frequencies between n and n + Dn. Coherence time of the 
emergent light beam is Tc, then

 (a) Tc μ Dn (b) Tc μ   1 ___ 
Dn

   (c) Tc μ n (d) Tc μ   1 __ n  

 Ans. (b)
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  (xi) The intensity of principal maxima in the spectrum of a grating with N number of lines is 
proportional to

 (a)   1 __ 
N

   (b) N (c) N2 (d)   1 ___ 
N2

  

 Ans. (c)

Group B
Long-Answer-Type Questions

 1. Two polarizers are placed at crossed position (angle between the polarizing planes are 90°), a third 
polarizer with angle q with the first one is placed between them. An unpolarized light of intensity I is 
incident on the first one and passes through all three polarizers. Find the intensity of light that comes 
out.

 Ans. Refer to Worked-out problems of Chapter 6, Problem 6.3.

 2. Calculate the polarizing angle for light traveling from water of refractive index 1.33 to glass of 
refractive index 1.53.

 Ans. (a) Refer to the Worked-out problems of Chapter 6, Problem 6.2.

 3. (a) Explain briefly the action of a dichroic polaroid.

  (b) In Young’s double slit interference distance between the coherent sources are 1.15 mm. Calculate 
the fringe width that would be observed on a screen placed at a distance of 85 cm from the 
source. The wavelength of light used is 5.893 Å.

  (c) Interference phenomenon does not violate the principle of conservation of energy. Justify it.

 Ans. (a) Refer to Section 6.15 of Chapter 6.

  (b) Refer to Worked-out problem of Chapter 4, Problem 4.6.

  (c) Refer to Section 4.8 of Chapter 4.

 4.  A film of oil of refractive index 1.70 is placed between a plane glass plate and an equi-convex lens. 
The focal length of the lens is 1 metre. Determine the radius of the 10th dark ring when light of 
wavelength is 6000 Å.

 Ans. Refer to Worked-out problem of Chapter 4, Problem 4.19.

 5. A convex lens of focal length 40 is employed to focus the Fraunhofer diffraction pattern of a single 
slit of 0.3 mm width. Calculate the linear distance of the first order dark band from the central band. 
The wavelength of the light is 589 nm.

 Ans. Refer to Worked-out problem of Chapter 5, Problem 5.3.

 6. (a) Calculate the least width that a grating must have to resolve two components of the sodium-D 
line in the second order, the grating having 800 lines/cm. The wavelength for D1 and D2 lines of 
sodium are 5893 Å and 5896 Å, respectively.

  (b) Deduce the missing order for a double slit Fraunhofer diffraction pattern if the slit width are 
0.16 mm and they are 0.8 mm apart.

  (c) Two stars situated at a distance of 9.5 × 1012 km from a telescope of diameter 20 cm are sending 
light of wavelength 600 nm. Find the distance of the separation of the stars for which, they are 
just resolved.
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 Ans. (a) Refer to Worked-out problem of Chapter 5, Problem 5.14.
  (b) Refer to Worked-out problem of Chapter 5, Problem 5.5.

  (c) The diameter of the telescope 

    D = 1.22   lL
 ___ y  

   Here, y = Distance of separation of the stars;

    L = Distance of the telescope from stars = 9.5 × 1012 km = 9.5 × 1015 m;

    l = wave length of the light = 600 mm = 600 × 10–9 m

   \ y = 1.22 ×   lL
 ___ 

D
   =   1.22 × 600 × 10–9 × 9.5 × 1015

   _________________________  
20 × 10–2

  

   or, y = 3.477 × 107 km

 7. Sodium light of wavelength 589 nm and 589.6 nm are made incident normally on a grating having 
500 lines/cm. Calculate the angular dispersion of these lines in the spectrum of first order. By a 
simple calculation can you justify whether these lines are resolved or not?

 Ans. Here wavelengths of the given rays are

   l1 = 589.0 nm

   l2 = 589.6 nm 

  Number of rulings/cm in the given grating N = 500 lines/cm 

  We have, l =   
sin qn

 _____ 
Nn   where n is the order 

  Let qn = q ¢n, and n = 1

  For l = l1, so we get

   l1 =   
sin q ¢1 _____ 
N.(1)

   fi 589 × 10–7 =   
sin q ¢1 _______ 

500 × 1
  

   sin q ¢1 = 0.02945 = sin 1.688°

  \ q ¢1 = 1.688°

  For l = l2. Let qn = q ≤1, n = 1

  \ l2 =   
sin q ≤1 _____ 
N.(1)

  

  fi sin q ≤1 = N × 2 = 500 × 589.6 × 10–7

  or sin q ≤1 = sin 1.689°

  \ q ≤1 = 1.689°

  \ angular dispersion qd is given by
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   qd = q ≤1 – q¢1 = 1.689° – 1.688°

  \ qd = 0.001°

  Let Nn be the number of ruling per cm just to resolve nth order spectrum

  \ resolving power Rp = n Nn

  To resolve 1st order the expression reduces to 

   Rp = (1) N1

  Again, resolving power is given by

   Rp =   l ___ 
Dl

  

  \ N1 = Rp =   l ___ 
Dl

  

  or, N1 =   5893 _____ 
6
    [  l =   

l1 + l2 ______ 
2
   ] 

  \ N1 = 982.1 rulings/cm

  The given grating has N = 500 rulings/cm

  \ N < N1

  \ the lines 589.0 nm and 589.6 nm are not resolved here.

 8. The width of each slit of a double slit is 0.15 mm and they are separated by a distance of 0.45 mm. If 
the double slit produces Fraunhofer diffraction, find the angular position of the first minima and the 
missing orders.

 Ans. Missing orders are obtained when interference maxima and diffraction minima correspond to the 
same value of direction angle q, i.e.,

   (a + b) sin qn = nl [interference maxima]

  and a sin qm = ml [diffraction minima]

  \   a + b
 _____ a   =   n __ m   [  in this case qn = qm]

  Here a = 0.15 mm and b = = 0.45 mm

  \   n __ m   =   0.15 + 0.45 __________ 
0.15

   =   0.60 ____ 
0.15

   = 4

   for values of m = 1, 2, 3, etc., and 

   n = 4, 8, 12, etc.

  So the 4th, 8th, 12th, etc., orders of interference maxima will be missing in the diffraction spectrum. 

 9. (a) Find the intensity distribution for the Fraunhoffer diffraction pattern through a single slit.

  (b) Hence find the position of maxima and minima.

 Ans. (a) Refer to Section 5.4 of Chapter 5.

   Refer to Section 5.4 of Chapter 5. 
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 10. A parallel beam of light of wave length 500 nm is incident normally on a narrow single slit of width 
0.2 mm. for a Fraunhoffer diffraction pattern, find the angular position of the first and the second 
maxima.

 Ans. For single slit diffraction, the intensity function is given by

   I = I0   
sin2 a _____ 

a2
  

  where a =   pa sin q
 _______ 

l
   and q is diffraction angle and a is slit width.

  there l = 500 mm = 5 × 10–5 cm,

   a = 0.02 cm

  Let q1 and q2 be the required angles. Let a1 and a2 be the corresponding vales of a.

  The first two maxima occur at

   a1 = 1.430 p

  and a2 = 2.462 p

  Now a1 =   
pa sin q1 ________ 

l
   and a2 =   

pa sin q2 ________ 
l

  

  \   
pa sin q1 ________ 

l
   = a1 = 1.430 p fi sin q1 =   1.430 l

 _______ a  

  and   
pa sin q2 ________ 

l
   = a2 = 2.462 p

  fi sin q2 =   2.462 l
 _______ a  

  \ q1 = sin–1  (   1.430 × 5 × 10–5

  ______________ 
0.02

   )  = sin–1 (0.0036)

  \ q1 = 3.57 × 10–3 radian

   q2 = sin–1  (   2.462 × 5 × 10–5

  ______________ 
0.02

   )  
  or, q2 = 6.15 × 10–3 radian

 11. (a) What is Brewster’s Law?

  (b) How is Brewster’s angle connected to the refractive index of the medium?

  (c) Discuss the nature of polarization of the reflected and refracted rays?

  (d) Describe a Nicol prism and discuss its use as a polarizer.

 Ans. (a) Refer to Section 6.7 of Chapter 6.

  (b) Refer to Section 6.7 of Chapter 6

  (c) Refer to Section  6.7 of Chapter 6

  (d) Refer to Section 6.12 of Chapter 6.
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LASER

Group B
Long-Answer-Type Questions

 1. (a) Define Einstein’s A, B coefficients and deduce their mutual relation.

  (b) Show that the ratio of spontaneous and stimulated emission is proportional to the cube of the 
frequency.

  (c) Explain the construction and action of the optical resonator in ruby laser.

 Ans.  (a) Refer to Section 7.4 of Chapter 7.

  (b) Refer to Section 7.4 of Chapter 7.

  (c) Refer to the Section 7.7 of Chapter 7.

QUANTUM PHYSICS

Group A
Multiple-Choice-Type Questions

 1. (i) A stone is dropped from the top of a building. What happens to the de Broglie wavelength of the 
stone as it falls?

 (a) It increases   (b) It decreases

 (c) Remains constant   (d) de Broglie wavelength cannot be defined

 Ans. (b)

  (ii) Number of oscillation modes for the electromagnetic standing waves of frequency to v + Dv or 
the cavity radiation is proportional to

 (a) v (b) v2 (c) v4 (d)   hn
 ________ 

ehn(kt) – 1
  

 Ans. (b)

Group B
Long-Answer-Type Questions
 1. (a) An electron and proton has same de Broglie wave length. Prove that the energy of electron is 

greater.

  (b) Why Compton effect cannot be observed with visible light?

  (c) Show that the temperature dependence in Stephan’s law can be derived from Planck’s radiation 
law.

 Ans. (a) Refer to Worked-out problem 9.20 of Chapter 9.

  (b) The wave length of the visible light is l = 6000 Å.

   So, energy of the visible light Ev =   hc
 ___ 

l
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   or, Ev =   6.62 × 10–34 × 3 × 108

  ______________________   
6000 × 10–10 × 1.6 × 10–19

   eV

   or, Ev ª 2 eV

   But the binding energy of an electron in the atom is Eb @ 10 eV.

   So, when visible light falls on a target, it cannot liberate electrons of the scatterer. So we cannot 
observe Compton effect with visible light.

  (c) Refer to Section 9.2.6 (b) of Chapter 9.

 2. (a) Derive the expression for Compton shift when a photon interacts with electron. Show that it is 
impossible to transfer all the energy of the photon to the electron.

  (b) Describe an experiment which verifies de Broglie’s hypothesis about the wave nature of 
particles.

  (c) Show that the product of group velocity and phase velocity of the de Broglie wave are 
constant.

 Ans. For the first part, refer to Section 9.4. Answer of the second part is as follows:

  Let us assume that a photon transfer all its energy to free electron at rest. Now from the law of 
conservation of energy 

   hn + m0 c
2 = [ m 0  

2  c4  + p2c2] 
  1 __ 
2
  
  ...(1)

  where m0 c
2 is the rest mass energy of the electron and hv is the initial energy of the photon and from 

the law of conservation of momentum, we have

     hn
 ___ c   + 0 = 0 + p

  or, hn = pc ...(2)

  So, from Eqs. (1) and (2), we have

   pc + m0 c
2 = [ m 0  

2  c4 + p2 c2] 
  1 __ 
2
  
 

  or,  m 0  
2  c4 + p2c2 = p2c2 + 2m0 pc3 +  m 0  

2  c4

  or, 2m0 pc3 = 0

  or, 2hn m0 c
2 = 0 [\ hn = pc]

  \ either hn = 0 or m0 c
2 = 0

  which is impossible so, it is impossible for a photon to give all its energy to a free photon to give all 
its energy to a free electron. 

 (b) Refer to Section 9.5.8 of Chapter 9.

 (c) Refer to Section 9.5.4 of Chapter 9.
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Solved WBUT Questions of 2009

OSCILLATIONS (SHM, FDV and FV)

Group A
Multiple-Choice-Type Questions

 1. (i)  Superposition of two SHM waves of equal time period and equal amplitude with phase difference 

f =   
p

 __ 
2
   forms a

 (a) circle (b) ellipse (c) parabola

 Ans. (a)

  (ii) If a is the force constant of an oscillating body of mass m, the Q-factor is given by

 (a) Q = C ÷ 
____

 a m   (b) Q = C ÷ 
____

 m/a   (c) Q = C ÷ 
____

 a/m  

 Ans. (b)

  (iii) When a spring with spring constant k is cut into three equal parts, the force constant of each of 
the part would be

 (a) k/3 (b) 3k (c) k 

 Ans. (b)

Group B
Long-Answer-Type Questions

 1. (a) Show that y = aei(wt – kx) is solution of wave equation.

  (b) The potential energy of a particle with mass 10 g is given by, V(x) = 32 x2 + 0.2, where x is in 
meter and V is in joule. Write down the equation of motion and solve it.

 Ans. (a) The wave equation is given by

      
∂2y

 ___ 
∂t2

   = v2   
∂2y

 ___ 
∂x2

   ...(1)

   The given function is 

    y = aei(wt – kx) ...(2)

   Differentiating it with respect to x and t twice, we get

      
∂y

 ___ 
∂t

   = + iw aei(wt – kx)

   or,   
∂2y

 ___ 
∂t2

   = – w2aei(wt – kx)
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   or,   
∂2y

 ___ 
∂t2

   = – w2y ...(3)

   Again,   
∂y

 ___ 
∂x

   = – ikaei(wt – kx)

   or,   
∂y

 ___ 
∂x2

   = (– ik)2 aei(wt – kx)

   or,   
∂2y

 ___ 
∂x2

   = – k2y ...(4)

   From Eqs. (3) and (4), we can write

      1 ___ 
w2

     
∂2y

 ___ 
∂t2

   =   1 __ 
k2

     
∂2y

 ___ 
∂x2

  

   or,   
∂2y

 ___ 
∂t2

   =   (   w __ 
k
   )  2    ∂

2y
 ___ 

∂x2
  

   or,   
∂2y

 ___ 
∂t2

   =   
(2pn)2

 ______ 
  (   2p

 ___ 
l

   )  2 
   ◊   

∂2y
 ___ 

∂x2
  

   or,   
∂2y

 ___ 
∂t2

   = (vl)2   
∂2y

 ___ 
∂x2

  

   or,   
∂2y

 ___ 
∂t2

   = v2   
∂2y

 ___ 
∂x2

   ...(5)

   where v = nl

   Equations (1) and (5) are of the same form.

   \ y = aei(kx) represents a wave equation.

  (b) Here mass m = 10 g = 10–2 kg

   The potential energy is given by

    V(x) = 32 x2 + 0.2 ...(1)

   \ Force F(x) = –   
dV(x)

 _____ 
dx

  

   or, F(x) = – (64 x)

   or, F(x) = – 64 x

   or, F(x) = – kx where k = 64 J/m

   or, m   d
2x
 ___ 

dt2
   = – kx
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   or,   d
2x
 ___ 

dt2
   +   k __ m   x = 0

   or,   d
2x
 ___ 

dt2
   +   64 ___ 

10
   x = 0   

   or,   d
2x
 ___ 

dt2
   + 6.4 x = 0 ...(2)

   Equation (2) is the required equation.

   For the answer of the second part of the equation refer to Section 1.5 of Chapter 1.

 2. (a) Establish the differential equation of damped harmonic motion.

  (b) Solve the equation for light damping and prove that the amplitude of vibration decreases 
exponentially with time. 

  (c) A cubical block of side L cm and density d is floating in a water of density r(r > d). The block 
is slightly depressed and then released. Show that it will execute simple harmonic motion and 
hence determine the frequency of oscillation.

 Ans. (a) Refer to Section 2.3 of Chapter 2.

  (b) Refer to Section 2.4 of Chapter 2.

  (c)

y

Water level

Equilibrium state

Displaced state

F L gy= –
2
r

Fig. 1 Oscillation of a floating black.

   Let m be the mass of the block. If the block is displaced a distance y below its equilibrium 
position, then the vuoyant force increases by (L2y) rg because L2y is the additional volume of 
liquid displaced hence L2y r is the mass and L2y rg is the weight of liquid displaced further.

   Thus the restoring force is given by

    F = – (L2 rg) y = – ky

   Since the restoring force is proportional to the displacement, the motion is SHM of angular 
frequency

    w =  ÷ 
__

   k __ m     =  ÷ 
_____

   
L2rg

 _____ m    

   or, w =  ÷ 
______

   
(L3P)g

 ______ 
Lm

     =  ÷ 
___

   
mg

 ___ 
Lm

     [  m = L3r]
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   or, 2pn =  ÷ 
__

   
g
 __ 

L
    

   \ n =   1 ___ 
2p

    ÷ 
__

   
g
 __ 

L
    

   which is the required frequency.

OPTICS (Interference, Diffraction and Polarization)

Group A
Multiple-Choice-Type Questions

 1. (i) Newton’s ring experiment is based on

 (a) division of amplitude  (b) division of wave front

 (c) None of these

 Ans. (a)

  (ii) In a plane transmission grating light 

 (a) diffracts to produce the resultant pattern

 (b) diffracts and interferes to produce the resultant pattern

 (c) interferes to produce the resultant pattern.

 Ans. (c)

Group B
Long-Answer-Type Questions

 1. (a) What is the difference between temporal coherence and spatial coherence

  (b) If the amplitudes of two coherent light waves are in the ratio 1:4, find the ratio of maximum and 
minimum intensity in the interference pattern.

 Ans. (a) The temporal coherence of any wave field implies the possibility of predicting phase and 
amplitude at a point in space at different instants of time. A monochromatic wave field is 
temporally coherent. The spatial coherence is concerned with phase correlation between two 
wave fields at two space points at the same instant of time.

   Let a1 and a2 be amplitudes of two coherent light waves.

   \ a1 : a2 = 1 : 4

   or, a2 = 4a1

   \ the ratio of the maximum to minimum intensity is given by

      
Imax ____ 
Imin

   =   
(a1 + a2)

2

 ________ 
(a2 ~ a1)

2
   =   (   5a1 ___ 

3a1
   )  2  =   25 ___ 

9
  

   i.e., Imax : Imin = 25 : 9.
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 2. (a) What is double refracting crystal?

  (b) Discuss Nicol prism as polarizer and analyzer.

  (c) Determine the Brewster’s angle for glass of refractive index 1.5 immersed in water of refractive 
index 1.33.

  (d) Prove that the intensity of secondary maxima formed for Fraunhofer diffraction at a single slit 
are of decreasing order.

  (e) In a plane transmission grating the angle of diffraction for second order maxima for wave length 
5 × 105 cm is 30°. Calculate the number of lines in one centimeter of the grating surface.

 Ans. (a) It is a transparent crystal which can generate two refracted beams of light when an ordinary light 
ray is incident on it. One of the refracted rays obeys the laws of refraction and is called ordinary 
ray and the other ray does not obey the laws of refraction and is called the extraordinary ray. 
Calcite crystal is an example of doubly refracting crystal.

  (b) Refer to Section 6.12.2 of Chapter 6.

  (c) The refractive index of glass is given by a mg = 1.5 and the refractive index of water is given by,

    a mw = 1.33

   \ the refractive index of glass with respect to water is given by

    w mg =   
a mg

 ____ 
a mw

   =   1.50 ____ 
1.33

   = 1.128

   If qP be the angle of polarization in water, then

    w mg = tan qP

   or, tan qP = 1.128

   \ qP = tan–1 (1.128) = 48.4°

LASER

Group A
Multiple-Choice-Type Questions

 1. (i) In the He–Ne laser, the laser light emits due to the transition from

 (a) 3s Æ 2p (b) 3s Æ 3p (c) 2s Æ 2p 

 Ans. (a)

Group B
Long-Answer-Type Questions

 1. (a) Describe briefly the working principle of laser action.

 Ans. (a) Refer to Section 7.5 of Chapter 7.
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 2. (a)  In a He-Ne laser transition from 3s to 2p level gives a laser beam of wavelength 632.8 nm. If the 
2 p level has energy equal to 15.2 × 10–19 J. Calculate the required pumping energy (assuming 
no loss of energy). 

  Ans. The pumping takes place between the energy levels E0 and E3s and the transition takes place 
between E3s and E2p levels.

   \ DE = E3s – E2p =   hc
 ___ 

l
  

   or,  DE =   6.627 × 10–34 × 3 × 108

  ___________________  
632.8 × 10–9

   J

   or, DE = 3.14 × 10–19 J

   The required pumping energy is given by,

    E = E3s – E0 = E2p + DE

   or, E = 15.20 × 10–19 + 3.14 × 10–19 J

   \ E = 18.34 J

 3. (a) Discuss the operation of ruby laser with the help of energy level diagram.

  (b) What is the role of optical resonator in laser production?

 Ans. (a) Refer to Section 7.10.1 of Chapter 7.

  (b) Refer to Section 7.8 of Chapter 7.

QUANTUM PHYSICS

Group A
Multiple-Choice-Type Questions

 1. (i) The de Broglie wave length of a particle of mass m and kinetic energy E is

 (a) l =   h
 ____ 

2mE
   (b)   h

 ______ 
 ÷ 

____
 2mE  
   (c)  ÷ 

_____

   2mE
 ____ 

h
    

 Ans. (b) 

  (ii) Mass of a photon of frequencies n is given by

 (a)   hn
 ___ c   (b)   hn

 ___ 
c2

   (c)   hn2

 ___ c  

 Ans. (b) 

Group B
Long-Answer-Type Questions

 1. (a) What is Compton effect? Calculate the Compton wave length for an electron.

  (b) Why does the unmodified line appear in Compton scattering?
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 Ans. (a) It is a phenomenon of collision between a photon and a loosely bound electron of an atom. When 
a photon of energy hv collides with a free (or loosely bound) electron of the scatterer at rest, it 
transfers some of its energy to the electron. The scattered photon has a smaller energy hn ¢ (< hn) 
and consequently a greater wavelength than that of the incident photon. The change in wave 
length of the scattered photon by considering the elastic collision between the incident photon 
and the free electron is known Compton shift.

   The Compton wavelength of an electron is given by

    lc =   h
 ____ m0 c

  

   where m0 is the rest mass of the electron.

   \ lc =   6.626 × 10–34

  _________________  
9.1 × 10–31 × 3 × 108

   = 2.426 × 10–12 m

   or, lc = 0.02426 Å

   When an x-ray photon collides with a free electron (or very loosely bound electron whose work-
function is less).  The wave length shift of the photon is given by

    Dl =   h
 ____ m0 c

   (1 – cos f)

   where m0 is the rest mass of the scattered electron. As the mass of the electron is very much 
small, Dl is appreciably high, and a modified line is observed. On the other hand, when the x-ray 
photon collides with a tightly bound electron, the photon cannot strip off the electron from the 
atom, the collision becomes that of the atom and the photon.

   In this case m0 represents the mass of the atom. So, the wavelength shift Dl becomes almost 
zero. For this reason, unmodifield lines are observed.

 2. (a) State and explain de Broglie hypothesis.

  (b) Prove that the product of phase velocity and group velocity for a de Broglie wave is equal to the 
square of the light velocity.

  (c) Compute the smallest possible uncertainly in the position of an electron moving with velocity 
3 × 107 m/s. The rest mass of electron is 9.1 × 10–31 kg.

  (d) Derive Wein’s displacement law from Planck’s radiation law.

 Ans. (a) Refer to Section 9.5.1 of the Chapter 9.

  (b) Refer to Section 4.5.4 of Chapter 4.

  (c) The uncertainly principle in terms of position and momentum is given by

    Dx Dpx ≥ h

   If (Dx)min be the smallest possible uncertainly in position, then

    (Dx)min (Dpx)c = h

   where (Dpx)c is the corresponding uncertainly in momentum 

   Here, velocity of the electron is

    ve = 3 × 107 ms–1

   and mass of the electron is 

    me = 9.1 × 10–31 kg
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   So (Dpx)c = 9.1 × 10–31 kg × 3 × 107 ms–1

   or, (Dpx)c = 27.3 × 10–24 kg ms–1

   \ (Dx)min =   h ______ 
(DPx)c

   =   1.055 × 10–34 Js  _________________  
27.3 × 10–24 kg ms–1

  

   or (Dx)min = 0.0386 × 10–10 m

   \ (Dx)min = 3.86 × 10–12 m

   Refer to Section 9.26 of Chapter 9.

 3. Why Compton effect cannot be observed with visible light but can be observed due to x-rays?

 Ans. The Compton effect cannot be observed with visible light because the energy possessed by a photon 
of visible light is not sufficient to cause the Compton effect. Let us consider a visible light photon 
having wave length l = 600 mm, i.e., l = 600 × 10–9 m

   The energy possessed by the photon is

   E =   hc
 ___ 

l
   =   6.627 × 10–31 × 3.0 × 108

  _____________________  
600 × 10–9 × 1.6 × 10–19

   eV

  or, E ª 2 eV.

  The binding energy of an electron in the atom is EB @ 10 eV. As for example the binding energy of an 
electron of a hydrogen atom is 13.6 eV.

  So when a photon of visible light falls on a target, it fails to liberate electrons. So, one cannot see 
Compton effect in case of a visible light.

  But an x-ray photon can cause Compton effect as its energy is far more than 10 eV.

CRYSTALLOGRAPHY

Group A
Multiple-Choice-Type Questions

 1. (i) Miller indices of a plane which cut intercepts of 2, 3 and 4 units along the three axes are

 (a) (2, 3, 2) (b) (2, 3, 4) (c) (6, 4, 3)

 Ans. (c).

  (ii) The atomic radius of a face centred cubic crystal of lattice constant a is 

 (a)   a __ 
2
   (b)   

 ÷ 
__

 3  a
 ____ 

4
   (c)   

 ÷ 
__

 2  a
 ____ 

4
  

 Ans. (c)

  (iii) An x-ray tube is subjected to a potential difference of 50 kV with the corresponding current of 
8 mA through it. The number of electrons stricking per second on the target material is

 (a) 5 × 1016 (b) 6 × 1011 (c) None of these

     Ans. (a)
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Group B
Long-Answer-Type Questions

 1. (a) Deduce the formulae for interplaner spacing of a simple cubic crystal.

  (b) Why x-ray diffraction is used for crystal structure analysis?

 Ans. (a) Refer to Section 10.9 of Chapter 10.

  (b) Refer to the answer of Question No. 7 of ‘Short Questions with Answer’ under ‘Review Exercise’ 
of Chapter 10.

Solved WBUT Questions of 2010

Group A
Multiple-Choice-Type Questions

 1. Choose the correct alternatives for any ten of the following: 10 × 1 = 10

  (i) If a particle is executing simple harmonic motion with frequency v then its potential energy

 (a) remains constant over time (b) is oscillating with a frequency v

 (c) is oscillating with a frequency v/2 (d) is oscillating with a frequency 2v

 Ans. (d)

  (ii) The quality factor Q for an L-C-R circuit is

 (a)   w R
 ____ 

L
   (b)   w L

 ___ 
R

   (c)   w ___ 
LR

   (d)   R
 ___ 

w L
  

 Ans. (b)

  (iii) An external force F = F0 e
iw x is applied to a slightly damped oscillator of natural frequency w0, 

then in steady state it will oscillate with a frequency

 (a) w0 (b) w (c) w0 – w (d)  ÷ 
_______

  w 2  
0  – w2  

 Ans. (b)

  (iv) The intensity of principal maximum in the Fraunhofer diffraction spectrum produced by a 
grating with N number of lines is proportional to

 (a)   1 __ 
N

   (b) N (c) N2 (d)   1 ___ 
N2

  

 Ans. (c)

  (v) In the propagation of lightwave the angle between the plan of polarization and plane of vibration 
is

 (a) 0° (b)   p __ 
2
   (c)   p __ 

4
   (d) p

 Ans. (b)

  (vi) In case of simple cubic crystal, the effective number of atoms per unit cell is

 (a) 2 (b) 1 (c) 3 (d) None of these

 Ans. (b)
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  (vii) In order to produces X-ray by striking electron beam on a metal target the kinetic energy of the 
electron should be

 (a) less than one eV   (b) of the order of eV

 (c) of the order of keV   (d) of the order of GeV

 Ans. (b)

  (viii) If the energy of a particle is much higher than its rest energy then the energy is

 (a) independent of the momentum

 (b) proportional of the momentum

 (c) proportional to square of the momentum

 (d) proportional to the square root of the momentum

 Ans. (b)

  (ix) If a wave packet is described by

   j (x) = A exp  ( –   x
2

 ____ 
2s2

   )  then the momentum uncertainty is proportional to 

 (a) hs (b)   h __ s   (c) hs2 (d)   h ___ 
s2

  

 Ans. (d)

  (x) Given that the temperature of a younger star is higher than that of an older one,

 (a) a blue star is younger than a red star

 (b) a blue star is older than a red star

 (c) both of them are same age

 (d) color of the star cannot be correlated to the age of the star

 Ans. (a)

  (xi) In ruby laser, the active medium is

 (a) solid   (b) liquid

 (c) gas   (d) a solid and gas mixture

 Ans. (a)

  (xii) In a Nicol-prism the O-ray is totally internally reflected and the E-ray is transmitted. This state-
ment is 

 (a) true (b) false (c) partly true (d) partly false

 Ans. (a)

  (xiii) Two sources are said to be coherent when the waves produced by them have

 (a) same wavelength

 (b) same wavelength and same phase

 (c) same wavelength and constant phase difference

 (d) same amplitude and constant phase difference

 Ans. (c)

  (xiv) In an arrangement for viewing Newton’s ring, if the lens which rests on a glass plate were moved 
upwards by one wavelength, (of the viewing light), which of the following will be observed?
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 (a) The central spot becomes bright. (b) No change of fringe pattern is observed.

 (c) The rings shift towards the center. (d) The rings move out from the center.

 Ans. (b)

  (xv) Holography is base on 

 (a) the interference of reference and object waves which are coherent

 (b) superposition of object and the reference waves which are of slightly different 
wavelengths.

 (c) recording of superposed images of two different wavelengths

 (d) recording the phase information of the resultant of the reference and the object waves

 Ans. (d)

  (xvi) For a laser action to occur, the medium used must have at least

 (a) 4 energy levels (b) 2 energy levels (c) 3 energy levels (d) one energy level

 Ans. (b)

Group B
Short-Answer-Type Questions

Answer any three of the following. 3 × 5 = 15

 2. A vibrator of 10 g mass is acted on by a restoring force of 5 dyne/cm and a damping force 2 dyne-s/cm. 
Find whether the motion is overdamped or oscillatory. If at t = 0 the vibrator was at position x = 0, 
when a velocity 1 cm/sec is imparted to it then calculate the maximum deviation along positive 
x-axis.   2 + 3

 Ans. Here, mass of the oscillator m = 10 g,

  restoring force k = 5 dyne/cm and

  damping force b = 2 dyne-s/cm

  The equation of the damped oscillator is given by

   m   d
2x
 ___ 

dt2
   + b   dx

 ___ 
dt

   + kx = 0

  While solving this equation, we get damping constant b =   
b
 ___ 

2m
   =   2 ______ 

2 × 10
   = 0.1 and the angular 

frequency w =  ÷ 
__

   k __ m     =  ÷ 
___

   5 ___ 
10

     = 0.705

  In this case, b < w, so the motion is oscillatory.

  Now, since the motion is damping and oscillatory, the amplitude of oscillation will decrease 
exponentially as follow:

   A(t) = A0 e
–bt

  where A0 is the expected constant amplitude in the absence of damping. The vibration of the 
displacement will be as given in the following figure:



Basic Engineering PhysicsS1.22

t

x

Fig. 1

  As can be seen the amplitude will be maximum when t =   T __ 
4
   where T is the time period of 

oscillation.

  \ Amax = A  (   T __ 
4
   )  = A0 e

–bt/4

  We know that T =   2p
 ________ 

 ÷ 
______

 w2 – b2  
  

  \ T =   2p
 ___________ 

 ÷ 
__________

 0.50 – 0.01  
   =   2p

 _____ 
 ÷ 

____
 0.49  
   =   2p

 ___ 
0.7

  

  \ Amax = A0  e 
–0.1 ×  

 
   2p

 ___ 
0.7

   / 4 
  or, Amax = A0  e 

–   2p
 ___ 

28
  
 

  \ Amax = A0 e
–p/14 unit.

 3. (a) In a Newton’s ring experiment, the diameter of a dark ring is 0.32 cm, when the wavelength of 
monochromatic light be 6000 Å. What would be the diameter of that ring when the wavelength 
of light changes to 5000 Å? 2

 Ans. The diameter of the dark ring is given by

    D n  
2  = 4nl R

  or, 4nR =   
 D n  

2 
 ___ 

l
   =   0.32 × 0.32 __________ 

6000 × 10–8
   =   22 × 32 _______ 

6
   × 10–9

  When wavelength l ¢ = 5000 Å, the diameter is 

    D n  
¢2  = 4nRl ¢ =   32 × 32 _______ 

6
   × 10–9 × 5000 × 10–8

    =   32 × 32 × 5 __________ 
6
   × 10–4

  or, D¢n = 29.21 × 10–2 cm

  \ D¢n = 0.29 cm
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  (b) Write down the expression for the intensity of light due to Fraunhoffer diffraction in a 
transmission grating and hence find the condition for secondary minima in the interference 
pattern [Refer to Section 5.7]. 1 + 2

 4. (a) Two polarizers are placed at crossed position and angle between the polarizing planes are 90°. 
A third polarizer with angle q with the first one is placed between them. An unpolarized light of 
intensity I is incident on the first one and passes through all three polarizers. Find the intensity 
of the light that comes out. [Worked-out Problems; Problem 6.3] 3

  (b) What is population inversion in the context of LASER? Does it violate Maxwell–Boltzmann 
distribution law? [Refer to Section 7.6; No, it does not violate] 2

 5. (a) An electron is observed moving at 50% of the speed of light, n = 1.5 × 108 m/s. What is the 
relativistic mass of the electron? What is the kinetic energy of the electron? 2

 Ans. The relation between relativistic mass and rest mass is given by

   m =   
m0 _________ 

 ÷ 
________

 1 – n 2/c2  
  

  Here, n = 1.5 × 108 m/s and c = 3 × 108 m/s

  \ m =   
m0 __________________  

 ÷ 
_________________

  1 –   1.5 × 1.5 × 1016

  _____________  
3 × 3 × 1016

    

  

  or, m =   2 ___ 
 ÷ 

__
 3  
   m0

  The relativistic mass of the electron is   2 ___ 
 ÷ 

__
 3  
   m0 the kinetic energy (T) of the electron is

   T = mc2 – m0c
2

    =   2 ___ 
 ÷ 

__
 3  
   m0c

2 – m0c
2

  or, T =  (   2 –  ÷ 
__

 3  
 ______ 

 ÷ 
__

 3  
   )  m0c

2 = 0.15 m0c
2

  (b) Write down the conservation laws in Compton scattering. Show that in Compton scattering 
while the photon can be scattered at any angle between 0° to 180°, the recoil electron can only 
be emitted at angles between 0° and 90° [Refer to Sections 9.4.1 and 9.4.4]. 2 + 1

 6. (a) The linear absorption coefficient of an element of X-rays having l = 0.3Å is 135 m–1. Find the 
half value thickness for that material. 2

 Ans. Here l = 0.3 Å

  If m be the linear absorption coefficient them intensity I = I0e
–mx where I0 and I are intensities of x-ray 

before and after passes through the thickness x.

  Here I =   
I0 __ 
2
  , so, x =   0.693 _____ m   =   0.693 _____ 

135
   m

  so, half-value thickness of the material is 0.0051 m

  (b) Cs metal (atomic weight 130) has a cubic unit cell of lattice constant 0.6 nm. If the density of Cs 
is 2 g/cc, determine whether the unit cell is simple, bodycentered or facecentered. 3
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 Ans. For a cubic crystal, the lattice constant

   a =   (   n MA
 _____ 

r N
   )  1/3

 

  Here n is the number of atom per unit cell. Atomic weight MA = 130, density of Cs r = 2 g/cc

  Lattice constant a = 0.6 nm

    = 0.6 × 10–9 m

    = 0.6 × 10–7 cm

  and N = 6.023 × 1023/g mole

  \ n =   
a3r N

 _____ 
MA

   =   
(0.6 × 10–7)3 × 2 × 6.023 × 1023

   __________________________  
130

  

    =   0.6 × 0.6 × 0.6 × 10–21 × 2 × 6.023 × 1023

    __________________________________  
130

  

  \ n = 2

  The unit cell is body-centred.

Group C
Long-Answer-Type Questions

Answer any three of the following. 3 × 15 = 45

 7. (a) Starting from the equation of motion and after solving it show that, for a forced oscillator in the 
steady state, the displacement amplitude at low frequencies (w Æ 0), the velocity amplitude at 
velocity resonance (w = w0) are independent of the frequency of the driving force.

2 + 6 + 2 + 2

 Ans. For developing and solving the differential equation of a forced oscillator refers to the Article 3.3. 
The complete solution of the said differential equation is given by

   y = pe–bt cos {( ÷ 
______

 w2 – b2  ) t – q}

     +   
f
 ___________________  

 ÷ 
__________________

  {(w2 – w ¢2)2 + 4b2w ¢2  
   cos  { w ¢t – tan–1  (   2bw ¢ ________ 

w2 – w ¢2
   )  } 

  where w ¢ is the regular frequency of the driving force.

  At steady state condition the first part of the equation is zero.

  \ the equation then given by

   y = A cos (w ¢t – a)

  where A =   
f
 __________________  

 ÷ 
_________________

  (w2 – w ¢2)2 + 4b2w ¢2  
  

  and a = tan–1  (   2bw ¢ ________ 
w2 – w ¢2

   ) 
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  So, velocity v =   
dy

 ___ 
dt

   = – Aw ¢ sin (w ¢ – a)

  Hence, the velocity amplitude is given by

   Av = Aw ¢

  or, Av =   
fw ¢
 __________________  

 ÷ 
_________________

  (w2 – w ¢2) + 4b2w ¢2  
  

  or, Av =   
f
 ___________________  

 ÷ 
_________________

    
(w2 – w ¢2)2 + 4b2w ¢2

  _________________ 
w ¢

    

  

  or, Av =   
f
 ________________  

 ÷ 
______________

    (   w2

 ___ 
w ¢

   – w ¢ )  2  + 4b2  

  

  or, Av =   
f
 ___________  

 ÷ 
__________

 w2 D2 + 4b2  
  

  where D =   w ___ 
w ¢

   –   w ¢ ___ w  

  At velocity resonance, w = w ¢

  \ D = 0

  \ Av =   
f
 ___ 

4b2
  

  Hence, the velocity amplitude Av is independent of w ¢, i.e., the frequency of the driving force. 

  (b) Explain the terms logarithmic decrement and quality factor of a damped oscillatory system. How 
are they related?   1 + 1 + 1

 Ans. Refer to Section 2.4 for logarithmic decrement.

  In case of damped oscillator the amplitude of vibration is time dependent and it is given by.

   A(t) = A0e
–bt

  where A0 =   
w y0 ________ 

 ÷ 
______

 w2 – b2  
  

  As can be seen in the equation A(t) = A0e
–bt. The amplitude decreases exponentially, for this reason, 

it is called logarithmic decrement.

  For explanation of the quality factor, refer to Section 3.7.

  When an external force is applied to a damped oscillator, it obtains a steady state oscillation and that 
time there does not remain any logarithmic decrement of the amplitude. And only this time we can 

obtain an expression for the quality factor Q  ( =   w ___ 
2b

   ) .
  So, the quality factor and logarithmic decrement are not functionally dependent.

 8. (a) Derive the intensity distribution of diffraction of Fraunhofer class of light due to a single slit. 
Sketch the intensity distribution [Refer to Section 5.4], 7 + 2
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  (b) A single slit forms a diffraction pattern of Fraunhofer class with white light. The second 
maximum in the pattern for red light of wavelength 7000 Å coincides with the third maximum 
of an unknown wavelength. Calculate the unknown wavelength. 3

 Ans. Here n1l1 = n2l2

  where n1 and n2 are order members n1 = 2, l1 = 7000 Å

   l2 =   
n1l1 ____ n2

   =   2 × 7000 ________ 
3
   Å =   14 ___ 

3
   × 1000 Å

  \ l2 = 4667 Å

  (c) In Young’s double-slit experiment the distance between two slits is 0.5 mm. The wavelength of 
light is 5000 Å and the separation between the sources and the screen is 50 cm. Calculate the 
Fringe width in this case. 3

 Ans. The fringe width b =   Dl
 ___ 

2d
  

  Here, 2d = 0.5 mm = 0.05 cm,

   l = 5000 Å = 5000 × 10–8 cm

  and D = 50 cm

  so, b =   50 × 5000 × 10–8

  ______________ 
0.05

   cm

  \ b = 0.05 cm

 9. (a) How can you get an elliptically polarized light from an linearly polarized light by using an 
optical device?`

   A plane polarized light is incident on a piece of quartz cut parallel to the axis. Find the least 
thickness for which the ordinary and the extraordinary rays comine to form plane polarized light 
given that m0 = 1.5442 and me = 1.5533, l = 5 × 10–5 cm. 2 + 3

 Ans.  t =   l
 _________ 

4 (me – m0)
   =   5 × 10–5

  __________________  
4 × (1.5533 – 1.5442)

   cm

    =   5 × 10–5

 _________ 
4 × 0.0091

   cm =   5 ______ 
4 × 91

   × 10–1 cm

  \ t = 0.0013 cm

  (b) Define Einstein A, B coefficients of absorption and emission. Find out the relations among them 
[Refer to Section 7.4].   1 + 1 + 1 + 3

  (c) Explain how holographic images are reconstructed from the holograms. [Refer to Section 8.3] 4

 10. (a) Describe the function of an optical resonator. What is the use of such a device in the context of 
LASER generation? [Refer to Section 7.8] 3 + 1

  (b) What is coordination number? Determine the coordination number for sc and bcc structures. 
Draw necessary sketch, ‘atomic packing factor’ increases with coordination number. Justify the 
statement. [Refer to Section 10.4.] 1 + 4 + 3
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  The atomic packing factor (APF) can be expressed by the following mathematical formula

   fa =   n v
 ___ 

V
  

  where fa is the atomic packing factor and V is the volume of a unit cell of the crystal and v in the 

volume of each atom  ( v =   4 __ 
3
   p r3 )  and n is the coordination mumber. In the above equation, v and V 

are constants for a particular type of matter (i.e., element). So, we see that

   fa μ n 

  \ fa =   v __ 
V

   n = kn where k =   v __ 
V

   = constant

  If we now plot fa against n we get the following curve:

f
a

n

f kn
a
=

Fig. 2

  (c) Find the short-wave limit of continuous X-ray spectrum. Does it shift by 0.5 nm when the 
voltage applied to X-ray tube is doubled? 2 + 1

 Ans. Duane Hunt law gives us minimum wavelength (i.e., short wave limit) of continuous X-ray as 
follows:

   lmin =   hc
 ___ 

eV
  

  or, lmin =   6.62 × 10–34 × 3 × 108

  __________________  
1.6 × 10–19 V

   m

  or, lmin =   12.4125 _______ 
V

   × 10–7 m (if V is in volt)

  or, lmin =   12412.5 _______ 
V

   Å =   1241.25 _______ 
V

   nm

  If the voltage V is doubled then l ¢ min will be given by

   lmin =   1241.25 _______ 
V1

   =   1241.25 _______ 
2V

   nm

  where V1 = 2V
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  when voltage is doubled, the wave length shift is given by

   D l = lmin = – l ¢min

  or, D l =   1241.25 _______ 
V

   –   1241.25 _______ 
2V

  

  or, D l =   1241.25 _______ 
V

    ( 1 –   1 __ 
2
   ) 

  or, D l =   620.625 _______ 
V

   nm

  so, if V be 1241.25 volt only then wave-length shift will be 0.5 nm.

 11. (a) State and explain de Broglie’s hypothesis. Show that the relativistic de Broglie wavelength is 
given by

    lrelativistic =   h
 ______________  

 ÷ 
_____________

  Ek(Ek + 2m0c
2)   

  

   (The notations used have their usual significance) [Refer to Section 9.5.6]. 2 + 3

  (b) Describe an experiment which verified de Broglie’s hypothesis. [Refer to Section 9.5.8] 4

  (c) Write down the expression of the number of possible modes of cavity waves of frequency v to 
v + dv. Using Planck’s hypothesis about the energy quantization of the cavity oscillators, find 
out the average energy of an oscillator at a temperature T and the energy density within the 
frequency range v to dv. Explain why the energy density decreases at very high values of the 
frequency at a finite temperature. 1 + 3 + 1 + 1

   [Refer to Sections 9.2.3 and 9.2.5]

Solved WBUT Questions of 2011

Group A

Multiple-Choice-Type Questions

 Choose the correct alternatives for any ten of the following:  10 × 1 = 10

 1. (i) Resulatant of two perpendicular simple harmonic motions of equal frequency and equal ampli-
tude but a phase difference of p radian is 

 (a) a straight line   (b) an ellipse

 (c) a circle   (d) a spiral collapsing inward

 Ans. (a)
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 (ii) If the equation of motion of an oscillator is given by x
..
 +   

g 2
 __ 

4
   x + g x = 0 then the motion is

 (a) simple harmonic without damping  (b) a critically damped simple harmonic

 (c) an overdamped simple harmonic (d) an underdamped simple harmonic

 Ans. (d)

 (iii) An oscillator with natural frequency w0 experiences a damping force and also a periodic force 
A cos (W t). Amplitude of displacement velocity of the resulting steady state forced oscillation is 
studied with slow variation of W , when W = w0

 (a) The displacement amplitude shows a maximum 

 (b) the velocity amplitude shown a maximum

 (c) amplitude of both displacement and velocity show maxima

 (d) amplitude of displacement shows minimum while the amplitude of velocity shows 
maximum

 Ans. (c)

 (iv) Diffraction occurs when the width of the narrow slit D is 

 (a) comparable to the wavelength of the light used

 (b) equal to the wavelength of the light used

 (c) much greater than the wavelength of the light used 

 (d) much smaller than the wavelength of the light used

 Ans. (a)

 (v) In Newton’s ring experiment the diameters of the dark rings are proportional to

 (a) odd natural numbers

 (b) square root of the natural numbers 

 (c) square root of the odd natural numbers

 (d) square of the natural numbers

 Ans. (b)

 (vi) A diffraction pattern is obtained with a plane transmission grating using a beam of red light. 
What happens after red light is replaced by blue light?

 (a) The lines will shift towards lower angles?

 (b) The lines will shift towards higher angles 

 (c) The lines will disappear

 (d) No visible changes will be noticed

 Ans. (a)

 (vii) A rotating calcite crystal (a doubly refracting crystal) is placed over an ink dot. On seeing through 
the crystal, one finds

 (a) two stationary dots  

 (b) two dots moving along a straight line

 (c) one dot rotating about the other

 (d) both dots rotating about a common axise

 Ans. (d)
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 (viii) In He-Ne laser, Ne atom obtains energy

 (a) on collision with He atom (b) from chemical rection

 (c) from optical pumping   (d) from electrical pumping

 Ans. (a)

 (ix) Which of the following statements is not true about reconstruction of the holographic image?

 (a) The hologram must be illuminated with a partially incoherent light

 (b) Both real image and virtual image are formed

 (c) The frequency of the illumination should be equal to that of the reference wave

 (d) the reconstructed image is a virtual image 

 Ans. (a)

 (x) A proton, electron and a helium nuclcus move with equal velocity. Rank their de Brogile wave-
lengths from longest to shortest

 (a) Helium nucleus, proton, electron  (b) Proton, electron, helium nucleus

 (c) Helium nucleus, electron, proton  (d) Electron, proton, helium nucleus

 Ans. (d)

 (xi) The shift in wavelength in Compton effect is equal to Compton wavelength when the scattering 
angle is 

 (a) zero  (b) p/2  (c) p (d) p/4

 Ans. (b)

 (xii) If the kinetic energy of a particle is equal to its rest energy then

 (a) its mass is equal to its rest mass (b) its mass is double of its rest mass

 (c) its mass is half of its rest mass (d) its mass is  ÷ 
__

 2   times its rest mass

 Ans. (b)

 (xiii) Number of oscillation modes for electromagnetic standing waves of frequency between v to 
v + dv in case of cavity radiation is proportional to

 (a) v3   (b) v2 (c) v  (d)   hv
 ______ 

 e 
  hv

 ___ 
kt

   
 – 1

   

 Ans. (b)

 (xiv)  The spacing between (340) planes in a face centered cubic crystal of lattice constant 10 nm is

 (a) 1 nm  (b) 2 nm  (c) 4 nm  (d) 7 nm

 Ans. (b)

 (xv) An X-ray tube, while operated with an applied potential difference of 80000V, shows a current of 
8 mA. The number of electrons striking per second on the target material is

 (a) 6.4 × 103  (b) 1 × 107  (c) 5 × 1011  (d) 5 × 1016

 Ans. (d)



Solved WBUT Question Papers S1.31

Group B

Short-Answer-Type Questions

Answer any three of the following. 3 × 5 = 15

 1. (a) Derive the expression for the total energy of a simple harmonic oscillator and show that it is 
constant and proportional to the square of the amplitude  [See Section 1.7 of Chapter 1]

  (b) If an oscillator’s motion is descrided by 

 x = e– bt sin W t 

  Where t is the time, then calculate its logarithmic decrement.  3+2

 Ans. (b) The maximum amplitude of displacement on any side of mean position at any time t1 is 

  A1 =  e – bt1

    Let t = t1 + T, where T is the time period of oscillation then amplitude 

  A2 =  e – b(t1 + T)  = A1 e – bT 

   If the successive amplitudes are A3, A4, them 

  A3 = e– b(t1 + 2T) = A2 e – bT 

    and A4 = e– b(t1 + 3T) = A3 e
– bT

    so,   
A1 ___ 
A2

   =   
A2 ___ 
A3

   =   
A3 ___ 
A4

   = e b T = k (say)

    Then, loge k = bT is known as logarithmic decrement.

    The time-period of oscillation T =   2p
 ___ 

W

 
     So, logarithmic decrement

     loge k =   
2pb

 ____ 
W

  

 2. How are coherent sources produce in Young’s double slit experiment? Show that the law of conserva-
tion of energy is not violated in case of interference  [See Section 4.6 & 4.8 of Chapter 4] 2+3

 3. (a) Find the ratio of Einstein’s coefficients of spontaneous and stimulated emission 

    [See Section 7.4.1 of Chapter 7]

  (b) Describe how the optical resonator in a laser setup is used to ensure that the frequency spread of 
the output light is very small [Sec Section 7.8 of Chapter 7] 3+2

 4. A particle of mass m is constrained to move in one dimension and trapped in an infinite potential well 
of width a. Estimate its ground state energy from uncertainty principle. Sketch a graph of this energy 
with the width a.    4+1

 Ans. A particle of mass m constrained to move in infinite potential well of width a. The maximum 
uncertainty in the position of the particle is 
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  (Dx)max = a 

  From the uncertainty principle 

  Dx Dpx =  

  or,  Dpx =    ___ 
Dx

   =    __ a

    The ground state energy

  E =   
D p x  

2 
 ____ 

2m
   =   

2
 _____ 

2ma2
  

 5. Draw a diagram showing the behaviour of X-ray intensity with wavelength. Distinguish between 
continuous and characteristic X-ray spectra. Derive short wavelength limit of continuous spectra. 
How are the characteristic spectra generated [Refer to Section 10.13 of Chapter 10] 1+1+2+1

      Group C

Long-Answer-Type Questions

Answer any three of the following.  3×15 = 45

 1. (a) Find the frequency of oscillation of an underdamped harmonic oscillator of mass m, in terms of 
its natural frequency w0 and damping constant g (where – gv is the damping force, v being the 
velocity  [Refer to Section 2.4 of Chapter 2] 3

  (b) If the same oscillator is driven by an external force, F = F0 cos W t, then find the phase difference 
between the displacement and the driving force in the steady state. 

[Refer to Section 3.3 of Chapter 3] 5 

  (c) A series L-C-R circuit is driven by ac source of frequency W. Write down the differential equa-
tion the charge across the capacitor should satisfy. Identify the parameters of forced damped 
oscillator in term of L-C-R. Find the frequency at which the current in this circuit in maximum. 
you have to deduce th necessary formula from the different equation (you may use your results 
of part (b) of this question).  1+1+5

 Ans. (c) The differential for a series L-C-R circuit with ac source of frequency W is 

   L   
d2q

 ___ 
dt2

   + R   
dq

 ___ 
dt

   +   
q
 __ 

C
   = Vo e jWt 

   Where Vo e jWt is the ac source voltage.

   The electrical current is written as

  i =   
Voe jWt

 ______ 
Z

  

   where z is the impedance and given by

  Z = R + j  ( WL –   1 ____ 
WC

   ) 
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   Now for obtaining maximum current Z should be minimum. So for minimum Z,

   WL –   1 ____ 
WC

   = 0

  or  W2 =   1 ___ 
LC

  

  or,  W =   1 ____ 
 ÷ 

___
 LC  
  

 2. (a) In Young’s double slit experiment the slits are 0.2 mm apart and the screen is 1.5 m away. It is 
observed that the distance between the central bright fringe and the fourth dark fringe is 1.8 cm. 
Find the wavelength of light. 3

  (b) Write the expression of intensity (explaining the symbols) distribution for Fraunhoffer diffrac-
tion due to a double slit. Draw the distribution graphically. 

[Refer to Section 5.5 of Chapter 5] 2+1

  (c) Find the condition of diffraction minima and interference maxima from the above expression. 

    [Refer to Section 5.5 of Chapter 5]

  (d) In a double slit experiment if the slit width is 2 mm and the separation between the slits is 4 mm 
then find the missing orders. Derive the formula that you use.  3

  (e) Define resolving power of a grating. What factors does it depend upon? 

    [Refer to Section 5.10 of Chapter 5] 1+1

 Ans. (a) For (n +1)th dark fringes xn+1 =  ( n +   1 __ 
2
   )    Dl

 ___ 
2d

  

   For fourth dark fringe, n = 3

   Also, x4 = 1.8 cm, 2d = 0.2 mm, D = 1.5 m

  so, 1.8 =  ( 3 +   1 __ 
2
   )    150 × l

 _______ 
0.02

  

    =   7 __ 
2
   ×   150 × l

 _______ 
0.02

  

  or,  l =   1.8 × 2 × 0.02  ____________ 
7 × 150

   = 6.86 × 10–5 cm

    = 6860Å

  (d) Missing order are obtained when interference maximum and diffraction minimum corresponds 
to the same value of direction angle q, i.e,

     (a + b) sin q n = nl [interference maximum]

    and  a sin q m = ml [diffraction minimum]

    so    a + b
 _____ a   =   n __ m

      Here a = 2 mm and b = 4mm
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    \   n __ m   =   6 __ 
2
   = 3

   For values of m = 1, 2, 3, etc. or n = 3, 6, 12, etc. So, the 3rd, 6th 12th etc, orders of interference 
maxima will be missing in the diffraction pattern.

 3. (a) Using Brewster’s law show that light incident on a transparent substance at polarising angle 
given reflected and refracted rays at right angle to each other. 

[Refer to Section 6.7 of Chapter 6] 3

  (b) Describe how circularly polarized light and unpolarized light may be distinguished by experi-
ment.  [Refer to Section 6.4 of Chapter 6]

  (c) Unpolarized light is incident on two polarizing sheets placed on top of the other. Each sheet 
reduces the intensity of unpolarized light by 50%. What must be the angle between the character-

istic directions of sheets if the intensity of the transmitted light is   1 __ 
3
   of the intensity of the incident 

beam.  3

  (d) A quarter wave plate is fabricated with smallest possible thickness for wavelength of 589.3 nm. 
What phase retardation will be obtained with this plate with light having wavelength of 435.8 nm? 
You may neglect the variations of refractive indices with wavelength for this problem.  3

  (c) Describe how the phase information of an object wave may be recorded in a holographic plate. 

    [Refer to Section 8.2 of Chapter 8] 3 

 Ans. (c) Let the intensity of unpolarised light as Io. The intensity of polarized light transmitted by the first 
sheet would be 

     I =   
Io

 __ 
2
   or Io = 2I

    If I1 is the intensity of the transmitted light then  

     I1 =   1 __ 
3
   Io =   2 __ 

3
   I

    Again  I1 = I cos2q, or   2 __ 
3
   I = I cos2q

    or cos2q =   2 __ 
3
  

    or,  cosq =  ÷ 
__

   2 __ 
3
     = 35.26º

  (d) The path difference between ordinary and extraordinary waves is given by (for quarter wave 
plate)

(mo ~ me)t =   l __ 
4
   =   589.3 _____ 

4
  

   Where t is the thickness of the plate

   The phase retardation d =   2p
 ___ 

l1

   × path difference

      =   2p
 _____ 

435.8
   ×   589.3 _____ 

4
  

      = 0.676p
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 4. (a) Describe the construction of a ruby laser. Also discuss how population inversion is achieved in 
ruby laser by clearly drawing the energy diagrams. Discuss whether this result is suitable for 
continuous or pulse mode operation [Refer to Section 7.10.1 of Chapter 7] 2+2+1

  (b) Show that the total energy per unit volume of a black body radiation is proportional to the fourth 
power of the absolute temperature. [Refer to Section 9.2.6 of Chapter 9]

  (c) Write down the equation describing mass energy equivalence. From that relation show that if a 

particle is moving with a velocity much smaller that of light then the kinetic energy is given by   1 __ 
2
   

mo v
2, where m0 is the rest mass and v is the velocity of the particle.  2

  (d) X-ray of wavelength 0.2 Å is scattered by a stationary particle of Compton wavelength of the 
2.43 pm at an angle 45°. Calculate the wavelength of the scattered ray and the kinetic energy of 
recoiled particle.  [Refer to Example 9.8 of Chapter 9]

  (e) If a beam of electron is maximally diffracted from a crystal of interplanar separation d, at an 
angle q then show that the acceleration voltage V for the beam of electron is given by 

   V =   1 ____ 
2me

     (   h
 _______ 

2 d sin q
   )  2  

   where m and (– e) are the mass and charge of an electron and h is Planck’s constant.  2

 Ans. (c) The mass energy relation is given by 

  E = mc2 

   The relativistic kinetic energy is 

   KE = (m – m0)c
2 where mo is the rest mass

  =  [   
mo
 _______ 

 ÷ 
______

 1 –   v
2

 __ 
c2

     

  – – mo ] ̂  c2 =  [   1 _______ 

 ÷ 
______

 1 –   v
2

 __ 
c2

     

   – 1 ] ̂  moc
2

   Now. if c >> v, then   ( 1 –   v
2

 __ 
c2

   )  –1/2

  = 1 +   v
2

 ___ 
2c2

   + º

   since   v
2

 __ 
c2

   is very small, the higher order terms are neglected.

    Now K.E. =  [ 1 +   v
2

 ___ 
2c2

   – 1 ]  ^moc
2

      =   1 __ 
2
   mov

2

  (e) The de Broglie wavelength of the wave associated with the electron is

     l =   h
 ______ 

 ÷ 
_____

 2meV  
  

    Again from Bragg’s Law

     2d sin q = l for n = 1
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    so,  (2d sinq)2 =   h2

 _______ 
(2meV)

  

    or, V =   1 ____ 
2me

     (   h
 _______ 

2d sinq
   )  2

     The accelerating voltage V for the beam of electron is

     V =   1 ____ 
2me

     (   h
 _______ 

2d sinq
   )  2 

 5. (a) It is found that the maximum possible kinetic energy of an electron emitted by a radioactive 
nucleus of radius 10–14 m is 4 MeV. Then show that the electron did not exist in the nucleus 
before the radioactive decay.  [Sec Section 9.6.5 (b) of chapter 9] 3

  (b) Light of wavelength 5893Å falls on a material of work function f = 1.90 eV. Calculate the energy 
of incident photon and the wavelength of the most energetic photoelectron (h = 6.62 × 10–34 Js, 
c = 3 × 108 m/s, mass of electron = 9 × 10–31 kg, charge of electron e = 1.6 × 10–19 C)  
 2+3

  (c) Discuss why the phenomenon of photoelectric effect cannot be explained from the wave theory 
of light.  4

  (d) Deduce Wien’s displacement law from Planck’s law of blackbody radiation.

    [Refer to Section 9.2.6 (a) of Chapter 9] 3

 Ans. (b) The energy of the incident photon 

  Ep =   hc
 ___ 

l
   =   6.62 × 10–34 × 3 × 108

  __________________  
5893 × 10–10

   = 3.37 × 10–19J

    = 2.1 eV

   Kinetic energy of the recoil electron

  K.E = hn – j where j is the work function

   = 2.1 – 1.9

   = 0.2 eV

   = 0.32 × 10–19 Joule.

   The wavelength of the photo electron

  l =   hc
 ___ 

E
   =   6.62 × 10–34 × 3 × 108

  __________________  
0.32 × 10–19

  
   = 62.06 × 10–7 m

  (c) According to Maxwell wave theory of light, the more intense incident light should eject the 
electrons from the metal with their greater energy. But experimental result shows that maximum 
kinetic energy of the ejected electron is independent of intensity of the incident light.

    According to wave theory, the emission of electrons should occur for any frequency of the 
incident light. But experimental result shows that there is a minimum frequency known as thresh-
old frequency (no) for a given metal below which no emission of electrons is possible.
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    According to wave theory, the electron should taken some time to receive the energy from the 
incident light. But experiment shows that there is no time lag between illumination of the metal 
surface and the emission of electrons.

 6. (a) Define primitive cell. Are all unit cell primitive? [Refer to Section 10.2.1 of Chapter 10] 2

  (b) Deduce the interplanar space of a simple cube of lattice constant a, for the planes (hkl). 

    [Refer to Section 10.9 of Chapter 10] 4

  (c) In a certain crystal, the crystal planes of Miller indices (110) having a separation of 1.12Å show 
X-ray diffraction with wavelength 1.54 Å. Calculate up to which order, Bragg’s reflection can be 
observed.

  (d) In a triclinic cryctal, a lattice plane makes intercepts of length a, 2b and – c/2. Find the Miller 
indices of the plane. 

  (e) Calaculate the lattice constant of a substance having fcc lattice, molecularweight 60.2 and den-
sity 6250 kg/m3 Avogadro number = 6.02 × 1023 

 Ans. (c) From Bragg’s Law,

     2d sin q = nl

     The maximum value of sin q is equal to one. So, maximum order of Bragg’s reflection that can 
be observed is

     n =   2d sinq
 _______ 

l
  

    Here sin q = 1, d = 1.12 Å and l = 1.54Å

    so  n =   2 × 1.12 × 1  ___________ 
1.54

   = 1.45

    The value of n is integer, so the maximum possible value of order number is 1

  (d) The intercept lengths are a, 2b and – c/2

  \  a : 2b :   – c
 ___ 

2
   =   a __ 

h
   :   b __ 

k
   :   c __ 

l
  

  or,    1 __ 
h
   :   1 __ 

k
   :   1 __ 

l
   = 1 : 2 :   –1 ___ 

2
  

  or,  h : k : l  = 1 :   1 __ 
2
   : – 2

     = 2 : 1 : – 4

  So,  the Miller indices of the given plane are (21 
_
 4 )

  (e) Here Molecular weight M = 60.2,

    density r = 6250 kg/m3

  and Avogadro No.  N = 6.02 × 1023/g mole

     = 6.02 × 1026/kg mole

 For FCC  n = 4
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  Lattice constant  a =   (   4M
 ___ 

Nr
   )  1/3

 

     =   (   4 × 60.2  ________________  
6250 × 6.02 × 1026

   )  1/3
 

     = 4 × 10–10 m

Solved WBUT Questions of 2012

Group A

Multiple-Choice-Type Questions

 1. Choose the correct alternative for any ten of the following: 10 × 1 = 10

 (i) The relaxation time (t) of a damped harmonic oscillator with damping constant (K) is

 (a) t = 1/K (b) t = 1/2K  (c) t = K  (d) t = 2K

 Ans. (a), (b)

 (ii)  The resonant frequency of an electrical oscillator is given by

 (a) v = 2p ÷ 
___

 LC   (b) v =   1 _______ 
2p  ÷ 

___
 LC  
    (c) v =   2p

 ____ 
 ÷ 

___
 LC  
   (d) n = 2p  ÷ 

__

   L __ 
C

    

 Ans. (b)

 (iii) If ‘a’ is the force constant of an oscillating body of mass ‘m’ the Q-factor is

 (a) Q μ  ÷ 
____

 a m    (b) Q μ  ÷ 
__

   m __ a      (c) Q μ  ÷ 
__

   a __ m      (d) Q μ   a __ m  

 Ans. (a)

 (iv) If a thin mica sheet is placed between two interfering waves, then

 (a) Fringe width increases  (b) Fringe width decreases 

 (c) Fringe pattern get shifted  (d) No change in the fringe pattern

 Ans. (c)

 (v)  The emissive power of a blackbody kept at absolute temperature T which is very near to the 
temperature of surroundings (T0) is proportional to

 (a) (T – T0)
 4 (b) (T – T0) (c) T 4 (d) T 2/3.

 Ans. (b)

 (vi)  The miller indices of a plane having intercepts 2, 3, 4 units along X, Y, Z axis respectively are

 (a) (6, 4, 3) (b) (4, 3, 6) (c) (2, 3, 1) (d) (2, 3, 4).

 Ans. (a)
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 (vii)  Compton shift Dl and Compton wavelength lc are equal if the angle of scattering is

 (a) q = 0º (b) q = 90º  (c) q = 180º (d) q = 360º

 Ans. (b)

 (viii)  The relativistic energy momentum relation is 

 (a) p2 = E2 +  m 0  
2 c2   (b) E2 = p2 +  m 0  

2 c4

 (c) E2 = p2c2 +  m 0  
2 c4   (d) p2 = E2c2 +  m 0  

2 c4

 Ans. (c)

 (ix)  According to Wien’s displacement law

 (a) lmT = Constant (b)   
lm

 ___ 
T

   = Constant  (c) lmT 2 = constant (d)   
lm

 ___ 
T 2

   = Constant

 Ans. (a)

 (x)  Volume of a unit cell in FCC structure is 

 (a) 16 ÷ 
__

 2  r 3 (b) 4 ÷ 
__

 2  r 3  (c)   
16 ÷ 

__
 2  
 _____ 

r3
   (d) 2 ÷ 

__
 2  r3

  [r = mean radius of the constituent atoms]

 Ans. (a)

 (xi) Polarization conclusively proves that light waves are

 (a) longitudinal (b) progressive  (c) stationary (d) transverse

 Ans. (d)

 (xii) An a-particle is 4 times heavier than proton. if a proton and a-particle are moving with the same 
velocity, their de-Broglie wavelengths are given by

 (a) lp = la  (b) lp = 4la  (c) lp = la/2 (d) lp = la/4

 Ans. (b)

 (xiii) For larger value of damping constant k the resonance curve will be

 (a) Unchanged (b) Flatter (c) Sharper (d) None of these

 Ans. (b)

 (xiv) In Ruby laser, the host crystal is

 (a) Al2O3  (b) MnO2  (c) CaCO3 (d) Al2SO4

 Ans. (a)

 (xv) If we measure the energy of a particle accurately then the uncertainty of the measurement of time 
becomes 

 (a) 0  (b) • (c) 1 (d)   1 __ 
2
  

 Ans. (b)
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Group B

Short-Answer-Type Questions

Answer any three of the following.  3 × 5 = 15

 1. (a) Show that for a particle executing SHM, the average kinetic energy is half of the corresponding 
maximum energy.   
 [Refer to Section 1.7 of Chapter 1] 

  (b) Calculate the time period of the liquid column of length 1 in a U-tube, if it is depressed in one 
arm by x, d is the density of liquid and A is the cross-sectional area of each arm of the tube. 

    [Refer to Worked-out Examples, Example 1.6 of Chapter 1] 3+2

 2. (a) What do you mean by population inversion? 

    [Refer to Section 7.6 of Chapter 7]

  (b) Draw the energy level diagram in helium and neon laser transition. 

    [Refer to Section 7.10.2 of Chapter 7] 2+3

 3.  (a) Determine the atomic packing fraction of FCC lattice. [Refer to Section 10.5 of Chapter 10]

  (b) X-rays of wavelength 1.54Å are used for the calculation of the d100 plane of a cubic crystal, the 
Bragg’s angle of 1st order reflection is 10º. What is the size of the unit cell?  2+3

 Ans. (b) The interplanar distance of (100) is

    d100 =    a
 ___________ 

 ÷ 
_________

 h2 + k2 + l2  
  

     =   a
 ___________ 

 ÷ 
__________

 l2 + o2 + o2  
   = a Å

   From Bragg’s equation

    2 d100 sin q = nl

   Here  n = 1, l = 1.54Å and q = 10º

   So  2 a sin 10 = 1 × 1.54

   or a =   1.54 _______ 
2 sin10

   = 4.43Å

   So the size of the unit cell is 4.43 Å

 4. What is Einstein’s A and B coefficient? Relate spontaneous and stimulated emission probabilities and 
hence find out the relation between field energy and A, B coefficient.  1+4 

   [Refer to Section 7.4.1 of Chapter 7]

 5. Define blackbody? Establish Wein’s distribution law and Stefan’s law from Plank’s blackbody 
radiation law.  [Refer to Section 9.2 and 9.2.6 of Chapter 9]  1+2+2
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 Group C

Long-Answer-Type Questions

Answer any three of the following 3×15 = 45

 1. (a) A cubical block of side L cm and density r is floating in water of density r0 (r0 > r). The block 
is slightly depressed and released. Show that it will execute simple harmonic motion. Determine 
the frequency and time period of oscillation. 3+1+1

  (b) Write down the differences between standing and progressive wave and establish the differential 
equation of a progressive wave.  [Out of syllabus] 2+2

  (c) Established the differential equation of SHM from energy conservation principle. An oscillator 
executing SHM has zero displacement at time t = 0. If the displacements are 1 mm and 1.5mm at 
instants 0.1 and 0.2 seconds, calculate the frequency and amplitude of oscillation.

   [For first part Refer to Section 1.9 of Chapter 1. For second part see solution given below] 2+2

  (d) A body of mass 10 g is acted upon by a restoring force/unit displacement of 107 dyne/cm, a fric-
tional force/unit velocity of 4 × 103 dyne/cm, s–1 and a driving force of 105 cos wt dyne. Find the 
value of maximum amplitude. 2

 Ans. (a) If a cubical block of side L cm and density r is slightly depressed by x cm, then the mass of the 
displaced liquid is (L2rox). The block will experience an upward thrust of magnitude (r0L

2gx). 
This restoring force is proportional to displacement. Hence the motion become simple harmonic. 
The equation of motion is

    L3 r   d
2x
 ___ 

dt2
   = –  r 0 L

2 gx

   or,   d
2x
 ___ 

dt2
   = –   

rog
 ___ 

Lr
   x

   or,   d
2x
 ____ 

dt2
   +   

rog
 ___ 

Lr
  x = 0

   or,   d
2x
 ___ 

dt2
   + w2x = 0

   Where w =  ÷ 
____

   
rog

 ___ 
Lr

    

   or, Time period T =   2p
 ___ w   = 2p  ÷ 

____

   
Lr

 ___ rog
   

     and frequency   v =   1 __ 
T

   =   1 ___ 
2p

    ÷ 
____

   
rog

 ___ 
Lr
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    (c) The displacement of a particle executing SHM is given by

    x = a sin wt

   Now  0.1 = a sin 0.1w and 0.15 = a sin 0.2w

   or, 0.15 = 0.1   sin 0.2w _______ 
sin 0.1w

  

     = 0.1   2 sin 0.1w cos 0.1w  ________________  
sin 0.1w

  

   or cos 0.1w = 0.75

   or w = 0.723 rad

   Frequency v =   w ___ 
2p

   =   0.723 _____ 
2p

   = 1.15 Hz

   Amplitude a =   0.1 _______ 
sin 0.1w

   =   0.1 _______ 
sin 41.4

   = 0.151 cm.

  (d) The driving force F cos w¢t = 105 cos w¢t

   \ F = 105 dyne and acceleration f =   F __ m   =   105

 ___ 
10

   = 104 dyne/gm

   Here  b =   k¢
 ___ 

2m
   =   4 × 103

 _______ 
2 × 10

   = 2 × 102

   or, 2b = 4 × 102 s–1 

   Restoring force constant k = 107 dyne/cm 

   At resonance w = w¢ =  ÷ 
__

   k __ m     =  ÷ 
_____

    107

 ___ 
10

     = 103 s–1

   Now maximum amplitude 

    Amax =   
f
 ___________ 

2b  ÷ 
_______

 w¢2 + b2  
   =   104

  _______________________   
4 × 102  ÷ 

_______________

  (103)2 + (2 × 10)2   

       = 0.025 cm

 2. (a) Two independent sources of light of same wavelength cannot produce interference. Justify.

    [Refer to Section 4.9 of Chapter 4] 3

  (b) Plot the intensity distribution curve of Young’s double-slit interference experiment and label it. 

[Refer to Section 4.8 of Chapter 4] 2

  (c) Can you measure the refractive index of a liquid by Newton’s ring experiment? Explain. 3 

   [Refer to Section 4.17.3 of Chapter 4]

  (d) In Young’s experiment the width of the fringe obtained with light of wavelength 6000 Å is 
2.0 mm. What will be the fringe width if the entire apparatus is immersed in a liquid of refractive 
index 1.33?  3
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  (e) Newton’s ring experiment is performed with reflected light of wavelength 5700 Å using a 
plano-convex lens and a plane glass plate. What would be the observation when the glass plate is 
moved away from the lens along the axis of the lens by 10–5 m?  4

 Ans. (d) The wavelength of light in water is given by 

    lwater =   
lair ___ m  

   The fringe width in air =   
Dlair _____ 

2d
   = bair

   The fringe width in water =   
Dlwater ______ 

2d
   = bwater

   So  bair = mbwater = 1.33 bwater

   or  bwater =   
bair ____ 
1.33

   =   2 ____ 
1.33

   = 1.503 mm

   The fringe width in the liquid (water) is 1.503 mm

  (e) For reflected light the central spot is dark. The glass plate is moved away from the lens along the 
axis of the lens by 10–5m, then central dark spot will be shifted to nth dark ring.

   We have  2t = nl

   or, n =   2t
 __ 

l
   =   2 × 10–5

 ____________  
5700 × 10 –10  

  ~ 35

   So central fringe will be 35th dark ring.

 3. (a) Distinguish between Fresnel and Fraunhofer class of diffraction. 

    [Refer to Section 5.2 of Chapter 5] 2

  (b) Using the expression of single-slit diffraction intensity, show that the secondary maxima are 
given by the equation tan a = d, where a = p e sin q/l, symbols have their usual meaning 

    [Refer to Section 5.4 of Chapter 5] 

  (c) Draw and explain the intensity distribution curve in case of Fraunhofer single slit diffraction 
phenomenon.  [Refer to Section 5.4 of chapter 5] 4

  (d) State and explain Rayleigh criterion of resolution.  [Refer to Section 5.9 of chapter 5] 3

  (e) An oil immersion microscope just resolves the rulings of a grating having 3900 lines/mm when 
light of wavelength 400 nm is employed. Find the numerical aperture of the lens.

 Ans. (e) The resolving power

    RP =   1.22l
 _____ 

2NA

   where NA is numerical aperture of the lens

   So, NA =   1.22l
 _______ 

2 × R.P.
  

   Resolving power = grating element =   1 _____ 
3900

   mm

     =   1 _____ 
3900

   × 10–3m
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   and l = 400 nm = 400 × 10–9m

   \ NA =   1.22 × 400 × 10–9

  _______________  
2 ×   1 _____ 

3900
   × 10–3

   

     =   1.22 × 400 × 3900 × 10–9 × 103

   __________________________  
2
  

     = 0.95

 4. (a) Calculate the distance between the adjacent parallel planes of the types [100], [110] and [111] 
in an FCC lattice of lattice constant ‘a’. Check the validity of the statement “The most closely 
packed planes are the most widely spaced”.  5

  (b) Establish the relation between lattice constant and density of a material of a simple cubic 
crystal.  [Refer to Section 10.6 of Chapter 10] 5

  (c) If an X-ray tube is subjected to a potential difference of 50 kV and the corresponding current is 
8 mA, find: 

 (i) the number of electrons striking per second the target material 

 (ii) speed of electron

 (iii) minimum wavelength of the X-ray produced

 (iv) cut-off wavelength of the X-ray produced

 (v) energy of each stricking electron.      5

 Ans. (a) We know that  d 
hkl

  =   a
 ___________ 

 ÷ 
_________

 h2 + k2 + l2   

     So,  d100 = a, d110 =   a ___ 
 ÷ 

__
 2  
   and d111 =   a ___ 

 ÷ 
__

 3  
   for SC.

   A FCC contains central atom to each face so, 

    d200 =   a __ 
2
   which is parallel to d100

   Distance between d100 and d200 is   a __ 
2
  .

   So,  d100 =   a __ 
2
   = 0.5a

    d110 =   a
 ____ 

2 ÷ 
__

 2  
   = 0.35 a

   but d111 =   a
 ___ 

 ÷ 
__

 3   
   = 0.57a 

    Packing factor =   
Length of the occupied atoms

   ________________________   
magnitude of the direction

  

   So for 100; packing factor =   2r
 __ a   =   2r

 _____ 
2 ÷ 

__
 2  r 

  = 0.71 

   for 110, packing factor =   2r
 ____ 

 ÷ 
__

 2   a
  

    =   2r
 ________ 

 ÷ 
__

 2   2 ÷ 
__

 2   r
   = 1
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   for 111, packing factor =   2r
 ____ 

 ÷ 
__

 3   a
  

    =   2r
 _______ 

 ÷ 
__

 3   2 ÷ 
__

 2  r
   = 0.40

   Which show that [110] plane is closely packed having least interplanar distance. 

  (c)  (i) No. of electrons =   
Charge flows per second

  ____________________  
Electronic charge

  

       =   8 × 10–3

 _________ 
1.6 × 10–19

   = 5 × 1016

   (ii) We know   1 __ 
2
   mv

2 = eV

  or,    v =  ÷ 
____

   2eV
 ____ m     =  ÷ 

______________________

     2 × 1.6 × 10–19 × 50 × 103

  _____________________  
9.1 × 10–31

   

         = 13.26 × 107 m/s

    (iii)  lmin =   1240 _____ 
V

   =   1240 ________ 
50 × 103

   = 0.248Å

    (iv) Cut-off wavelength = 0.248 Å

    (v) KE  = hnmax =   hc
 ____ 

lmin

   =   6.62 × 10 –34 × 3 × 108

  ______________________  
0.248 × 1010 × 1.6 × 10–19

   Joule

      = 5.005 × 104 eV

      = 50.05 keV.

 5.  (a) What is holography? Why is it called a wavefront reconstruction? 

    [Refer to Sections 8.1 and 8.3 of Chapter 8]  4

  (b) Explain with neat diagram, spontaneous emission, stimulated absorption and stimulated emis-
sion of radiation and deduce of expressions relating various Einstein’s coefficients.

    [Refer to Sections 7.3 and 7.4 of Chapter 7] 6

  (c) Write a short note on Nicol prism and its use as polarizer and analyser. 

    [Refer to Sections 6.12 of Chapter 6] 5

 6. (a) What is the origin of modified and unmodified lines in Compton effect?

  (b) Can you observe Compton effect if visible light is used instead of X-rays?

  (c) Prove that the maximum recoil energy of a free electron of rest mass m0 when struck by a 

photon of wavelength l is given by Emax =   
2m0c

2  l c  
2 
 ________ 

l2 + 2lcl
  . Here lc is the Compton wavelength of the 

electron.

  (d) Show that in Compton scattering while the photon can be scattered at any angle between 0º to 
180º, the recoil electron can only be emitted at angles between 0º and 90º 

    [See Section 9.4.1 & 9.4.4 of Chapter 9] 3+2+5+5
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 Ans.  (a) In Compton effect the modified line is due to scattering of photon from free electron and an 
appreciable wavelength shift occurs.

   When photons of incident radiation collide with tightly bound electrons of the target atom, the 
energy and momentum of the colliding photon are exchanged with the atom as a whole since the 
mass of the target atom is much greater than of a free electron, the Compton shift in this case is 
neglected and l¢ practically coincides with l. This explains the presence of unmodified line.

  (b) X-rays are very short wavelength (l = 1Å) radiation. In place of X-rays if we use light in the 
visible range (l = 4000Å – 7000Å), the wave length (Dl) will not be perceptible. The Compton 
shift

    Dl =   h
 ____ moc

   (1 – cos q)

   For maximum shift q = 180º, So

    Dl = 0.0484 Å

   The percentage Compton shift for l = 4000Å

      Dl
 ___ 

l
   × 100 ª 0.001 %

   So we see that Compton shift for the case of visible light is not significant. So it is impossible to 
observe Compton effect with visible light.

 6. (c) The kinetic energy of the recoil electron is given by

    E = h(v – v¢) = hc  (   1 __ 
l

   –   1 __ 
l¢

   ) 
   The energy become maximum when l¢ is maximum.

   So Emax = hc  (   1 __ 
l

   –   1 _____ 
l¢max

   ) 
   Again  l¢ = lc (1 – cos j) + l

   If  j = p, l¢ = l¢max

   So l¢max = 2lc + l

   So Emax = hc (   1 __ 
l

   –   1 _______ 
2lc + l

   ) 
     =   

2hclc
 _________ 

l(l + 2lc)
   

   Again Compton wavelength lc =   h
 ____ 

moc
  

   or, h = molcc

   or  Emax =   
2m0 l c  

2 c2 
 __________ 

l2 + 2 l lc
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