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Preface

Science and technology are very closely related subjects. Science (more specifically physics) can be thought
of as the mother of engineering and technology. The progress of engineering and technology will stop fully
without the help of science, in general, and that of physics, in particular. So, the progress of engineering and
technology is directly related to that of science, and the progress of science depends on research in science
as well as new inventions in the field. Engineering and technology are the applied aspects of science. Science
provides concepts, theories as well as formulae to engineering and technology and thus aids in their progress.
Any technological development depends on the scientific understanding of the working of nature. Though
physical science and technology are very closely interlinked, some modern technologies like biotechnology,
medical technology, food technology, etc., are also very much dependent on biological science. It is thus
clear that the students of engineering and technology must have appropriate knowledge of advanced topics
of science, in general, and physics in particular, to face the challenges of the future world as engineers and
technologists.

Aim

The West Bengal University of Technology recently reorganized the physics syllabus of first-year BTech by
selecting those topics which are commonly studied by students of all streams of engineering and technology.
The university has introduced some specific advanced topics of physics in the syllabus of second-year BTech
selectively for a few streams only where more knowledge of physics is essential. The first-year syllabus of
physics consists of topics like waves and acoustics, classical optics (i.e., interference, diffraction and polar-

ization), modern optics (i.e., laser and fiber optics), foundation of quantum theory, x-ray, and crystallography.
So, we have put all the aforesaid topics of physics in the present book Basic Engineering Physics.

Though many books covering the said topics are available in the market, none of them cover entirely the
new syllabus and a major part of them discuss topics either insufficiently or in an exaggarated manner. For
this reason, these books are not completely suitable for BTech first-year students of WBUT to understand
their physics course. Keeping these points in mind, we decided to present this textbook to the first-year BTech
students of WBUT for comprehensive yet lucid study.

This book has been written on the basis of the class lecture notes we have prepared and used to teach this
subject during the last nine and half years. The text has been written in the most coherent and exhaustive
manner so that students can grasp the subject with minimum labor as well as time. Much effort has been
given to clarify the fundamental concepts of the subject in an easy way. Apart from appropriate examples and
illustrations, we have enriched the book with a large number of solved problems at the end of each chapter so
that students can develop a thorough understanding of the topics.
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Salient Features

* Coverage and chapter organization as per the latest WBUT syllabus
» Excellent coverage of forced vibrations, interference of light, quantum physics, and crystallography

» Exhaustive and varied pedagogical features to provide practice for solving all types of questions for
WBUT examination

» Useful lists of Greek alphabets, derived units, prefixes as multiplying factors, and physical constants
for easy reference

* 10 lab experiments with detailed step-wise procedures, clear illustrations and aids to viva voce
* Model Question Papers based on WBUT pattern for self-practice
» Latest Solved WBUT Question Papers
» Pedagogy:
= /40 [llustrations
= ]20 Worked-out Examples
= 340 Multiple Choice Questions
= 145 Short Questions with Answers
= 280 Long Questions with Answers
= /40 Numerical Problems

Chapter Organization

This book comprises 10 chapters. The chapters have been judiciously arranged in such a way that the stu-
dents can develop the concepts of the subject step by step without skipping any required topic. Chapter 1 of
the book gives an idea of simple harmonic motion. Chapter 2 discusses free and damped vibration. Forced
vibration has been presented in Chapter 3. As (classical) optics is a broad topic, it has been divided into
three chapters. Interference of light is covered in Chapter 4. Diffraction of light is discussed in Chapter 5.
Polarization of light is dealt with in Chapter 6. Laser optics is discussed in Chapter 7. Holography is dis-
cussed in Chapter 8. The foundation of quantum theory is discussed in Chapter 9 on quantum physics.
X-ray and crystallography are explained in Chapter 10. Besides these, angular concept, coherence of light,
and relativistic concept are presented respectively in Appendices A, B and C. A set of 10 experiments of
physics practicals with detailed step-wise procedures, clear illustrations, and aids to viva voce is presented
in Appendix D.

Review Exercises given at the end of each chapter are divided into three parts. Part 1 contains multiple
choice questions and short questions followed by their answers. Part 2 consists of descriptive questions and
Part 3 consists of unsolved numerical problems. For solving such problems, students will have to apply
critically the text which they have already learnt. This exercise will help them develop an analytical view of
the topics. This book also has five model question papers which have been set as per the pattern of WBUT
question papers. Further, the questions from WBUT exam papers of years 2008, 2009, 2010, 2011 and 2012
have been solved year-wise and provided toward the end of this book.

We were very much surprised to observe that in this country, the study of science fails to have an impact
in the development of scientific mindedness among most of the science as well as engineering and technol-
ogy students. It may be due to the faulty method of teaching science in India. We feel that practical use of the
knowledge of science in one’s daily life will help remove superstitions. Having kept this view in mind, the use
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of scientific theories learnt in various chapters of this book has been discussed at the end of each chapter. We
hope that it will help develop a scientific attitude among the students.
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Some Useful Derived Units

Physical Quantity Derived unit Symbol
Area square meter m?
Volume cubic meter or litre m’or 1
Force newton N
Pressure and Stress pascal Pa (or N/m?)
Work, Energy, Heat joule J
Power watt W
Moment of inertia kgm? I
Torque Nm T
Specific heat capacity J/ (kg k) c
Thermal conductivity W/ (mk) k
Luminance lux Ix



Luminous flux lumen Im

Electric charge coulomb C
Electric potential volt \Y%
Electric resistance ohm Q
Frequency hertz Hz

Prefixes as Multiplying Factors

Prefix Symbol (Multiplying) factor value
atto — a 10718
femto — f 1071
pico — p 1072
nano — n 107
micro — n 10°°
milli - m 107
centi — C 1072
deci — d 107!
deca - da 10"
hecto — h 10?
kilo - k 10°
mega — M 10°
giga — G 10°
tera — T 102
peta — P 10”
exa — E 108
Examples: 1fm =1x10"" m,

Img =1x107g,
1 M watt =1 x 10° watt etc.



CHAPTER

Simple Harmonic Motion

1.1  INTRODUCTION

The simple harmonic motion is a special case of the generalized periodic motion. In our daily life, we come
across numerous things. We can classify them into two categories: The bodies which remain at rest with
respect to us and the bodies which move with respect to us. The motions of all moving bodies can be catego-
rized into two categories, namely, (i) the motion in which the body moves about a mean position (i.e., fixed
point), and (ii) the motion in which the body moves from one place to another with respect to time. The first
category of motion is called periodic motion while the second one is called translatory motion.

A moving bus, a flying aeroplane, a moving football, etc., are examples of translational motion while the
motion of a simple pendulum, a spring-mass system, vibrations of a stretched string, etc., are examples of
periodic motion.

Sometimes both the categories of motion can be observed in the same phenomenon depending on the
observer’s point of view. The waves in the sea appear to us to move towards the beach but the water moves
up and down about a mean position. When someone displaces a stretched string, the displacement pulse trav-
els from one end to the other end of the string but the material of the string vibrates about a mean position
without getting itself translated forward. The periodic motion in which the concerned body moves in a
straight line is known as simple harmonic motion.

1.2 RELATION OF SIMPLE HARMONIC MOTION WITH CIRCULAR
MOTION

Simple harmonic motion (i.e., oscillation) is a special case of circular motion. To understand this relationship,
let us discuss this with the help of a diagram. Figure 1.1 shows that PAB is a circle with its centre at C. Let
us assume that P is a moving point on the circumference of the circle PAB. At time ¢ = 0, it was at the point
O and it has taken ¢ units of time to reach the position P. So, the angle made by it with the line CO is 0 = wt
where o is the uniform angular velocity of the particle. Let us drop a perpendicular PM from the point P to
the diameter YY" of the circle. So, the point M also will be a moving point. While P will make an angle of 27
radian (0 = 360°), the point M will make a complete oscillation. That is, when P will start moving from O
towards the point P, M will start moving from C towards the point M. M will make a complete oscillation by
moving from C to Y, then from Y to ¥”and lastly from Y”to C during the time when P will make one complete
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Fig. 1.1 Graph of simple harmonic oscillation along with its reference circle.

revolution on the circumference of the said circle by making an angular displacement of 8= 2. If one plots a
graph of y against 7, then one will get the graph OP’DEF'. The circle along which the point P moves is called
the reference circle. From Fig. 1.1 we can write,

or, y=asin 0 .(1.1)

4

Equation (1.1) represents the oscillation (i.e., vibration) of the moving particle M on the straight path YCY
while the other moving particle P circulates on the circumference of the circle OPABRO.

Now if we consider M as our simple harmonic oscillator, we can consider P as the reference point which
circulates uniformly on the reference circle with an angular velocity @. If P remains at R instead of O, at ¢
= 0, then the reference point P will start moving from the point R instead of the point O. In that case we can
represent the motion of M by the following equation

y =asin (0- ) ..(1.2)

So Eq. (1.2) represents the generalized equation of a simple harmonic oscillator. If now, we put 0 = ¢,

then we can write Eq. (1.2) as
y =a sin (ot — ) ..(1.3)

CM (=y) is called the displacement of the oscillator M, i.e., the vibrating particle. The displacement of
a vibrating particle at any instant of time can be defined as its distance from the mean position of rest. In
this case, C is the position of rest of the oscillating particle M. The maximum displacement of a vibrating
particle is called its amplitude of vibration.

The instantaneous displacement y is given by,
y=asin (60— 6)
or, y=asin (wt-9) ..(1.3)
where § is the initial phase of the oscillator and a is the amplitude
Ymax = @
The rate of change of displacement is called the velocity of the vibrating (i.e., oscillating) particle.

d
-. velocity, U= 7); =a o cos (ot — 0) (1.9

The rate of change of velocity of an oscillating particle is called acceleration.
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.. the acceleration is given by

_d. . _d
f_E(U)_d »)

P
=—aw’ sin (0t - 8)
or, f=—aw’ sin (ot - 6) (1.5

where f represents the acceleration of the oscillating particle.
Now using Eq. (1.3) we can write the Eq. (1.5) as follows:
f=—w*y ..(1.6)
2

d d
At the extreme positions, where y is maximum, the velocity v = % = 0 and the acceleration f= —z is maxi-
dt

mum and it is directed towards the mean position. The returning force induces a negative velocity at the point
of return. When the displacement y becomes zero, the velocity v becomes maximum and when the velocity v
becomes zero, the acceleration becomes maximum in magnitude. The returning force again induces a veloc-
ity in the opposite direction. It becomes maximum when the displacement again becomes zero. The particle
overshots the mean position due to its velocity. The process repeats itself periodically. Thus, the system
vibrates. And in this way, displacement y, velocity v and acceleration f continuously keep on changing with
respect to time.

Thus, the velocity of the vibrating particle becomes maximum (either in the direction of CY or that of
CY’) at the mean position of rest and it becomes zero at the extreme positions of vibration. The acceleration
of the particle becomes zero at the mean position of rest and it becomes maximum at the extreme positions
of vibration. And the acceleration is always directed towards the mean position of rest and it is also directly
proportional to the displacement of the vibrating particle. So, we can define simple harmonic motion as
follows: It is such a motion where the acceleration is always directed towards a fixed point (i.e., mean
position of rest) and is proportional to the displacement of the oscillating particle.

Again, acceleration f'is given by

p
== oy
dt
acceleration = — (angular velocity)” x displacement
acceleration
displacement

. acceleration
or, angular velocity = Teolacement
isplacemen

It implies that,

.. _ |acceleration
angular velocity = M

Symbolically, we can write,

or, angular Velocity2 = (considering the magnitude only)

w=2nv= \/J; where v is the frequency of oscillation.

or, 27% = \/];, where T is the time period of vibration

y
or, T=27r\/:
f
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or, T=2my

where yis the displacement per unit acceleration.

1.3 DIFFERENTIAL EQUATION OF SIMPLE HARMONIC MOTION

Let us consider an oscillating particle which is executing simple harmonic motion. The general equation of
its displacement is given by

y =asin (of + 6) ..(1.3)
where y is the displacement and a is the amplitude and 8 is the phase (or epoch) of the oscillating particle.
Now, differentiating Eq. (1.3) with respect to time ¢, we get

d
%:awcos(wt+5)

d
Here ?); (= v) represents the velocity of the particle.

d
Again, differentiating 7); with respect to time ¢, we get

d2
&y =— aw’ sin (ot + )
dr
But, we know that y = a sin (wf + 8)
dzy 2
_2 =— y
dt
d2
or, Y w0ty =0 (17
-
d
The second derivative —z represents the acceleration of the oscillating particle. Equation (1.7) represents
dt

the differential equation of simple harmonic motion.

In any phenomenon, where an equation similar to Eq. (1.7) is obtained, the related body executes simple
harmonic motion (SHM). The general solution of Eq. (1.7) is given by

y = a sin (ot + 0)
One can also calculate the time period of oscillation of Eq. (1.7),

, d*yldr’
Numerically, o= ¥
or o = acceleration
’ ~ \displacement
_2m displacement
= o~ 27 acceleration
1.4 VARIOUS CHARACTERISTICS OF SHM

When one particle executes simple harmonic motion, one can observe the following characteristics in its
motion:
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(a) The motion is periodic as well as oscillatory.

(b) The restoring force acting on the particle (and hence the acceleration) is directly proportional to the
displacement of the particle and directs oppositely to the displacement measured from the mean
position.

(c) The acceleration of the oscillating particle is always directed towards the mean position of its path.

(d) The motion of the simple harmonic oscillator (SHO) always takes place in a straight line.

1.5 SOLUTION OF THE DIFFERENTIAL EQUATION OF SHM

Let y = ae™. Now differentiating y with respect to ¢, we get
dy

= ae”
2
or, dy = o’ (ae™) = oy
dr*
Now, substituting this value in Eq. (1.7), we get
Oczy + wa =0
or, of =— o*
or, o=+iw wherei=v-1
So, y=ae™ or y=ae'

Hence, the general solution is given by
y=a, e +a,e® ..(1.8)
where a, and a, are arbitrary constants.
y =a, (cos @t + i sin @f) + a, (cos wt — i sin @f)

[ ¢%=cos O+isin Oand ¢ %= cos i sin 0]
or, y=(a, +a,) cos ot +i(a, —a,) sin wt
or, y =acos ot + b sin ot ...(1.9)
where a = (a, + a,) and b = i(a; — a,)
Let us now replace a and b by g and d where a = g cos §and b = ¢ sin §
=N+ P’
and o= tan_l( g)
Now, putting these values of a and b in Eq. (1.9), we get
y =¢q cos d cos Wt + g sin sin w¢
or, y =g cos (ot — 0) ..(1.10)
Hence, Eq. (1.10) represents the general solution of the differential equation
2
ﬂ +wy=0
dr*
The maximum value of the displacement y is given by
Ymax =4

q is known as amplitude of the simple harmonic motion.
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If T be the period of oscillation, the same displacement repeats after an interval of time 7, i.e.,

Ye=Vi+T
or, acos (wt—06)=acos {w (t+7T)—- 0}
or, a cos (ot — 6) = a cos {(wt— 0) + T}
or, cos (@t — 06) = cos {(wt - 6) + wT}
Hence, T =2r
T=%t .(1.10)

or, W= 2771- [ is angular velocity]

The frequency of SHM is given by

1 o
=—=— (111
v T 2rm ( )
Att=0,y=acos d
— o (2
6 = cos (5)

The variable 6 is known as the initial phase or epoch.

1.6 VELOCITY AND ACCELERATION OF THE PARTICLE EXECUTING
SHO

The displacement (y) of a particle, which executes simple harmonic motion, at any time ¢ is given by the fol-

lowing generalized equation,
y =asin (of + 6)
... the velocity of the particle, v is given by
v=ﬂ=aa)cos(a)t+b) .(1.12)
dt
When the particle reaches its mean position, the phase =0

v =aw cos (of) = + aw \1 - sin® ot

2
y
or, v=xaw\l- =
a
— 2 2 —
v=xw\a -y~ where ® =2nv
When the particle is at its mean position, we get y = 0, so in this position the particle velocity is maximum

and it is given by

Upax = £ A
And at either of the extreme positions (i.e., y = + a), velocity becomes minimum and it is given by
Omin = 0

From Egq. (1.12), we get
v =aw cos (ot + 6)
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.. the acceleration of the particle is given by
f=%=—aw2 sin (w1 + 8) .(1.13)

When the particle is at its mean position, we get 6= 0, so in this position the acceleration of the particle is
given by
f=- ao’ sin ot
or, f=—o’ [+t=0and §=0=y=asin 1]
So, when the particle is at its extreme position, y = a and the magnitude of the acceleration is given by
foax = a@*  [It is maximum]
And when the particle is at its mean position, y = 0 and the magnitude of the acceleration is given by
Jmin =0 [It is minimum]

1.7 ENERGY OF A PARTICLE EXECUTING SHM AND LAW OF
CONSERVATION OF ENERGY

When a particle executes simple harmonic motion, it possesses both kinds of mechanical energy, namely
potential and kinetic energy at any instant of time.

Kinetic Energy (E,) In case of a particle of mass m and velocity v which is executing SHM, the kinetic
energy is given by

1 -
E ==
Now, y =asin (of + 6)

d 2
U= y=awcos(wt+b)=iaa) l—y—

@ >
or, v=%0\a’ -y
E, =%mw2 @ - ) (1.14)

Potential Energy (Ep) In case of a particle of mass m and velocity v which is executing SHM, the poten-
tial energy is given by

y
E, =] (ma’y) dy =%mw2y2 (1.15)

Because the potential energy of an oscillating particle at any instant of time can be calculated from the
total amount of work done in overcoming the effect of the restoring force, in this case the restoring force is
given by,

F =—ma?®y
When the particle comes to an extreme point, its kinetic and potential energies become
Ei = Ejmin) = 0
and E,=E, iy = % mo® a* [ in this case, y = a]

Similarly, when it is at the mean position, its kinetic and potential energies are given by
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1 2 2
Ek = Ek(max) =;mwa

2
and E, =E,in=0
So, the kinetic energy is maximum when the potential energy is minimum and vice versa.
Total Energy At any instant of time, the total energy of the oscillating particle is given by
E=E +E,
or, E = % mo?* (a* - y2) + % mcozy2

or, E=tmie’ =22 ma® V' ..(1.16) E
2 E=E+E,

NG
»

where @ =2nv

E = constant.

Hence, we can conclude that in case
of simple harmonic oscillation the total
energy is conserved. And it is propor-
tional to the square of the amplitude of E,
oscillation. The energy distribution of
a simple harmonic oscillator has been -a @) +a y

s_h ownin Elg. 1.2. Both kinetic and pOt.en- Fig. 1.2 The energy distribution curve of an SHO. y is
tl.al energies have been plotted against displacement, E, is potential energy and E, is the
displacement. kinetic energy.

»
»

1.8 SUPERPOSITION OF WAVES

It is an experimental fact that two or more waves can traverse through the same space independent of each
other. For this reason, the displacement of any particle at a given instant of time is simply the algebraic sum
of the individual displacements, this process of vector addition of the displacement of a particle is known as
superposition.

Principle of Superposition 1If the wave equations governing the wave motions are linear, the
displacement of any particle, at a particular instant of time, is simply the algebraic sum of the individual

displacements due to the different waves.

1.8.1 Superposition of Two Collinear SHMs of Frequency v

Let two collinear simple harmonic motions be represented by the following two equations:
Yy, =a, cos (0t — @)
and Y, = a, cos (0t — ¢,)
where y; and y, are instantaneous displacements, a; and a, are the amplitudes, the @ (= 27v) is, the angular
velocity and ¢, and ¢, are the phases. The resultant amplitude at any instant of time is given by

Y=yt
or, y =a, cos (0t — ¢;) + a, cos (0t — ¢,)
or, Yy =a, cos wtcos ¢, + a; sin @t sin ¢, + a, sin Wt cos P, + a, sin Wt sin @,

or, y =(a, cos ¢; + a, cos ¢,) cos wt + (a, sin ¢, + a, sin ¢,) sin Wt
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Now, putting A cos ¢ =a; cos @; + a, cos @,
and A sin ¢ = a; sin @; + a, sin ¢,
where A and ¢ are two constants and given by

A= \/(a1 cos ¢, + a, cos 452)2 + (a, sin ¢; + a, sin ¢2)2

or, A =va>+a,> + 2a, a,cos (¢, — ¢,)

and 6= tan” a, sing, + a, sin ¢,

a, cos ¢ + a, cos ¢,
o y=A cos ¢ cos @t + A sin ¢ sin ot
or, y=Acos (wt-¢) ..(1.17)
Thus, it is observed that the resultant motion is also a simple harmonic motion having the same component
motions
Special Cases
(a) If ¢ =¢p,thenA=a, +a,

(b) 1f¢1~¢2=§thenA= @+ d

(c) f¢g,~¢,=mthenA=a, ~a,
(d) If ¢, ~ ¢, =mand a;, = a, then A =0, i.e., the two SHMs destroy each other.
If instead of two SHMs, there remain several motions of different amplitudes and phases but of the same

time period T (= %t ) or frequency, v (= %) then the resultant motion can be obtained in the same process.

In such cases, we will get

Y=yt tyzt..ty,
or, y =a, cos (0t — @) + a, cos (Wt — @,) + az cos (Bt — ;) + ... + a, cos (0t —¢,)
or, y =(a; cos ¢, + a, sin @, + a5 cos ¢; + ... + a, cos ¢,) cos Wt
+ (a, sin ¢, + a, sin @, sin @; + ... + g, sin @,) sin Wt
or, y=Acos(wt—¢) ..(1.17)

where A= \j(z a; cos @;
i=1

2 (7 2
+ (Z a; sin (b,-)
i=1

n

Y a;sin ¢,
1| i=1

n

> a; cos ¢,
i=1

and ¢ =tan

1.8.2 Superposition of Two Mutually Perpendicular SHMs of Frequency v
Let us consider two SHMs of amplitudes a, and a, having same angular velocity @ (= 27 V) which act respec-
tively along x- and y-axes.
Then their amplitudes can be represented by
x =a, cos (Wt — @)
and y = a, cos (0t — ¢,)
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Now, we can write

12 = cos (0t — ¢,)

a
=cos {01 - ) + (¢, — )}
or, a% =cos (ot — ¢;) cos (¢, — ¢,) —sin (wt — ¢,) sin (¢, — ¢,)
y 2\
or, a—2=ailcos (¢, — 0, — (1—%) sin (¢ — ¢,)
1
Yy X )\ .
or, =g Cos (9 —¢y) =—4| 1 —=|sin (¢, - ¢,)
a 1 a
Squaring both sides of the equation, we get
2 2 2 2
Y Xy .
—+ x—zcos2 (@1 =) —g—-cos (9, — ¢y =1 ~ % | sin® (¢, - )
a  a 12 021
)72 2xy x2 2 .2 a2
or, =T a a, 8 (@ — @) + = {cos™ (@ — @) +sin” (¢ — @)} =sin” (@) — @)
a a
Yo 2xy 2
or, =~ ara; s (91— 9y + = =sin" (¢, — By
a a
y xy o
or, —-2 cos o+ — =sin" @ ...(1.18)
where O=0¢,—-0,

Equation (1.18) is a general equation of an ellipse bounded within a rectangle with sides 2a; and 2a,. Thus
the resultant motion (having combined two mutually perpendicular SHMs) is represented by an ellipse. Let
us now consider the special cases of this generalized motion.
Case1 If¢,—¢,=0o0r $=0thensin ¢=0andcos ¢=1

*. Eq. (1.18) gets reduced to

2
ESUR AP
2 2 a,a
1 % 172 5
2a
or x_Jy 2
’ a, a,) ~
a
or, =—x
Y=14,
This represents a straight line passing through the origin &
L a Fig. 1.3 The resultant vibration of two

. . . . - 2 .
and making an angle of inclination & = tan - to the x-axis
1

mutually perpendicular vibrations.
It takes place in a straight line
which is inclined at an angle 6 with

the x-axis and 6 < g when ¢ = 0.

(Fig. 1.3).
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Case2 If¢,—¢,=m2or¢= g, then sin ¢ = 1 and
cos ¢ =0.
Equation (1.18) reduces to

2
2.
2 2

ap a

This equation represents an ellipse which is sym-
metrical about the two axes and a, and a, are the semi-
axes (Fig. 1.4).

Case 3 If ¢, — ¢, = mor ¢ = wthen sin ¢ = 0 and Fig.14 Theresultant of two mutually perpendicular

cos p=-1 vibrations represents an ellipse.
. Eq. (1.18) gets reduced to
2 2
y_2 +2 axiz + x_2 =0
a, 172 a
x Y\
or, (Cl_1 + a—2 =0
a
or, y=- a—l

This equation represents a straight line which passes through the origin making an angle of inclination

a
&=tan™! (— a—?) to the x-axis (Fig. 1.5).

Case4 1f ¢, — ¢,=m/2 or ¢ = /2 and a, = a, (=a) (say) then sin ¢ = 1 and cos ¢ = 0.
In this case, Eq. (1.18) gets reduced to
2y =d

This equation represents a circle which is symetrical about the two axes with a as radius (Fig. 1.6).

\ 2a, \\ / 2a
- 20 | e
Fig. 1.5 The resultant of two mutually perpendicular Fig. 1.6 The resultant of two mutually
vibrations represents a straight line which perpendicular vibrations represents
is inclined at an angle 6 where 6 > 7_2r when a circle when ¢ = T and ay = ay.

2
o=
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1.9 DERIVATION OF THE EQUATION OF MOTION FROM THE LAW OF
CONSERVATION OF ENERGY

The total (mechanical) energy of a simple harmonic oscillator is given by
E:%mvz+%mw2y2 (1.19)

where E is the constant of motion. Now getting differentiated on both sides of Eq. (1.19) with respect to time,
we get

mo % + mary Fy =0
or, mo (%+ a)zy) =0
48] e

or, Z—Z; +wy=0 ..(1.20)

Equation (1.20) is the same differential equation as Eq. (1.7).

1.10 TWOVIBRATIONS IN A PLANE (OF COMMENSURATE FREQUENCIES)
ACTING AT RIGHT ANGLES TO EACH OTHER

Case 1 If the frequencies of the two vibrations be of the ratio 1:2 with initial phase difference ¢, then we
can represent the two vibrations by the following two equations:

X =a, cos (wt)
and Yy =a,cos Cwt + ¢§)
Now, we can write

a% = cos (2 w1) cos ¢ —sin (2 @1) sin ¢

or, %:(2cos2(ot—1)cos¢—2sinwtcoswtsin¢
2
Y X ) ( xz) X .

or, —=(2=-1]cos¢p—-241—-—=]|-sin ¢
a5 @il

y (242 2\ x o
, ——|=-1 =-241-=]|+
o, 4 (al2 )cosq) ( alz)alsmq)

Now, having squared both sides of the equation, we get

2 2 2 2 2\ 2
y—z—ZaL 2_x2_1 cos @ + zi—l cos’ p=4 1_x_2 x—zsin2
@ 2\ a ‘121 ap] a
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I, | =-= -1
or, ol azcosq)

a3 (Y
ap \a

+(a12+c0s ¢)2=0 .(1.21)

The above equation gives the general equa- |
tion of the resultant motion for any phase dif-
ference and amplitudes. If ¢ = 0, Eq. (1.21) gets ]

reduced to D N A 2a,
2% Y . |
———-1| =0 ..(1.22) |
( ai ® ) |
Equation (1.22) represents two coincident 28
parabolas (Fig. 1.7). !
_T Fig. 1.7 Resultant of two mutually perpendicular vibrations
Ifo= 2’ Eq. (1.21) gets reduced to with frequency ratio = 1 : 2 and phase difference
2 _ -
452 [ 2 y ¢ = 0 represents coincident parabolas.
—|=-1]+==0 ..(1.23)
@i (af ) @

Equation (1.23) is a 4th degree equation
and represents a curve which has two loops as
has been shown in Fig. 1.8.

Case 2 If the frequencies of two vibrations
be of the ratio 1 : 3 with initial phase differ-
ence ¢ then we can represent the two vibra-
tions by the following two equations:

x =a, cos (wt)
and 'y =aj, cos 30t + ) Fig. 1.8 Resultant of two mutually perpendicular vibrations
Now, we can write
with frequency ratio 1: 2 and phase difference ¢ = 7—;

y
(1_2 = cos 3wt +¢) represents a two loop curve.

or, Y cos 3 wt cos ¢ —sin 3w? sin ¢

a
or, %:(4cos3 o1 —3 cos o1) cos ¢— (3 sin wr—4 sin® 1) sin ¢
Y 457 3x 2\3 2451 .
or, —=[—-==|cos¢—{3[1-=P-4[l-=isin¢
“ (a? “1) ( af) aj
y (4 3x X % 4x° .
or, a—Z—(?—a—l)cosq)—( ——2) ——1]sin¢ - (1.24)
1 a; a

Now, transposing and squaring, we get

y [4x 3x : K (4 S
a_z_(_3_a_1)cos¢] =(1——2 —2—1 sin” ¢

aj aj

If ¢ =0, then Eq. (1.24) gets reduced to
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..(1.25)

Equation (1.25) represents two coincident cubic curves (Fig. 1.9).

Ifo= g, Eq. (1.24) gets reduced to

..(1.26)

Y

Fig. 1.9 Resultant of two

mutually Fig. 1.10

perpendicular  vibrations  with
frequency ratio 1:3 and phase
difference ¢ = 0 represent two

coincident cubic curves.

2a, >}

Resultant of two mutually perpendicular
vibrations with frequency ratio 1:3 and

phase difference ¢ = 7—; represents a curve of

three loops.

Equation (1.26) is a 6th degree equation and it gives a curve of three loops (Fig. 1.10).

If one changes the phase difference gradually, then the shape of the loop gradually changes.

For a ratio of frequencies of 1: n, the curve will have n loops.

1.10.1 Lissajous Figures

Definition Lissajous figures are those curves which are generated by superimposing two simple harmonic
motion acting at right angles to each other.

The constituent simple harmonic motions may have different time periods, different amplitudes and also
different initial phases. The size (or dimension) of the resultant curve depends on their amplitudes but the

shape of the curve depends on
the ratio of their time periods
and the initial phase differ-
ences. These figures may be
experimentally generated by (a)
Blackburn’s pendulum, (b) opti-
cal method, and (c) cathode ray
oscillograph, etc. The diagram
of an oscillograph is shown in
Fig. 1.11.

Electron
gun

Vertical and )
horizontal Coating

deflection
Fluorescent

screen

jLGlas\i tube
C

Fig. 1.11

Oscillograph
Cathode-ray oscillograph.
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Figures 1.7, 1.8, 1.9, and 1.10 are examples of Lissaious figures.

Uses of Lissajous Figures

(a) Lissajous figures can be used for determination of the ratio of the frequencies of two mutually per-
pendicular superposing vibrations.

(b) They also can be used to determine the unknown frequency of a tuning fork.
(c) The nature and shape of a signal can be known with the help of Lissajous’ figures.
(d) The amplitude of a signal also can be determined with the help of these figures.

Worked-out Examples

Example 1.1 | The displacement of a body of mass 2 g executing simple harmonic motion is indicated by

y =10 sin (7517 t+ 1—7;) cm. Calculate the (a) amplitude, (b) angular velocity, (c) time period, (d) maximum

and minimum velocity and maximum and minimum acceleration, (e) epoch, (f) kinetic energy, and (g) poten-
tial energy. Is its energy conserved?

Sol. The general equation of a simple harmonic oscillator is given
y =asin (ot + ) (D
And in the present case, it is
. (T, T
=10 —t+—ﬂ 2
y=10sin(Fr+ 73 @

Now, comparing egs. (1) and (2), we get
(a) The amplitude, a = 10 cm,

(b) The angular velocity, ® = g rad s~

C e time period, T===or, T=2rx==6s
(¢) The time period, T %’ T=2 i 6

(d) The velocity of the oscillating body at any time is given by v = @ \a” — y*

_ 2 2
Hence, Opmax = |i wNa -y |max

=t wal [fory=0]
ie., Umﬂzaw=10x§=1046ams

Similarly, the minimum velocity is given by v,;, =0 cm s™! [fory = a)

The acceleration at any time ¢ is given by
f=a%
Jinax = aw’ [for y=a]
s (3my
or. fmax 9 3

or, finax = 10.95 cm 572



1.16 Basic Engineering Physics

And the minimum acceleration f, ;, is given by
foin =0cms™ [fory=0]
(e) The phase of the oscillating body is given by,
¢ =(wt+9)

Now, we know that epoch is the initial phase at t =0

.. from Eq. (2), we get 6=+ %

(f) The kinetic energy is given by
E, = % me’ (a2 —y2)
So, the value of kinetic energy will vary with y.
(g) The potential energy is given by
1 2
Ep = 5 m(l)2 y
.. the value of the potential energy varies as yz.
At any time, the total energy is given by

E=E,+E

or, E =%ma)2y2 +%ma)2 (@ =y%

or, E = % ma)zy2 + % ma’ta® — % ma)zy2
E = % mo'a’

which is independent of the variables 7 and y.
So, it is a constant w.r.t. time. Hence, the total energy of the oscillator is conserved.

Example 1.2 | A particle is executing SHM. At an instant of time its displacement is 12 cm, velocity is
5 cm s and when its displacement is 5 cm, the velocity is 12 cm s™. Calculate its (i) amplitude, (ii) fre-
quency, and (iii) time period.
Sol. The velocity of a particle executing SHM is given by
dy 22
V=—= —_
dt a7y
In the first case,
'01 =0 a2 — y%
where v, =5cms ' andy, =12cm

or, 5=wVa* - 144 (1)

In the second case

v, = W\a* -y}

where v,=12cms™,y,=5cm

12 = w\a® - 25 (2)



or,

Simple Harmonic Motion 1.17

Dividing (1) by (2), we get

5 \d®-144

12 a2-25
25 _a’-144
144 4225

.. the amplitude is 13 cm.

Now, substituting the value of a = 13 cm in Eq. (1), we get
5=0V13*- 144

or, 5=w\25 .. w=1rads’!

o 1

The f =—=—
efrequency v=--=-_

The time period is T = % =2rs

Example 1.3 |  Show that for a particle executing SHM, its velocity at any instant of time is given by

Sol.

dy

== o\ -
The displacement of a particle executing SHM is given by
y=asin (0t + ¢) (1)
The velocity at any instant of time is given by,
dy
a =awcos (0t + @) ..(2)

dy —
or, E:aw\jl—sm (ot + ¢)

d

or, % = 0\ — (a sin (07 + 9))?
d

or, 2 w\a¥ =y [byEq. (1)]

dr

Example 1.4] The motion of a particle executing SHM is given by y = a sin w¢. If it has a speed # when the

displacement is y,, and a speed v when the displacement is y,, show that the amplitude of the motion is

Sol.

o= Z’2)’21 - “2)’5 %
v —u?
We have, y = a sin ot
dy, 72
=—1_ oVd®- (1
u=— a =y 1
d
and % =% =0 az—y§ ..(2)

Now, squaring both the equations, and dividing, we have
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2 2
u2_a—y1

v d-y;
or, w'a® —uty; = v'd® - vy,?
or, a* [ — 0] =u2y§—v2yf
2.2 22
2 u yz‘”)’l
or, =
u —v
2.2 2 2]1
UYL Uy,
or, a=|———F5—

Example 1.5| Show that for a particle executing SHM, the instantaneous velocity is @ \a* — y* and the

instantaneous acceleration is — a)zy where @ is the angular frequency, a is the amplitude and y is the instan-
taneous displacement.

Sol. The displacement of a particle executing SHM is given by

y=acos (wt+ ) (D
The instantaneous velocity is
d
U:%:—wasin(wmb) (2

From Eq. (1)

cos(a)t+é)=%

2
sin (@t + 8) =\1 - cos® (wt + ) = l—y—2
a

2
or, —awsin(a)t+6)=—aw\l—y—2
a

aw [ 2
or, v=——>-o(Na -y°) [byEq.(2)]
Jaz
v=ia)‘\a2—y2)

Now, differentiating Eq. (2), we get

f:%:—wzacos(wt+b)
or, f=-a’y [byEq. ()]

Example 1.6 | Calculate the time period of the liquid column of length [ in a U-tube, if it is depressed in

one arm by x, d is the density of the liquid and A is the cross-sectional area of the arm of the U-tube.
[WBUT 2007]
Sol. The U-tube as has been described in the question has been shown in Fig. 1.12.
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The liquid column of a liquid with density d has been shown in the diagram. The height of the liquid
column in each arm is equal to . The liquid column has been depressed in the left arm through a
depth of x. So, in the right arm it has risen through a height of x. So the difference in the levels of the
two arms is 2x. The liquid column of length 2x in the right arm will try to bring back the two levels
to their initial values. The force acting in this process will be

F =(2x) Adg
This force (F) acts on the liquid of both columns with length /.

2
(21 Ad) % —_ (20 Adg [here, m = 21 Ad] — —
t
or dx_ %8
’ dr l

X
or, ’x'+(§)x=0 l =

[

¥+ wx=0 [where a)2=§]

This is the equation of a simple harmonic oscillator. Fig. 112 A U-tube with vibrating liquid
.. its time-period T is given column.

_2m l
T—E—Zﬂ"\/;

Example 1.7] 9 kg of mercury is poured into a glass U-tube with a uniform internal diameter of 1.2 cm.

It oscillates freely about its equilibrium position. Calculate the time period of oscillation of the mercury
column.

Sol. Let [ be the height of the mercury column in each arm and m be the mass of liquid of the two col-
umns. Then

m =2l Ad where A is the area of crossection and d is the density

="
2Ad
The mass m =9 kg, d =13.6 x 10° kg m™
2
A=3.14x% (1—22) cem? =1.1304 x 10 m?

9
| =
2% (1.1304 x 107 x (13.6 x 10%)

.. the time period of oscillation T is given by

oL
T_27r\j;

or, T=2nx

=2927m

2.927
9.8

T=343s
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Example 1.8 | Two particles execute SHM with same amplitude and frequency along two parallel straight
lines. They pass one another when going in opposite directions. Each time their displacement is half of their

amplitude. What is the phase difference between them?
Sol. Let the equation of motions of the two particles be as follows:
y =a sin 0t
and y =asin (ot + ¢)

when y= % for the first particle, we get

% =asin ot [from Eq. (1)]
1

= sin Wt ==

[\

Again, when y = % for the second particle, we get [from Eq. (2)]

%:asin (0t + ¢)
or, % = sin @t cos ¢ + cos Wt sin @
or, 1_1 cos @ +4 1—l sin ¢ [by Eq. (3)]
2 2 4
or, 1 =cos ¢+ 3 sin ¢
or, 1 —cos ¢ =3 sin ¢
or, 1—200s¢+cos2¢:3sin2¢
or, 1—2005¢+0052¢=3—30052¢
or, 4cos2¢—2cos¢—2=0
or, 2cos2¢—cos¢—1:0
or, (2cos ¢+ 1)(cos p—1)=0
Now, (cos ¢ — 1) = 0 will give the value of ¢ which equals to zero. So, this value of ¢ cannot be
accepted as the particles will have the same phase.
Hence, (2cosg+1)=0
or, cos ¢ =— % =cos 120°

Therefore, the phase difference between the two oscillators is 120 .

Example 1.9 The displacement of a moving particle at any time ¢ is given by

y =asin ot + b cos wt
Show that the motion is simple harmonic.

Sol. The equation representing the displacement of the particle is given by
y =asin ot + b cos ot
dy .
or, — =am cos Wt —bwsin wt

dt
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d2y
dar*
dzy 2 .

—5 =- " (asin 0t +b cos 01
dr

dzy 2

—=—w" [byEq.(1)]
dr

or, =—aw? sin ®t - b’ cos 01

or,

d2
or, —Z + wzy =0 ..(2)
dt
Equation (2) is the standard differential equation of a simple harmonic oscillator. Hence, the given
equation [i.e., Eq. (1)] represents a simple harmonic motion.

Example 1.10] Calculate the displacement to amplitude ratio for a SHM when the kinetic energy is 90%

of the total energy.
Sol. Let m be the mass of the oscillator, a be the amplitude and @ be the angular frequency.
So, the total energy of the oscillator is given by
1 2 2
E=-mo
5 mwa

Let y, be the displacement when its kinetic energy E; is 90% of the total energy. Now, the potential
energy is given by

Epzima)zyz1
lma)zy2 2
E_2777N 010
= o=
E %mwzaz a¢ 100

y:a=~0.1=0.316

Review Exercises

Part 1: Multiple Choice Questions

1. The ST unit of the force constant of a spring is given by

(a) Nm (b) Nm™ (c) Nm™ (d N
2. Which of the following is not essential for simple harmonic motion?
(a) Inertia (b) Gravity (c) Restoring force (d) Elasticity
3. The velocity of a particle executing simple harmonic motion is minimum at a point where displace-
ment is
(a) zero (b) maximum

(c) midway between zero and maximum (d) None of these
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11.

12.

13.
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. If two SHMs of the same amplitude, time period and phase act at right angles to each other, then the

resultant vibration is
(a) elliptical (b) circular (c) straight line (d) parabolic

. If the velocity of a particle executing SHM is maximum, then displacement will be

(a) maximum (b) minimum (c) less than zero (d) greater than zero

The potential energy of a particle executing SHM of amplitude a is equal to its kinetic energy when
displacement of the particle is

a a a
(@) xa (b) 16 (c) 15 (d) *Z

. For a particle executing SHM, the phase difference between displacement and velocity is

(a & (b) 0 (c) g (d) _75[

Which one of the following statements is true?
(a) All periodic motion is simple harmonic.
(b) All simple harmonic motions are periodic.
(c) Potential energy is proportional to displacement.
(d) All of the above statements are incorrect.

. Which one of the following relations is not true for a SHM?

(a) Potential energy is always equal to the kinetic energy

b T=2 Displacment
=t Acceleration
iy B
) —=+—y=0
a ™M

(d) none of these
2

. d .
The equation _Z =—w? represents (where @ is a constant)
dt

(a) projectile motion (b) motion of a freely falling body
(c) simple harmonic motion (d) None of these
Production of Lissajous figures can be shown through a device known as
(a) Geiger—Muller counter (b) traveling microscope
(c) cathode ray oscilloscope (d) periscope

The differential equation of a simple harmonic motion of a particle of mass m with angular frequency

 can be expressed as

d d md’ md’

@ Z-0y=0 ) Z+oy=0 © F=0 (@
dr’ dr’ dt dr’

The total mechanical energy of a particle (executing SHM) of mass m, angular frequency @ and
amplitude of vibration a is given by

+0’y=0

[ »” Lot Lo
(a) 2mw (b) m (c) 2ma)a (d) 2ma
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To have a circular Lissajous figure, the phase difference (8) and the amplitudes (a and b) of two
superposing simple harmonic motions are respectively

(a) 0=0,a#b (b) 8=0,a=b (c) d=m/2,a=b (d) d=m2,a#b
The time period of a particle of mass m (executing SHM) under, a force where the force per unit
displacement is k can be expressed as

(a) T=2m \/% (b) T= % \/% (c) T=2mn \/% (d) None of these

In any damped oscillation the resisting force is proportional to
(a) displacement (b) acceleration (c) velocity (d) square of velocity
The general solution of the differential equation of simple harmonic motion is given by
(a) y=asin ot (b) y=cos ot (¢) y=acosd (d) y=asin (ot +9)
The sound wave is
(a) an electromagnetic wave (b) an elastic wave
(c) aradio wave (d) None of these
The time period of a simple pendulum of infinite length is given by

(a) finite (b) zero (c) infinite (d) None of these
d2
If the differential equation of the SHM of a body is represented by —z + ®%y = 0 then its natural
frequency is given by dr

2n w w
(@ o ®) &% © 5 @ 5
If the restoring force constant of a body is 98 Nm™', then the restoring force of the body for a dis-
placement of 10 cm is
(a) 98N (b) 9.8 N (c) 0.98 N (d) None of these

[Ans. 1. (c), 2. (b), 3. (c), 4. (b), 5. (b), 6. (b), 7, (c), 8. (b), 9. (a), 10.(c), 11. (¢), 12. (b), 13. (c), 14.
(c), 15. (c), 16. (c), 17. (d), 18. (b), 19. (c), 20. (c), 21 (b) ]

Short Questions with Answers

1.
Ans.

Ans.

Ans.

Give four examples of non-oscillatory periodic motion.
The following are the examples of non-oscillatory periodic motion:

(a) The motion of the earth around the sun, (b) the motion the moon around the earth, (c) the motion
of two twin stars, and (d) the whirling of a stone tied to a string.

On what factors does the shape of Lissajous’ figures depend?
The shape of Lissajous’ figures depends on the following factors:
(a) The ratio of the frequencies (or periods)
(b) The amplitudes of the oscillations
(c) The relative phase of the component motions
Why is a loaded bus more comfortable than an empty bus?
For a spring-mass system, the frequency of the vibrating mass is given by
1 .|k

=57\
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Ans.

Ans.

Ans.

Ans.
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where v is the frequency of vibration, k is the spring constant and m is the mass. One can see from
the equation that the frequency of vibration is inversely proportional to the square root of the mass.
Hence, if the bus is loaded there will be less vibrations and it will be more comfortable to its riders.

Is a transformer a source of simple harmonic motion?

A transformer simply lowers the voltage of the applied ac supply and the secondary also generates
an alternating current which reverses its direction according to simple harmonic motion. So, we can
consider a transformer as a source of simple harmonic motion.

The potential energy of a particle of mass m is given by % ma)zyz, where @ is a constant. Show

that the particle is executing simple harmonic motion.
In the given problem, the potential energy is given by

V= % ma)zy2
If F be the force acting on the particle then
__ Y
dy
d ( 1 >
F =——\= (,()2 = — a)2
or, dy \2 ma-y ) mao’y
Hence, the acceleration of the particle is given by
F
f = m =_ a)zy
or, fec—y (as wis aconstant)

Hence, we can conclude that the motion is simple harmonic.
What is a Lissajous’ figure?

If two simple harmonic motions at right angles to each other are superposed on each other, the path
of the resultant motion is, in general, a closed curve. Such a curve is called a Lissajous’ figure.

Show that for a body executing SHM, the acceleration leads the velocity by 75[ and the displace-
ment by 7.
Let us represent the SHM by the following equation:

y = A sin (ot + ) (D
Then, the velocity is given by

dy
=—=Aw ot +

v ” cos ( o)

or, v =Aa)sin(a)t+¢+§) ..(2)

Now, comparing Eqs. (1) and (2), one can note that velocity leads the displacement by g

Again, the acceleration is given by

_dv_dzy_ .
f_E_d_tz_—szsm(a)t+¢)

or, f=Aw sin (01 + ¢+ 1) ..(3)
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Now, comparing Egs. (2) and (3), one can see that the acceleration of a particle executing SHM leads
the velocity by g From eqs. (1) and (3) it is evident that the acceleration leads the displacement by

TT.
8. What are the dimensions of the force constant of a vibrating spring-mass system?

Ans. The force F on the mass of the spring is F = — kx, where x is the displacement of the center of mass
from the equilibrium position at any time ¢.

.. the dimension of k is given by

[F] [MLT?] 5
kl=—=——=[MT
[kl =1 = IMT

i.e., the dimension of the spring constant k is [k] = [MTZ].

9. A hollow sphere is filled with water and used as a pendulum bob. If water trickles out slowly
through the hole made at the bottom then how will its time period be affected?

Ans. The time period of a simple pendulum with length / is given by the following equation:

P
T—ZE\/;

where g is the acceleration due to gravity at the place of the pendulum. When water trickles out
slowly through the hole made at the bottom of the hollow sphere, the mass of the bob goes down
slowly. Though the time period is independent of the mass m of the pendulum, yet it will vary as I
since due to leaking of water through the hole, the center of mass of the sphere will keep on changing
its positions by varying the effective length. Initially the center of mass will keep on moving down
form the center of the sphere but after some time it will keep on moving up. And after all the water
has trickled away, the center of mass of the bob will lie again at the center of the sphere. So, as long
as some water will remain in the hollow sphere, its time period will keep on changing. But the initial
time period 7; and the final time period 7, will be same (i.e., 7, = T)).

10. How does periodic motion differ from simple harmonic motion?

Ans. Any motion that repeats itself at regular intervals of time on the same path is called periodic motion.
On the other hand, the simple harmonic motion is a periodic motion in which the particle traces the
same path twice in one period. The locus of the moving particle may or may not be a straight line in
case of a periodic motion. But in case of simple harmonic motion, the locus of the moving particle is
always a straight line. In case of a simple harmonic motion, the acceleration of the particle is directly
proportionnal to the displacement. But in case of a non-simple-harmonic periodic motion, the accel-
eration is never proportional to the displacement.

Part 2: Descriptive Questions
1. What are the characteristics of SHM? Define time period, frequency, amplitude and phase of a simple
harmonic oscillator. Prove the principle of conservation of energy in this case. [WBUT 2001]

2. A cubical box of L cm side and density p is floating on water of density d (p < d). The block is
slightly depressed and released. Show that it will execute simple harmonic oscillation. Determine its
frequency of oscillation. [WBUT 2001]

3. Establish the differential equation of simple harmonic motion and solve it. [WBUT 2004]
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4. Prove that the motion of a simple pendulum (with small oscillation) is a simple harmonic motion.
Hence, find the expression of its period of oscillation.

5. Prove that the horizonal motion of a spring-mass system on a frictionless surface is simple harmonic.
Hence find the expression for its time period and frequency.

6. Prove that the vertical oscillation of a loaded spring is simple harmonic. And hence find an expres-
sion for its time period of oscillation.

7. Two SHMs with the same time period of oscillation differing in phase and amplitude are acting in the
same direction on a particle. Deduce expression for the amplitude and phase of the resulting motion.
Discuss the special cases while the phase difference is 0, 7/2, and 7 respectively.

8. What is simple harmonic motion? Show that for a simple harmonic oscillator, the average kinetic
energy equals the average potential energy.

9. A simple harmonic oscillator is characterized by y = cos @t. Calculate the displacement at which
kinetic energy is equal to its potential energy.

10. Calculate the resultant of two simple harmonic oscillations at right angles when their periods are in
the ratio of 3:1.

11. Derive the equation of a simple harmonic oscillator form the energy consideration.
12. What oscillates in a simple harmonic electrical oscillator? Can we realize it in practice?

Part 3: Numerical Problems

1. The displacement of a particle executing simple harmonic motion is given by
y = sin kt + cos kt
Find (i) time period, (ii) amplitude of vibration.
2. If y; =4 sin (10f + ¢) and y, = 5 cos (107) be the displacements of two particles at time ¢, then find
the phase difference between the velocity of the particles.
3. Two vibrations at right angles to each other are described by the following two equations:
x =5 cos 3t

y=SCOS(6TL‘t+§)

where x and y are expressed in cm and seconds. Construct the Lissajous’ figures.

4. A particle of 100 g mass is held between two rigid supports by two springs of force constants of
8 N/m and 2 N/m. If the particle is displaced along the directions of the lengths of the springs, calcu-
late the frequency of vibration.

5. A body executing simple harmonic motion has an amplitude of 100 cm and a time period of 3 s.
Calculate the time taken by the body to travel a distance of 5\3 c¢m from its mean position.

6. A particle describes simple harmonic motion in a line 4 cm long. Its velocity, when it passes through
the center of the line, is 16 cm s™'. Find the time period of its oscillation.

7. A point mass m is suspended at the end of a massless wire of length / and cross-sectional area A. If the
Young’s modulus of elasticity of the wire be Y then obtain the frequency of oscillation for the simple
harmonic motion along the vertical line.

8. A particle moves along a straight line with a period of 2.5 seconds and an amplitude of 12 cm. What
is the kinetic energy when it is 2 cm away from its position of equilibrium?



CHAPTER

Free and Damped Vibrations

2.1 FREE VIBRATIONS

Let us consider a simple pendulum whose bob has been suspended from a rigid support with a string and kept
in an evacuated chamber having a transparent window through which the bob can be seen from outside. Let
us also assume that the bob is made of a magnetic substance and the string is inflexible and massless. Now, if
the bob is displaced from its mean position with the help of a magnet from outside and left itself, then it will
keep on oscillating for an indefinite time with a constant amplitude and a constant frequency of vibration.
Such a vibration is called a free vibration.

This type of vibration is, however, an ideal case since in reality we cannot have a massless and inflexible
string. But this idea helps one develop the concept. So, we can define a free vibration as follows: The free or
undamped or natural vibration is the vibration of a body which is completely free from external forces.
In other words— simple harmonic motions which persist indefinitely without loss of energy and reduction in
amplitude are called free or undamped vibrations.

However, observations of the free vibrations of a real physical system reveals that the energy of the
vibrator gradually decreases with respect to time and the vibrator eventually comes to rest. For example, the
amplitude of a simple pendulum vibrating in air decreases with time and it ultimately stops its vibration. The
vibrations of a tuning fork die away with elapsing of time. This happens because of the presence of friction
(or damping) in actual physical systems. And the friction always resists motion. In the previous chapter, for
the motion of simple harmonic oscillators, we have assumed that their vibrations are free or undamped.

2.2 DIFFERENTIAL EQUATION OF FREE OR UNDAMPED VIBRATIONS

If a particle executes SHM freely, then its kinetic energy for a displacement y is given by
()
E,==m|—
"\ |
And at the same instant of time, its potential energy is given by E, = 5 /’cy2 where k is the restoring force
per unit displacement.

So, the total energy (E) at any instant of time is given by
E=E,+E,
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1 (dy )2 1,
or E"zm(dr Tk
As the concerned oscillator is a free one, its total energy will remain constant,
1 dy )2 1, 2_
E_Zm(dt +2ky = constant ..(2.1)
Now, differentiating Eq. (2.1) with respect to time, we get
dzy
m—+ky=0 ...(2.2)
dar*
4y (k
or, E + (m) y= 0
d2
or, L wty=0 .(23)
dr
k
where @’ = (ﬁ)

Equation (2.3) is an ideal equation for a free oscillator. In Chapter 1, we considered this equation only.

2.3 DAMPED VIBRATIONS

In real practice, when one causes a pendulum to vibrate in air, there are always frictional forces acting on the
system and consequently, the energy of the system gets dissipated in each vibration. The amplitude of vibra-
tion decreases continuously with respect to time, and finally the oscillations of the vibrator die away. Such
vibrations are known as free damped vibrations. The dissipated energy appears as heat either within the sys-
tem itself or in the surrounding medium. In case of small oscillations, the dissipative forces due to friction (or
resistance in case of an LCR circuit) are proportional to the velocity of the vibrator in that instant of time.

d
Let 8 7); be the dissipative force due to friction. This term is to be introduced in the equation of a free

simple harmonic oscillator (SHO), i.e., Eq. (2.2). So the differential equation in case of the free-damped
vibrations is given by
2

dy dy
m?J,ﬁEJrky:o (2.4
d’y (ﬁ)dy k
or, -2\l gy (m)y=0
& d
or, L w2y =0 (25)
d[z dt
_ >k
where b—% and o =

So, Eq. (2.5) represents the equation of motion of a damped harmonic oscillator.
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2.4 SOLUTION OF THE EQUATION OF A DAMPED OSCILLATOR AND ITS

ANALYSIS
In order to solve Eq. (2.5), let us put y = ae™ (the trial solution).
d
Then, 7); =aae” = oy
p
or, d—z = o ae™ = Py
t

2

d d
Now, substituting the values of —tf and % in Eq. (2.5), we get
d

oy +2bay + @’y =0
or, o? +2ba+ @ =0

or, a=—b\b -

.. the general solution of Eq. (2.5) can be written as

y =Ale(—b+Vb2—a)2)t+Aze (—b-N\p? — @)t
or, y=el (A Y 4 A, PO (2.6

where A, and A, are two constants whose values can be determined from the initial conditions.
Now, depending upon the relative values of » and @, we can come across the following three cases which
deal with three conditions of motion:

Case 1 When b < o, i.e., the damping force is small, the value of the quantity Vb* — @’ is imaginary and
it can be written as

b2 — @ =iV - b

Hence Eq. (2.6) gets reduced to
. 2 . 2 2
et (Al ez\'wsz »t+A264\iw bt )

y
or, y=e"{(A; +A,) cos Na? — b)) 1 +i (A, — Ay) sin (Ve — b7)1}
or, y=e?{A cos (N’ - b*.1) + B sin (N’ — b2 1)} .(2.7)

where A=A, +A,and B=i (A, -A,)
Now, let us put, A = P cos 8 and B = P sin Oin Eq. (2.7)

where P = (VA? + B%) and 6= tan”' (g)

So, Eq. (2.7) takes the following form:
y=e {Pcos 0cos (N’ - b*) 1+ P sin 6 sin (V& — b*)t}

or, y = Pe" cos N - b*.1 - 0) ...(2.8)
If there is no damping, then b = 0 and Eq. (2.8) reduces to
y=Pcos (wt—0) ...(2.9)

which is the solution for the free and undamped SHM.
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Now, let us apply the initial conditions in order to evaluate the values of the constants.
Lety=y,att=0, so the initial displacement at ¢ = 0 is y,. And the initial velocity at t = 0 is given by

(2] =

dt/i=0
Putting these values of y, and ¢ in Eq. (2.7), we get
=A=A=y,

Now, from Eq. (2.7), by differentiating with respect to ¢, we get
y=—be" {A cos V@ — b - t+Bsinm-t}
b\ ? — b? (A sinm-t+3cosm-t}
or, (3),_o=0,=—bA+Va? b - B

B v, + DA _v0+b-y0
Vo -0 o - b’
y= yocos(\lw —b*q sm(\/a)2 bz)t} ...(2.10)
[ V# b

The initial motion of the oscillator can be started by either of the two ways:

or,

(a) by giving initial displacement or
(b) by striking, i.e., by imparting an initial velocity.
Case (a) Wheny,#0and v, =0, we get

y=y,e [de# ») -1 ﬁnd#—b%% 211

b
Vﬁ-#
Case (b) Wheny,=0and v, #0, we get

—bt

y={glggnwﬁ—#y (2.12)

Now, as A = P cos 6 and B = P sin 6 and we know the values of A and B as given above, we get

PNAT B =4 Lbyo)z
C Wt —p?

V2P + 02 +2by, v,

(@ - b

by, + v,

yDWf—bJ

If the motion is started by imparting initial displacement, then we obtain

y= cos V@ —b* - 1) + ———sin N’ - b* - 1) | [Eq. (2.11)]
o oo (=70 i

b

or, P=

and 0 =tan (
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This equation can be written as

y= (L) Le ™ cos [m r tan! (L)]

Va? — b

..(2.13)
o - b?

Hints: Letb= wsin ¢

b _a)sinqb_t
Vg — b2 @cos ¢ an ¢
d)ztan*1 b

N

Vo - b =\]w2—wzsin2¢=a)cos¢

The motion expressed by Eq. (2.13) represents a damped oscillatory motion whose amplitude

CQXO
( Vo - b?
the time period T is given by

T:i

Vo' - b*

This damping motion has been shown in
Fig. 2.1.

This decrement of amplitude is called
logarithmic decrement of the amplitude of a
damped oscillator, because the amplitude is an
exponential function of time and is given by

A=A, e
where A(?) is the time dependent amplitude and

A, isgivenby A = Do

Va? - b?
InA®®) =InA, +1In (™)
or, InA(f) =InA, - bt

So, if we plot A(?) versus ¢, we get the graph of
Fig. 2.2.

Comparing this damped oscillator motion with
the free undamped motion of an oscillator [Eq.
(2.9)], we can see that damping force has the fol-
lowing effects on the motion of an oscillator:

(i) The amplitude is not constant but it dies
away logarithmically.

Fig. 2.1

e’”) decreases exponentially with respect to time at a rate determined by the decay constant b and

The displacement of a damped oscillator
decreases with increase of time and ultimately
it dies out.

A
InA

o

In At)
e

(0,0) Om%/ &
b

Fig. 2.2 Logarithmic decrement of the amplitude of a
damped oscillator with respect to time.

(i) The frequency of oscillation reduces slightly below the natural frequency. The damped frequency is

Vo - b?

given by v, = =

whereas the natural frequency is given by v, =

-0
2

Case 2 When b > w, i.e., damping force is large, the motion of the oscillator turns to be non-oscillatory. If
v, be the initial displacement and v, be the initial velocity, then the general solution is given as follows:
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y= Ale(‘b +\b% - @)t + Aze(‘b -\b? - )t
This equation, at t = 0, reduces to
Yo =A1+A, ..(2.14)
or, A+Ay =y,

d
Nmmv=z§=—bémame*—#”+Af””—#”}+V#-4f.e*’vha“-“”—Any—#”}
At1=0,0,=—b (A, +A) +\b* — & (A, - A,)

or, v, =—by, +\b*— @’ (A, —A,) [by Equation (2.14)]
v,+b,y,

or, A—Ay =222 ...(2.15)
b -’

Now, from Egs. (2.14) and (2.15), we get

b+v,/
A, =&'1+—” y”}
2 v - o
b+wv,/
and A, = Yo , 1- J:
2 D _ o
Now, substituting these values of A; and A, in the general equation, i.e., in

\b? — @ t

2 2
y=e (A e T 1A e

)

we get
y=&f%W(l+ﬁi£d&)e#_&J+(1—£iﬁd&)fwtw{t ...(2.16)

2 V- o V-
Equation (2.16) represents an aperiodic
motion, i.e., a non-oscillatory motion. The dis-
placement y gradually falls off with respect to

A

Critically damped

time because of the term (¢™). If a pendulum y
is allowed to move in a thick oil then it exhib- Over damped
its this type of aperiodic motion. Similarly, an P

over-damped moving coil galvanometer also is
able to show such an aperiodic motion. It is rep-
resented in Fig. 2.3 and such a motion is called >
dead beat motion. — >t

Case 3 When b = o, the motion is critical. Fig- 2.3 The overdamped and criticall).f dafnpe.d motions
That is, it is a transitional case when the damped have be_el_l shown. I‘f the daming is S!lghﬂy le,s §
oscillatory motion changes into a dead beat :};ﬁ:at(:mcal damping then the oscillator will
motion. This is known as critical damping )

and the decay of y is most rapid in this criti-

cal case. This motion is illustrated in Fig. 2.3. If the damping is slightly less than this, the damped oscillator
starts oscillating.
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2.4.1 Solution of Differential Equation in Critical Case
To get the solution, in the critical case, we first take b = @, i.e., b — @ = 0 and then finally putb - w=0 (i.e.,
exactly equal to zero).

We can rewrite Eq. (2.16) as follows:

y=&e—bz e\/b270}'I+67\/b27a;'t+ b+ ve/yy (e\lbszz.z_ef\'bszz.t)
2 b - o

Now, expanding and neglecting the higher order terms, we get

Yo _pt > 5 U1y, 2 12
y=—e 1+ Wb - @)+ 1-O\b* - )t+ (1+Ob"— )t 1+ Ob” - )t)
2 v e

Finally, upon simplification by putting b — @ = 0, we obtain

y= y2 1242 (b +0,/y,)1)

or, y=y,e " {1+ (b +0v,ly,) 1) .217)

2.4.2 Mathematical Expression of Logarithmic Decrement
Let A, and A, be the amplitudes of a damped oscillator respectively at time =0 and t = 1.
A, is given by
A, =A, e [see eqn.(2.8)]

where b is the damping constant and is given by b = 2£ where B is the damping force per unit velocity and m
m

is the mass of the oscillator. If the oscillator starts from its mean position, then at ¢ = 774 (i.e., one fourth of its

time period) it goes to its maximum displacement. Let this displacement be denoted by A,. Then we have
bT
A=A, 4

The oscillator goes to its maximum displacement (A,) on the same side after a time (T + %), where

A=A, e or+3)
Similarly, the successive amplitudes A5, A,, ... A,, on the same side are given by

A3—A e (2T+4)

A=A e o(37+7)
A=A C (n 1><T+Z)
A Ay Ay A
A A A T4,

=™ = d (say)
d being a constant

Hence, ==y ...(2.18)
An+1
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This constant d is known as decrement.

N 1 ( 4, ) bT
ow, n =
An+1
A;
or, In ( ) = bT = A (say) ...(2.19)
Ai+l

The constant A is called logarithmic decrement.

So, A can be defined as the natural logarithm of the ratio of any amplitude to the next amplitude on the
same side of the mean position of a damped oscillation separated by one full time period.

2.5 ELECTRICAL ANALOGY OF SHM AND DV

Simple harmonic motions (SHM) and damped vibration (DV) can be observed in electrical circuits also like
mechanical systems.

2.5.1 SHM in an LC Circuit

Let us consider the following electrical circuit which has been shown in Fig. 2.4. It is an LC circuit.

Figure 2.4 shows an LC circuit which contains one inductor L and one capacitor C connected parallelly.
Initially the key K, is pressed and the capacitor C statrs charging. When C is fully chargred K, is released and

immediately the key K is pressed. At this state the LC circuit is closed. So it starts oscillating. The voltage
2

across the capacitor is % and that across the inductor is — L % =-L —IZ The minus sign indicates that the
d
voltage opposes the increase of current. From Kirchhoft’s law, the net voltage in the circuit is zero.
2
- L ﬁ = 1 JM Key K,
at C P P
2
or ﬂ + B 0 Current
’ a7 LC* g Ldi Ly
> Inductor L5 ~g¢ el Celle ——
d=q + Capacitor C
or, — +@q=0 ...(2.20)
dt
where @’ = L
LC Fig. 24  An oscillatory LC circuit, L-inductor,
Equation (2.20) is similar to Eq. (2.3) which is the C-Capacitor, K-key and &-cell.

differential equation of SHO.
Thus, in an electrical circuit consisting of an inductor (L) and a capacitor (C) the charge oscillates simple

harmonically with an angular frequency w = \/LI_C and a period T =27 VLC,
q =q,cos (wt—¢) [where g, is the initial charge]
. _dq .
or, i= i wq, sin (0t — ¢)
or, i=—1i,sin(wt—¢)

where i, = wq, is the maximum current in the circuit and i, is given by i, = v \—
L
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2.5.2 Damped Vibration (DV) in an LCR Circuit

Let us consider the following electrical circuit which has been shown in Fig. 2.5. It is an LCR circuit. It is
capable of showing damped oscillations. When R = 0, the oscillations of the circuit are undamped with angu-

lar frequency w, = L The resistance generates the resistive (or dissipative) force in the circuit. As soon

JLC
as the key K, is pressed, the capacitor gets charged by
the battery and on release of the key, K, if the key K| is
pressed then the battery is thrown out of the circuit and iR

the capacitor starts discharging. At time ¢, V = % is the

1174

potential of the capacitor and the induced emf across the Ldi
dt

inductor is L % and potential across the resistor is iR.

So, we can write Fig. 2.5 An LCR circuit which shows damped
vibration. R-resistance, [L-inductor,
=L _ iR C-Capacitor e-source, i-current, K-key.

or, L—t+iR+—=O
2

or, L—+R—+—==0
di

or, —+=>=—+-—=0

& d
or, —q+2b—(j+a)2q=0 .21

R 1
Wherez =2b andﬁ =

Equation (2.21) is similar to Eq. (2.5) which is the equation for a damped vibration.
So, the LCR circuit represents a damped vibrator.

2.6 ENERGY OF THE DAMPED OSCILLATOR

The total energy of any oscillator is given by

E=E.+E,
where E is the total energy, E, is the kinetic energy and E), is the potential energy.
1 > 1,9
E=—mv"+— ...(222
50’ + 5 ky 2.22)
where k is the restoring force per unit change of displacement y.

If the oscillator is a damped oscillator, then its displacement is given by
y =ae? sin (o't + 6) ...(2.23)
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where o =N’ - b

v= % =ae” (@) cos (@'t + ) .(2.24)
If the oscillator is excited by giving a velocity v, suddenly in the mean position then at ¢ = 0, % =0,
and 6=0
. v, = aw’ = a=v,l0
y = Z)— e sin (0'f) ...(2.25)
and v=v,¢" cos (0 1) - ZZ)—Z,) e sin (0’1
v=v,e" cos (w'r) [ bisvery small] ...(2.26)

-. Eq. (2.22) can be written as
2

ko
E= % mv2 e cos® (0'f) + — e sin® (w’t) [using Eqs. (2.24) and (2.25)]
20"

1 _ 1 W\2 _opr .
or, E= 5 mvi e cos® o't + 5 mov* (—,) e sin® 't [ k= ma)z]
[0}
1 2 _op s .0 o,
or, E=—mv,e cos” W't+——.sin“w’t
2 wrz

In case of low damping
o’ =Vw* - b* = ® = natural angular frequency

E =~ mv* e [cos® 't + sin® @'1]

or, E==mv’ e

—_— N = N =

Initially, at =0, E = 5 mv’ = E, (say)

E=E, ¢ ..(2.27)
i.e., in case of small damping, the energy decays exponentially as given by Eq. (2.27).

Worked-out Examples

Pr
Example 2.1 | Show that y= (A + Bf) ¢ 2 is the solution of the following differential equation for critically

damped vibration:

d2y+ B dy
g2 M

where m is the mass of the vibrating system, f is the resistive force per unit velocity and k is the restoring
force per unit displacement.

k
m

Sol. If the vibrating system gets displaced along the y-axis then the differential equation of a damped
harmonic motion is given by



or,

and

or,

or,

or,
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dy  dy
?+2b5+w2y=0 (1)

B k
where 2b = e o = m
Now, given,
PBr
y=(A+Bt)e m=(A+Bne"”

y=(A+Be? (2
d
% —_b(A+Bi) e + B .3
dz
&Y (A +Bh et —2bBe™ (4
ar*

d &
Now, substituting the values of y, 7); and —2] respectively from Egs. (2), (3) and (4) in Eq. (1), we
dt

get
b* (A +Bt) e” —2bBe™ — 2% (A + Br) ¢ + 2bBe™ + * (A + Bf) e =0
(0’ -b)(A+Br e =0

(@b y=0
But y cannot be zero for all times,
o’ -b*=0
o’ = b*

b
This is the condition for critical damping of a vibration. Hence, the given expression y = (A + Bf) e 2m

is the solution of the given differential equation for the critically damped oscillation.

Example 2.2 | What is decay constant (or relaxation time)? How does it vary with damping coefficient?

Sol.

[WBUT 08]
The relaxation time of a damping oscillator is defined as the time in which the amplitude of a damped

oscillator decays to % time of its initial amplitude.

If A, and A, be the amplitudes of the oscillator at times ¢ = 0 and at time ¢ = ¢ respectively then we can
write,

A1
3"e

But e=2717 = L-0368
A, =0368A,

Hence, the higher is the decay constant (or relaxation time, 7,), the slower is the rate of decay of the
amplitude. So, in such a case the rate of dissipation of energy of the damped oscillator also will be
slow.
For a damping system, the amplitude varies with time exponentially.
So, we can write

A=A, e

o
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where b = £ and f3 is the damping coefficient, i.e., damping force per unit velocity of the

2m
oscillator.
Now, if time ¢ is equal to the relaxation time 7, (i.e., = 7,), then, we get
A=A, e =14, [by definition]
or, el =¢!
1
or, b, =1 = T,:Z
or. T.= Zm
) r— " 5
B

So, the relaxation time (7,) of the damped oscillator varies inversely as the damping coefficient (f3).
Example 2.3 | Show that in case of damped oscillation with a small amount of damping, the corresponding
time period of oscillation is higher than the time period of free oscillation.

Sol. In case of small damping, the angular frequency @, = V&’ — b* where o is the angular frequency of

’

a similar undamped oscillator and b = 2k , k” being damping coefficient.
m

... the time period T, of the damped oscillator is given by
B P —p?
whereas the time period of an undamped oscillator is given by

2r
r=%

Ty

From the values of 7, and T

T,>T [N -b <ol
Example 2.4 | Show that in case of damped vibrator, the rate of loss of energy of the vibrator is equal to

the rate of work done by the vibrator against the resisting force.

Sol. For a damped vibrator, the equation of motion is given by
&y dy
—+k—+ky=0
m d[2 dt ky
or, m j +ky=-kK ﬂ = resisting force = F, (say)
d[2 dt res
The total energy of the vibrator is given by
E=E +E,
1 (dy )2 1,2
E=—m|—| +=
or 2" (dt kb
dE _m (dy) &y dy
—=_2. =] —=+Z.2y. =
t 2 atl g# 2 dt
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2
dE d’y dy
) - = — + 5,
. dt (m dr’ ky) dt
dy) (dy) dy
=|—- k' —_— — = F —_
( de) \dt e dt
dE _ d d
, —=—(Fp-¥)=—
or i dt( res < ) i W)
where W is the work done against the resistive force.
So dE _dWw
’ dt  dr

2.13

i.e., the rate of loss of energy of the damped vibrator is equal to the rate of work done against the

resisting force.

Example 2.5 The amplitude of an oscillator of 200 cps frequency falls to (1/10)th of its initial value after

2000 cycles. Calculate its relaxation time, quality factor and time in which its energy falls to (1/10)th of its

initial value.

[WBUT 2008]

Sol. Let O be the quality factor of the oscillator, v be its frequency, m be its mass and 3 be the damping

force for per unit velocity.
The damping constant b is given by

_F
2m
.. the amplitude at any time ¢ is given by
Aty =A, e
where A is the initial amplitude.
A(t
0 _ o
The frequency v =200 s
. . 1 1
st d T=—=——
ime perio v =200 °
Time taken for 2000 cycles is given by
10 1
t=10T=—~s=—
200°°20°
. from Eq. (1), we can write
AWM 1 _
bt 1
= = —= ]O
© TA T10
or, loglo(e_b’ =-1
or, —btlog,,’ =-1
or, b= 1 = I
t x logq

1 x log;o°
20 £10

...(D
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o, b=—22 20110
log
or, b=20x23=46
.. the quality factor Q is given by
o _2rx200
=—=""=136.6
Q 2b  2x4.6
The relaxation time 7, is given by
=1
b
or T = L
’ " 4.6
or, 7,=0.217s
We know, for a damping system, that the energy at time ¢ is given by
E,=E,e™"

Let E; and E,be energies at =0 and 1 =1
: E=E ¢ [E=E,e"=E,]

E
_thf = —f = i
ob ¢ "TET10
or, e =10"
or, - 2btf =-In 10
or, 2btf =1n 10
or, = ﬁ x1n 10
or, t,= 1 x2.3
’ Im2x46" "
1
1= i 025s

Example 2.6 | In damped harmonic motion, calculate the time in which the energy of the system falls to
e~ times of its initial value. [WBUT 2007].

Sol. The energy at time ¢ in damping motion is given by
E(@t) =E, e

Let E; be the energy at time 7, when E,/E; = % where E, = E,

E

gy 1

E; e
or, e = ¢!

2be =1
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1
t,=— e 1
I~ op (M
Here, b is the damping constant. So, if value of b is given then value of time #; can be numerically

calculated.

Example 2.7] Write down the differential equation of a series LCR circuit driven by a sinusoidal voltage.
Identify the natural frequency of this circuit. Find out the condition that this circuit will show an oscillatory

decay and find out the relaxation time. [WBUT 2007].
Sol. Refer to subsection 2.5.2 for the first part.
The natural frequency of the circuit is given by

o= 1 2nv
NLC
where @ is the angular frequency and v is the frequency.
1
V=
2m/LC
The damping constant b is given by
R R
2b=— b=—
L~ "7

The condition for the circuit to be oscillatory damping is that » must be small. So the circuit should

have low resistance or high inductance.
The relaxation time 7, is given by
_1_2L

““b"R
Example 2.8 | The damped frequency of vibration of a body is 200 Hz. The amplitude of vibration

becomes é of the initial amplitude after 1 second. Calculate the frequency of free vibration.

Sol. For vibration to occur, the damping frequency must be low.
. the amplitude at any time ¢ is given by
A =A™
And the amplitude after 1 second is
A(r+1)=A, e?t+D
.. according to the given condition,

A(t+1) :%A(r)

be+1) _ 1 bt
or, Ae =Z4,€
- P+ b=
or, bt+b=bt+1
b=1

For low damping, the displacement can be written as

y=A, e’ sin Vo - b t - §)
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So, we can write
Vo — b* =21 x v, where v, is the frequency of damped oscillation.

or, Vo — b* =21 x 200

or, @ — b = (400 m)*
or, @ =@00 )’ +1> [-b=1]
or, o =1579201
.. the frequency of free vibration is given by
_ o _NIST90L_ 14,
2r 2r

Example 2.9 | 1n a series LCR circuit driven by a dc source of emf, the values of L = 1 mH, C = 5 uF and

R = 0.5 ohm. Calculate the frequency, the relaxation time and Q-factor of the circuit.

Sol. The angular frequency @’ of the driven oscillator is given by
1 RE
0 =—-—
(LC 4L2)

where L=1mH=10"H,

C=5uF=5x10°F
and R =0.5 ohm

Putting the above-mentioned values in the expression for @’, we get

1 (0.5)° ];
10°x5x10° 4x107°
@ =1.414x10*rad s™'

Again, @" = 2wV’ where V' is the frequency.

’ 4
y =@ 141 X107 _ 555 0t 1y

4

“om 2r
Now, the relaxation time 7, is given by
1 2L 3
= —=—= 4 1
T, =R x 107 s

and the quality factor Q is given by

o _ o _oL

Q:

2 RIL_ R
or. 0= 1414 x 10* x 10~ _ 1.414 x 100
0.5 5
0 =283

Example 2.10] A mechanical oscillator has initial energy E, = 50 J having a damping coefficient b = 1 s

Calculate the time required to decrease to E, = E /e.
Sol. If E, and E, be the energies of the oscillator at # = 0 and ¢ = ¢ respectively then,
Et — Eo e—2bt



or,

or,
or,
or,
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E

E_(t) — efzbt
But according to the condition given,
E 1
E,=E /e = E—o =2
o2 = o]
2bt =1
2x1xt=1 [ b=1s"]
t=05s

.. it will take 0.5 second for the energy to decrease to E /e.

2.17

Review Exercises

Part 1: Multiple Choice Questions

1.

@ is the natural frequency of an oscillator and b is the damping factor (b = B/(2m)) where 8 = force

per unit velocity, the quality factor of the oscillator is given by

(a) grows to e times the initial value

(b) decays to 1/e times the initial value
(c) grows to ¢* times the initial value
(d) decays to 1/€* times the initial value

@2

(d) Ae

(a) arb (b) w/(2b) (c) 27(0
. Relaxation time is the time in which the amplitude A; of the damped oscillator falls to
A; A; A;
(a) 3 (b) D (©) e
. The quality factor of a series LCR circuit is
1 1 |L RL
@ OE () \RE
RALC RYC C

(d) NRLC

. The relaxation time is defined as the time during which the amplitude of a damped oscillator

Which of the following relation is true for logarithmic decrement?

(@ A=b"T (b) A=\bT (c) A=bT

The quality factor of an electrical oscillator is

OR LR Lo

. For a small value of the damping constant, the quality factor

(a) decreases (b) remains constant (c) increases

(a) rarefactions (b) forced vibration (c) damping

(d) L=bT*
L
(d) 5=

(d) None of these

. Decay of the oscillations caused by frictional resistive forces is called

(d) decay of oscillation

When the frequency of the driving force is equal to that of a driven vibrator, the phase difference

between the duo is
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10.

11.

12.

13.

14.

15.
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(@) 0 <b>’5r © %’ @z

Select the correct statement from the following:
(a) The higher the damping, the higher the quality factor.
(b) The lower the damping, the higher the quality factor.
(c) Damping is not related to quality factor.
(d) None of these
In case of critical damping, the motion of a system is
(a) oscillatory (b) vibratory (c) harmonic (d) non-oscillatory

If F, be the amplitude of the driving force and k be the restoring force per unit displacement then the
amplitude of the forced oscillator for @ =0 is

(@) & () 2 (©) kF, @) 1
F, k ‘ kF,
The sharpness of a velocity resonance curve is high if the damping constant
(a) bis medium (b) b is small () b —> << (d) None of these
The amplitude of a damped oscillator with a damping factor b varies as
2
(a) & (b) & (c) e (d) ebr
If 7, be the relaxation time and b be the damping constant then
(@ 1.= % ) 1= % (c) 7.=b (d) 7.b = constant

[Ans. 1(b), 2(c), 3(b), 4(b), 5(c), 6(c), 7(c), 8(c), 9(a), 10 (b), 11(d), 12 (b), 13(a), 14(c), 15(b)]

Short Questions with Answers

1.

Ans.

Ans.

Ans.

What is the physical significance of the logarithmic decrement of a damped oscillatory
system?

The logarithmic decrement in case of a damped oscillator gives the measure of the rate at which the
amplitude of oscillation decays. Since the logarithmic decrement is the damping factor multiplied by
time period, it gives a method of evaluation of the damping coefficient.

Define free vibration. Can a real vibrator vibrate completely freely. If not, why?

A free vibrator is such a vibrator which keeps on vibrating with the same amplitude for an indefinite
time after it is set into vibration. The concept of a free vibrator is an ideal case. In reality, no vibrator
can vibrate for a long time with the same amplitude. Any real vibrator faces some resisting forces
due to which its amplitude of vibration keeps on decreasing slowly and it ceases to vibrate after some
time.

What are the sources of damping force?
The various sources of damping are recorded below:
(i) The loss of energy by radiation of an oscillator
(i) The loss of energy by mechanical friction (i.e., viscosity, etc.)
(iii) The transfer of heat energy from a layer at higher temperature to a layer at lower temperature
(iv) The intermolecular exchange of energy
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4. What is critical damping?

Ans. Critical damping is a border line case. If the damping constant of such an oscillating system is
increased a bit, it will stop oscillating and if the damping constant is decreased a bit, it will start
oscillating. In its critical damping stage, the system neither behaves as an oscillator nor as a non-
oscillator. And in case of critical damping the amplitude dies very quickly to zero.

5. Distinguish between free and damped oscillation.
Ans
Free oscillation Damped oscillation
(i) It persists indefinitely without loss of energy. (i) It cannot persist for long time and the energy
decreases gradually.

(i) Itis an ideal case; usually it is not seen in nature. (i) Itis areal case. It is very frequently seen.

(iii) Once started it continues for ever with same (iii) Its amplitude and frequency dies with time.
amplitude and frequency.

(iv) Itis aconservative system in which the energy (iv) Itis a non-conservative system so its energy is
is conserved. not conserved.

(v) Example: Oscillation of a simple pendulum in (v) Example: Oscillation of a simple pendulum in
absolute vacuum air.

Part 2: Descriptive Questions

1. What is meant by damping? Show that for small damping, the average fractional loss of energy of
a particle executing damped simple harmonic motion in one cycle is four times of the logarithmic
decrement.

2. What are the conditions for overdamped, critically damped and underdamped motions? Write the
displacement—time relationship in each case.

3. Write down the differential equation for a damped oscillations of a system from the energy principle.
Solve this differential equation.

4. What are the similarities and dissimilarities of critically damped and overdamped motion? Show that
the ratio of the successive amplitudes of damped oscillatory motion is constant.

5. Define the following terms in connection with the damped simple harmonic motion of a particle:
(a) decay constant, (b) logarithmic decrement, and (c) quality factor.

6. (a) What is meant by critical damping? [WBUT 2004]
(b) Establish the differential equation of a damped harmonic motion and explain the different terms

in the expression of the equation.

7. (a) Prove that the vertical motion of a loaded spring immersed in water is damped simple harmonic

and hence find out an expression for the time period of its oscillation if it is underdamped.

8. Write down the differential equation of an LCR circuit. Make a comparison between mechanical
parameters and electrical parameters in relation to vibration.

Part 3: Numerical Problems
1. A mass of 1 kg is suspended from a spring with a stiffness constant of 24 Nm™'. If the undamped

frequency is % times the damped frequency, calculate the damping factor.



2.20

Basic Engineering Physics

. A damped vibrating system, starting from rest, reaches a first amplitude of 500 mm which reduces to

50 mm in that direction after 100 oscillations, each of period 2.3 seconds. Find the damping constant
and correction for the first displacement for damping.

. A simple pendulum has a period of 1 second and an amplitude of 10 mm. After 10 complete oscil-

lations, its amplitude is reduced to 5 mm. What is the relaxation time of the pendulum and quality
factor?

. The motion of a particle of mass m = 0.1 kg, subjected to a restoring force of 0.1 Nm™, is critically

damped. While at rest, its motion is started by an initial velocity of 0.5 m s™'. Find the maximum
displacement of the particle.

. A body of 10 g mass executes one-dimensional motion. It is acted upon by a restoring force per unit

displacement of 10 dyne/cm and a restoring force per unit velocity of 2 dyne/(cms™"). Find the value
of the resisting force which will make the motion critically damping. Also, find the value of mass for
which the given forces will make the motion critically damping.

. The motion of an oscillatory system of 100 g mass, subjected to a restoring force of 100 dyne/cm, is

critically damped. When it remains at rest, its motion is started by an initial velocity of 50 cm/s. Find
the maximum displacement of the oscillator.

. A vibrating system of 1g mass is displaced from its mean position of rest and released. If it is acted

upon by arestoring force of 5 dyne/cm and a damping force of 1 dyne/(cm s, check if the motion is
a periodic or oscillatory. If the initial displacement of the system is 5 cm, what would be the displace-
ment after a time duration of 5 seconds?



CHAPTER

Forced Vibrations

3.1 INTRODUCTION

When a vibrating system is acted upon by an external periodic force, it is assumed to be in a state of forced
vibrations (or forced oscillations). Initially, the body tends to vibrate with its own natural frequency, while
the applied force tries to make the body vibrate with the frequency of itself (i.e., the frequency of the periodic
force). The natural vibration of the forced body dies away quickly due to the influence of the applied force
and ultimately it vibrates with a frequency which is same as that of the applied force. Such vibrations are
known as forced vibrations.

Examples of forced vibrations are (i) vibration of the couple of a tuning fork and a table, and (ii) the
coupled vibrations of soldiers and a bridge when they (the soldiers) march on the bridge.

When the tuning fork forces the table to vibrate in the fork’s own natural frequency, the table vibrates with
small amplitude. But if both the natural frequencies are equal to each other, the table vibrates with a large
amplitude. This phenomenon is called resonance. The vibration of the tuning fork continues for a longer
time if it is not put in contact with the table, whereas if it is held upon the table, the vibration dies out quickly.
The energy of the tuning fork is drained very quickly to set the table as well as the larger volume of the air in
contact of it to vibrate.

If the forced system cannot modify (by its reaction) the forcing system (i.e., the energy of the forcing sys-
tem remains unchanged) then the vibration is called forced vibration. And if the mass of the forcing system
is very large (as compared to that of the forced system) then only forced vibration is possible.

On the other hand, when the forcing system is modified by the forced system it becomes a coupled system
and the oscillation is called coupled oscillation.

3.2 SYMPATHETIC VIBRATION OR RESONANCE

If the frequencies of the forcing and the forced systems become equal then these systems vibrate
with a large amplitude of vibration. The aforesaid phenomenon is called resonance or sympathetic
vibration.

Let us try to understand the forced vibration with the help of an example, given as follows:
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Barton’s Experiment of Forced Vibration

Barton’s experimental set-up has been shown in Fig. 3.1. A thick and several feet long cord AB has been
stretched between two rigid supports at A and B, but not stretched too much tightly. Six pendulums of dif-
ferent lengths are hanging from it. The pendulums CD and EF
have the same length. CD has a heavy brass bob while the other
bobs, including EF, consist of light small paper cones so that
these pendulums are heavily damped when they vibrate. As
the lengths of CD and EF are equal and they are intermediate
between the lengths of the shortest and the longest of the light
pendulums, whenever the heavy pendulum CD is set into vibra-
tion, its motion is communicated through the thick cord and the
other pendulums vibrate with the same frequency as that of the
pendulum CD. But as they are of different lengths (excluding
EF) and hence of different natural frequencies, they show different amplitudes of vibration. Initially, the
amplitude of EF is equal to that of CD, but after some time it becomes small as compared to that of CD as it is
highly damped. The pendulum EF picks up the vibration immediately. Now brass rings are slipped on to each
of the paper cones for making them heavier. As their masses considerably increase while the resistive forces
remain unaltered, the damping factor will be much reduced. This time initial natural vibration will last for a
longer time to reach the steady-state vibration and also the resonance effect will be much pronounced.

3.3 ANALYSIS OF FORCED VIBRATION

A E B

D

Fig. 3.1 Barton’s experiment of forced
vibrations.

Let us represent the external simple harmonic force acting on a particle of mass m by F cos @'t where F is its
magnitude and o’ is its angular velocity. Let y be the displacement of the particle executing damping oscil-
latory motion. Let us assume that at # = 0 it is at rest at the mean position. The forces acting on the particle

are

or,

or,

or,

(i) The restoring or restitution force F, where F, o< y

d
(i1) The retarding or resistive force F. o< 7);
_— &y
(iii) The inertial force F; where F; =m —
dt

(iv) The external periodic force F, = F cos @'t
So the equation of motion of the particle is given by

Esz_ r_Fres
d* d
md—;=Fcos w’t—ky—k’%

&y K&y k _F 3
? EE my—mCOSCU
& d

—y+2b—y+a)2y=fcos o't

dt2 dt

(3.1
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_K ok _F
where 2b—m,w —ﬁandf_m

In the steady-state condition, the system will oscillate with the same frequency as that of the external
periodic force F cos w't.

Hence, from the physical point of view, let us consider the solution of Eq. (3.1) to be of the following
form:

y=Acos (0t - ) ...(3.2)
Equation (3.2) represents an SHM of amplitude A and frequency v’ = ;)_n and phase lagging behind that of

the forcing system by an angle o.
Now, differentiating Eq. (3.2) with respect to z, we get

Y Ao sin (@- @
—=-A0'sin(0't-«
dt
Differentiating again with respect to ¢, we get
d2
&y —Aw"”? cos (0't - )
dr’

d &
Now, substituting the values of ?); and d—z in Eq. (3.1), we obtain
1

— A cos (W't — o) —2b A’ sin (@'t — o) + ©° A cos (0t — &) = fcos (1)
or,— A" cos (0't— 0) =2 b A’ sin (0t — &) + ®* A cos (0’1 — &) = fcos (0’1 — & + 0)
or, —A®" cos (0t — 0) =2 b Aw’ sin (w0t — 0)) + WA cos (®'t — 0
=fcos (0t — a) cos a— fsin (0t — &) sin &
As this equation is true for all values of #, the coefficients of cos (@'t — ) and that of sin (@’ — ) on both
sides must be separately equal.

Hence, we can write
—Aw” + 0’A =fcos a

or, feos a=A(0* - 0™ ...(3.3)
and -2bAw’ =—fsin a
or, fsina=2bAw’ ..(3.4)

Now, squaring and adding Eqgs. (3.3) and (3.4), we get
= A2 (P - @) + 4 A% 0™

Hence the amplitude,

or, = ! ...(3.5)
\j(wz—a)’z)2+4b2 w”?
Again dividing Eq. (3.4) by Eq. (3.3), we get
2bw’
tan ¢ = ——— ...(3.6)
(1)2— w/Z
Now, considering Egs. (3.2), (3.5) and (3.6), we get, the solution of Eq. (3.1) in the following form:
y f cos (o't — o) ..(3.7)

B \)(a)2 - 0? + 4"
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2

’
where o = tan™" (%7602)
o -0

The aforeshown solution of Eq. (3.1) given by Eq. (3.7) is for the steady-state condition. But at the start-
ing, as the force sets the particle into vibration, the particle will keep on vibrating with its natural frequency
along with the frequency of the forcing system. So the applied sinusoidal force will be acting as damping
force and hence the solution for displacement will be given by

y =pe ' cos {(\'wz—bz) t—B} ..(3.8)

where p and 6 are constants [vide Eq. (2.8) of damping vibration in Chapter 2].
So, the complete solution at the starting is given by

bt 7z 2 f , o 2bw’
y = pe bt cos {( a)z—bz) t— 0} + {(a)Z_ w,2)2 +4b2a)’2} cos {a) t—tan™" (ﬁ)] ...(3.9)

Thus, as seen above in Eq. (3.9), the solution is made up of two components.

(a) The first component (term) of the solution represents a free vibration with natural frequency set up in
a damped system created by the influencing force which has been applied externally. The amplitude
is decaying exponentially at a rate which is determined by the damping factor b.

(b) The second component (term) represents a simple harmonic motion of a constant amplitude having
the same period 7 = 2—Tf as the applied periodic force and lagging behind the forcing system by a
w

phase angle of o.

Following the lapse of sufficient time, when the steady state is reached, the first damping term of the solu-
tion reduces to zero. If the damping factor is very small, then the natural vibration of the system will persist

for a longer period of time since ¢ ' will fall very slowly. It is only the large damping which prevents the first
term from persisting indefinitely.

3.4 ENERGY OF A FORCED VIBRATOR

In the steady state under the influence of a periodic force, the motion of a particle is obtained in Egs. (3.2)
as given below:

y=Acos (w't—a) [Eqn.(3.2)]

where A= f
Vo — 0 + 4b’w”
_ 2bw’
and o =tan”! (—)
a)Z_ a)/Z
S @ Ao’ sin (0t — o)
o, i = sin

Hence, the kinetic energy of the forced system at any instant is given by
dv\2
T= % m (%) - % mA20” sin® (0t — o)
ma’f?

. 2 ’
(@ — 07 + 40" sin” (0’7 — @) ..(3.10)

or, T

_1
5"
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Since, the motion of the particle is steady SHM, the total energy of the system at any instant is equal to the
maximum kinetic energy T,

ax*

Eoor o1 mo’f* (3.11)
total max o ((1)2 B w,z)z + 4b2a)’2 . (0.
Equation (3.11) is the expression for total energy
3.4.1 Enegry or Velocity Resonance
We can rewrite Eq. (3.11) as follows:
A mf
total = 7 a)2—2
(—, - Cl),) + 4b2
2
1 mf
or, E\ g = E o’ \2
a)z( @ _ ﬁ) +4b?
0]
2
1 mf
, Ep == ..(3.12
. T2 N+ 4 12
_o o
where A=—=—-—1

If o= w’, then A = 0, and the energy of the system is maximum for a given (i.e., particular) value of
b. Thus we observe that when the frequency of the forcing system coincides with that of the natural
frequency of the forced system, the energy of vibration of the forced system is maximum. This phe-
nomenon is known as energy resonance or velocity resonance or simply resonance. And the energy at
resonance, E,, is given by

1 omf

T2 4

(3.13)

r max

Now, from Eq. (3.12) it is clear that the decrease in the energy due to mistuning between the two frequen-

cies v= (ﬂ) and V' = ( @
2r 2r

) is same for a given ratio (v : v’) of the frequencies and it is independent of their

sign.

3.5 SHARPNESS OF RESONANCE

Since the frequency of the influencing applied periodic force differs from the natural frequency of the forced
system, the response of the forced system diminishes. The energy of response of the forced system falls off
rapidly for slight deviation from the resonance. The E,, versus A graph has been plotted in Fig. 3.2. The
graph shows that for slight variation of @’ from @, the total energy gets reduced rapidly.
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The sharpness of the resonance curve is a measure

of the rate of fall of energy of resonance with depar- f“"a'
ture from equality between the frequencies. From Eqgs.
(3.12) and (3.13), we obtain
E 2 2 2
m NG A 0N 5
Epal 4b 4b
Now, dropping the suffix of E,;, we get
E 2
mx _ A0 .. (3.15)
E 4p?
The rate of decrease of total energy E with respect to o> A=o0 0> o > A

A is greater, the smaller the value of b. The sharpness of
resonance can be quantitatively defined as the recipro-
cal of A when E reduces to half of its resonance value.

Let us assume that A = A, for which E = % E

Fig. 3.2 The energy resonance curve sharpness
of E versus A graph changes rapidly for
small change in the damping factor b.

Then from Eq. (3.15), we get

2

Al
2=1+ 5
4b
or, 4 = K = A =22

So, the sharpness of resonance (S) is given by

1 0]

=—=— ..(3.16
A 2b (3.16)
The sharpness of the resonance is important in connection with a radio receiver.
3.6 AMPLITUDE RESONANCE
In case of forced vibration the amplitude is given by
2
A= f A= f -(3.17)

= A=
V(& - 0 + 4b° 0" (0 - 07 + 4b° 0"

A will be maximum when the denominator becomes minimum. For a given system, b and @ are constants.
And for the denominator to be minimum, we must have the first derivative of it with respect to ®” to be equal
to zero, i.e.,

d, (= 0P+ 4D 0™} =0
do
”
or, 4 (@ -0+ a9 g
do do’
or, — 40" (&’ -0 +80'b* =0

or, — 40" {(0 -0 -2b*} =0
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or, - 0?-20"=0

or, 0’ = o -2b*

or, o =\Na’ - 2b*

or, 2V’ =N@* - 26> [0’ =271V ..(3.18)

R (O
2
i N - 26%)

Thus, for the amplitude to be maximum, the frequency must be

or, ...(3.19)

T
This is called amplitude resonance. This frequency is neither equal to the natural frequency of the system

V(&P - b2

-0 : -
(v = 27r) nor equal to the frequency of the damped vibrator | v, o

But it is slightly lower than v,.

The maximum amplitude at resonance is given by

A=A = f [by Egs. (3.18) and (3.19)]
V(@ = (6 = 2692 + 4b2 (o — 2b7)
_ f __ [
or, = =
@b+ d4b2a? - 86 20N — b

or, a-—a (3.20)

" Ve + 1
[ 0? =@ —2b7
Hence the maximum amplitude is the greater, the lower is the value of the damping factor b. The sharpness
is greater if the damping factor b is smaller.

3.7 QUALITY FACTOR

If the driving force F, = F cos @'t produces an infinitesimal displacement dy in time dt, then the work done
or energy supplied by the driving force during the time dr is given by

dwW=F, (1) dy
So, the power supplied is given by

0= op, 0

or, p(t) =F cos @’t. v

or, p(t)=—Fcos 0't. Aw’ sin (o't — &)

or, p()=—FA®’ cos o’tsin(w’t— ) [-y=Acos(0't— )]
P, =<pt)>=<-FA® cos @'t sin (0t — 0)>

or, P,,=—FA®’ <cos @'t (sin @'t cos ot — cos @'t sin &)>

or, P,, =—FA®’ cos oi< cos @'t sin @'t >+ FA@’ sin &< cos” @'t >

But, we know that
1

7 cos® o't dt

<cos’@'t>=

o
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T
or, <cos’ o't>= i, f cos”. (2—7f t) dt
T T
2 1
or, <cos” (@ t)>=§
where T” = 2—7€ = the time period of the steady-state oscillation.
(0]
Similarly,
<cos (o't sin (w't) > = % <sin Qw’t) >
1 (4
or, <cos (0't) sin (@'1) > =— J sin ( 7z:t) dt
2T T
or, <cos (') sin(w't)>=0

Hence, the average power supplied over one cycle is given by
P, = % FA®’ sin o

f
W@ - 0 +4b° 0"
. the maximum value of P,, occurs at the frequency @’ by satisfying the following conditions:

P, = % F o’ sin(0) (

). [After the value of A is put]

d_ o’ sin o -0
do’ | \(@? — 0™)? + 4b*0”
2 ’ e ! ’
ind d . o’ sin o <0 |- tan o= 2[7760,2 - sin o= 2bw
do” | (@ - 0 + 4b’0” -0 V(@ - 07 + 40"
ie i( 2bw,2 =
B dCO, (0)2—60,2)24'4[9260,2
& 2bw”
and <0
dw” ((a)2 —w?+ 4b2w’2)

It is easy to see that these conditions are satisfied for @ = @’. In other words, the maximum value of P,
(i.e., Pp,,) occurs at resonance.

A%

1 1 1F 1
So, P =~F.f.—=x" -
© mx =5 F S 30 =570 3
2
or, P =4F% (321
P =lx£2x 2bw”
VT2 MY (R 0™+ 4
Of. P =F—2b w,z
’ Mm@ - 0?) + 4o’
F2 ) (1),2
or,

av = 4mb : (wz_ w/2)2+4b2wr2
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)
or, Py = Py ——2 0 o .(3.22)
(" -0 +4b°w”

Figure 3.3 depicts the variation of P, as a function of m’.

Width of power
resonance curve at
half maximum
power = Aw = 2b

Fig. 3.3 Variation of power P, (at power resonance) as a function of angular frequency (@) of the
driving force.

The values of @’ at which P, is half of its maximum value are called half power points.
From Eq. (3.22) the half power points are the values of @’ satisfying the equation given below.

Pav — l — 4b2(0’2
Prx 2 (0 -0+ 4b*0?
or, 0?=w’+2bo’

These are two quadratic equations in @’ namely,
0 +2b0" - =0
and 0”?-2b0' -~ @ =0
Each of these two equations has one positive root and one negative root. Since the angular frequency ®’

cannot be negative, we retain only the positive roots, which are as follows.
1

o, =—b+ (0 +b)?

1
and ®, =+b+ (0 + b2
The frequency interval between the two half-power points is given by
Aw=w,— o, =2b
The frequency interval A between the two half-power-points is called full frequency with at half-
maximum power or simply bandwidth.

The sharpness of resonance can also be measured in terms of quality factor, or Q-factor, which is defined
as follows:

0= o f’ @, = i = resonant frequency/bandwidth
o
) =—=9
or. 0 b

where S is the sharpness.
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3.8 FORCED VIBRATION IN AN LCR CIRCUIT

Let us consider an LCR circuit as shown in Fig. 3.4 which can exhibit forced vibration if it is set to do so.
Intially

K1 K2
/: /:
RZ IR
q 1 L
cT C E, =
LS g di
Ldt
)
)
E = cos (w't)

The key K, is colsed keeping the key K open. The d.c. source E, charges the capacitor C. When the capac-
itor C gets fully charged, the key K| is closed and the key K, is opened. At this stage the circuit consisting of
the componement K (key), R (resistance), L (inductance), E (a.c. source) and C (capacitor) becomes active
and through the process of discharging of the capacitor, the LCR circuit starts oscillating. The presence of the
resistance R in the circuit causes it to lose electrical energy. This loss of energy is compensated by the energy
supplied by the a.c. source E [= E, cos (@’f)]. Thus the LCR circuit acts as a forced oscillator. At an instant of

i d
tinet, V= % is the potential across the capacitor C, L % =L —;] is the induced emf across the inductor L, iR
d
is the potential across, the resistance R and E = E, cos(’?) is the emf of the a.c. source. So, by analyzing the
LCR circuit, we can write the following differential equation:
dq dqg q
L—+R—+-= =E,cos(at ...(3.23
R e = Eycos(@ (3.23)
where o’ is the angular frequency of the a.c. source.
Dividing throughout by L, we get

@+Bd—q+i=@cos(w’t)
d? Ldr LC L

d d

or, I+ g = freos(alt) .(3.24)
dr dt

R_opy L o Pana 0oy
where L—2b,LC—w andL—f
Now, we can compare this equation [(i.e., Eq. 3.24)] with the Eq. (3.1) which is rewritten below:

& d
224 Py =feos(@ LG
dt dt

Both the equations, i.e., Eq. (3.1) and Eq. (3.24) are exactly similar. We have already solved Eq. (3.1) in
Section 3.3. Using the same method, we can solve the differential equation of the LCR circuit [i.e., Eq. (3.24)]
for forced vibration.



Forced Vibrations

Worked-out Examples

3.11

Example 3.1 | The differential equations that represent the forced vibrations of one mechanical system and
one electrical system (electrical circuit) are given below respectively by Eqgs. (1) and (2):

d2y L,
— 4+ k/_ + - F 10t
m 7 o ky =F,e
& d -
and LEL g Oy g
dl2 dt C

(1)

(2

where @’ is the angular frequency of the applied force, i =V —1 and k” is resistive force per unit velocity. Make
a table of two columns by listing the analogous parameters of the two systems.

Sol. Table of analog

Mechanical quantities

Electrical quantities

Force (F)

Displacement (y)

Velocity (v)

Mass (m)

Mechanical resistance (k")
Compliance (1/k)
Mechanical impedance (z,,)
Mechanical reactance (X,,)
Internal reactance (@’m)

Reactance of compliance (k"/@”)

Voltage (V)

Charge (q)

Current (7)

Inductance (L)

Resistance (R)

Capacitance (C)

Impedance (2)

Reactance (X)

Inductive reactance (w’L)
Capacitive reactance (1/0’C)

Example 3.2 | Show that for a system of forced vibration, the total energy of vibrating system is not con-

stant and that, in such a case,

Average potential energy ¢

Average kinetic energy

where @ = natural angular frequency = \/% and @’ is the angular frequency of the external periodic force.

Sol. The displacement y of the particle of mass m in forced vibration is given by

y=asin (0t - @)

and  velocity v=Y=aw'cos (®'t— @)
.. the kinetic energy of the particle E, is given by

1

E, == mv* = % ma*w’” cos® (o't — )

2

and the potential energy of the particle E is given by

1
EP:EkyZ:

1
2

k a® sin® (o't — §)
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Sum of the kinetic and the potential energies E is given by

E,=E +Ep
or, E = % ma*w’ cos® (0’1t — ¢) + % ka® sin® ('t — )
or, E, = % ma*o’ cos® (0’1t — §) + % ma’a® sin® ('t — ) [ ®= \/g]
or, E = % ma? [0 cos? (01 — §) + @ sin® (0’1 — )]
Hence, E #constant [ 0# ®’]
Now, E, =(E), = % ma*o’™ %
[ over a full cycle, the average value of cos® (0't — @) is %J
So, E, =%ma2a)'2 (D)
Similarly, ~ E, = i mata? (2

[ over a full cycle, the average value of sin® (@t — @) is %]

Hence, the ratio of Ep to Ej (demoted by R ;) is given by

l ma2w2 _ a)z

R, =t 4
k=== = 0
Ey % ma*o”? @

Hence proved.

Example 3.3 | Find an expression for the fractional change in natural frequency of a damped (simple)

harmonic oscillator in terms of the quality factor Q.
Sol. Let @” and @ be the angular frequencies of the damped and the undamped oscillator respectively.
Then, we have

o =\’ - b

kl
h b=
where -
and k” = resistive force per unit velocity
7\2
or, o’ =1\ —( k )
2m
1
&> )_
or, o' =w|l1- 2
( 4m*a?

72
Now, if k”is small then k—2 is also very small.
dm* @’



or,

or,

or,

or,

or,

or,
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So, by using binomial expansion and neglecting higher terms, we can write

7”2
a)’=a)(1— k )

8 m*a’
ﬂl 1 er
[ 8 miat
1 : wl _ klz
O 8w’
0— o _ k/Z
O gmia’
& B k/Z
[ 8 mla’
Ao 1 (K _ 1 2 K
—=— | — (2b) ['.‘—=2b]
O g2 (m) 8’ m
So_1 (2p_1 1
0w 8§'\w 8’ (2)2
2b
Ao _ 1 [ -0
® 8Q2 ’ 2b
... fractional change in natural frequency (f,.) is given by
1
e

Example 3.4 | A voltage having root mean square value Vims = 100 volts is applied to a series resonant

circuit with resistance R = 10 ohms, inductance L = 10 mH and capacitance C = 1puF. Calculate the natural

frequency and current at resonance in the circuit.

Sol. From the table of analog of Example 3.1, we can write the following table of analogs:
Mechanical quality Electrical quality
Mass (m) Inductance (L)
Compliance (1/k) Capacitance (C)
Mechanical resistance (k") Resistance (R)

In case of a mechanical system, the natural frequency is given by

V_E_L\/E_Lq(L)(L)
Tox 2;m Ym T 2p \\m/\ 1k

.. in case of the electrical circuit the natural frequency is given by

po LT
2n VLC
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or, V= 1
2x3.14xV10x 107 x 1 x 10°°
or, v=1592 Hz
The current at resonance is given by
v, 2V,
Imax = ;n;x = % [ Vmax = \/5 Vrms]
or, I =%= 14.14 A

Example 3.5] An object of mass m = 1 g hangs from a spring of spring constant k = 10° dyne cm™. A

resistive force kv acts on it where v is the velocity in cm s~' and & = 10* g s™'. If the object be subjected to
a driving force, F'= F, cos @'t with F, =2 x 10° dyne and @’ = 5000 rad s, then calculate the amplitude of
oscillation and phase, relative to the applied resistive force, in the steady state.

Sol. The spring constant k = 10*= dyne cm™, mass m = Ig
.. natural angular frequency of the object is given by,

k100 4
a)—\/;— E_IOOOrads

.. the force acting per unit mass is given by,

F 6
T 2x10° 6 1
fp=7 = ] =2x10"dyne g
K _ 10 3 1
d b=—-= = 10
an m =2 x1 5x107s
.. in the steady state, the amplitude of oscillation is given by
_ Iy _ 2% 10°
Va2 @ + (0% — D) 4 x 25 x 10° x 25 x 10° + (25 x 10° — 10°)?
2x10° 2x10°
or, A= = 7
V25 x 10+ 576 x 1012 10" x 25 +5.76
-
or, A =2 106 =3.606 x 102 cm
If o be the phase by which the oscillations of the driven system lag behind the force then
_ 2be’  _ 2x5%x10°x5x10°
tan o = > = 3 S
w? - 25x10°-1.0x 10
6
or, tan o0 = S0x 10° = 2 =tan"' 64.35°
24 x10° 12
o =64.35°

Example 3.6 | Compare the phase of the driven system with respect to that of the driving force.



Sol.
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From Eq. (3.6),we have

2baf
(@ - 0”)
Let us now observe the variation of the phase « of the driven system (i.e., phase lag) with respect to
the angular frequency @’ of the applied external force. Let us vary @’ from zero to infinity, in a few
steps, and observe the impact on the phase o.

tan o =

(1)

(i) If we put @’ = 0 in the equation, we get, tan o= 0 which implies o = 0.
Thus, there is no plase difference between the driving force and the driven system.
(i) When o’ < @, from Eq. (1), we get, tan o> 0.

Thus, the phase difference o has a value which lies between 0 and r

(iii) If we put ®” = win Eq. (1), we get, tan o = 0. This implies o =7§t

Thus, at resonance, the driven system lags behind the driving force by an angle of%r
(iv) When @’ > o, we can observe from Eq. (1), we get, tan o< 0.

Thus, the phase difference o has a value which lies between g and 7 and « lies in the second

quadrant.
(v) When " —, e we can observe from Eq. (1) that tan ot — 0.
Thus when @’ =0, 0t=7
Now, from the above discussion, we find that for all values of @’, the phase difference « lies between

. b4 . T
0 and m and it becomes equal to 5 at resonance, i.e., when @’ = @, o = >

Example 3.7 Show that at the resonance frequency, the rate of change of phase angle (with respect to

natural frequency of the driven system) is inversely proportional to b where b = 2k
m

4

and k" is damping force

per unit velocity of the driven system. And m is the mass of the system.

Sol.

or,

or,

or,

From Equation (3.6), we get

tan a=% (1)
(0 - @)
g 2bw’
o = tan” (—)
a)Z_wIZ
do -4bw’ Q)

do  4p’w™ + (& — ™)?
When @’ = m, resonance takes place.

*. at resonance @ =— l
B ’ do~ b
-1

b

where w=2mv
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or. do__2m

’ dv b
do 1
dv b

Hence, the rate of change of phase angle with respect to frequency (V) of the driven system is inversely
proportional to b.

Review Exercises

Part 1: Multiple Choice Questions

1. Which of the following statements is the case of a forced vibration?
(a) Vibrations produced in the string of a piano.
(b) Vibrations produced in a telephone transmitter during conversation.
(c) Sound produced in an organ pipe.
(d) None of these

2. Two vibrating systems are said to be in resonance if
(a) their amplitudes are equal (b) their frequencies are equal
(c) they are in same phase (d) None of these

3. The resonant frequency of an electrical oscillator is given by

1
= 2 LC b =
(a) v=2nVLC (b) v -~
(c) v= % (d) None of these

4. A damped harmonic oscillator of frequency @ is acted upon by an external force F = F, sin wt. If the
natural frequency of free oscillations be @,, the frequency of oscillations of the forced oscillations is
in steady state will be

0+ o,
@ o, ®) 0-, © o @ —
5. For small value of damping constant, the resonance is
(a) flat (b) sharp (c) remains same (d) None of these

6. In a forced oscillator at very low and high frequencies the value of which of the following variables
tends to zero.

(a) Phase (b) Charge (c¢) Driving emf (d) None of these
7. What is the phase difference between the driving force and the velocity of the forced oscillator?

@ ¢ (b) T+9 ©-9+7 @ ¢+

8. For a large value of the damping constant, the resonance is
(a) sharp (b) flat (c) remains same (d) None of these
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14.
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. Which of the following is the phase (¢) relationship between the displacement y of the forced oscil-

lator and the applied force F?
(a) ylags behind F by ¢ (b) yleads F by ¢

(c) ylags behind F by /2 (d) yleads F by /2
2

Considering the equation of the forced vibrations as m —i] +k % +ky=F,sin o't
dt

which one of the following statements is correct?
(a) K is a resistive force per unit velocity
(b) K is the stiffness factor
(c) K is the angular frequency of the applied external force
(d) None of these
The maximum amplitude in forced vibration is given by

@ —I o —
Vo'? + b? 26N + b*

f f
(©) ——— @
26N - b* 2b (0" - b)
When the frequency (@”) of the applied force and the natural frequency of vibration (@) are equal,
the value of maximum amplitude is given by

f f S
(a) N7 (b) ey (c) 5 (d) none of these

In amplitude resonance, the frequency of the applied external force is given by

—p? \ b 20

@ V== o) v=—"r
N 7
(c) V= % (d) none of these

In amplitude resonance, the relation between natural frequency of forced system (w) and the fre-
quency of the applied force (@”) is given by

(@) & =\ & +2b (b) o =V’ - 2b°
(©) o=V’ -b (d) none of these

The relation between the sharpness (S) and the quality factor (Q) in case of forced vibration is given
by

@ 0=25 ) 0= © 0=5¢ @ Q=5
[Ans. 1(b), 2(c), 3(b), 4(c), 5(b), 6(d), 7(a), 8(b), 9(a), 10(a), 11(b), 12(b), 13(c), 14(b), 15(d)]

Short Questions with Answers

1.
Ans.

What do you mean by forced vibration?

By forced vibration we mean a phenomenon in which a body is set into vibration with the help of a
strong external periodic force having a frequency different from the natural frequency of the body
itself.
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Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.
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. Why is a large amplitude produced when frequency of the applied external periodic force is

equal to the natural frequency of the forced body?

If the frequency of the external periodic force applied is equal to the natural frequency of the body,
then the external applied force increases the amplitude of vibration of the body as the external applied
force is always in phase with the velocity of vibration of the body. Each new impulse adds to the
effect of all the previous impulses because the successive impulses always arrive in phase and the
resultant effect makes the amplitude of vibration large.

What is meant by velocity resonance?

In the case of forced vibration, at a certain frequency of the external driving force, the ampli-
tude of velocity of the forced vibrator becomes maximum. By velocity resonance, we mean this
phenomenon.

What is meant by amplitude resonance?

In case of forced vibration, at a certain frequency of the driving force, the amplitude of the forced
vibrator becomes maximum. This is meant by amplitude resonance.

Is the energy supplied by the driving force stored in the forced vibrator? Explain.

No, the energy supplied by the driving force is not stored in the forced vibrator. The energy in each
cycle of the vibrator gets lost due to damping offered by the medium in which it vibrates. The energy
which is supplied by the external periodic applied force is exactly equal to the aforesaid loss of the
energy. The externally supplied energy is used to maintain the vibrations of the forced vibrator. And
in the steady state, the amplitude and period of vibration of the vibrator are so adjusted that the power
supplied by the external periodic applied force is exactly equal to the energy dissipated against the
frictional forces offered by the medium.

Why are soldiers usually ordered to break their steps when they march over a suspension
bridge?

While marching over a suspension bridge, the soldiers are prohibited to step in unison, because in
such a situation, the bridge will vibrate violently due to resonance and it will collapse. The resonance
will take place when the frequency of marching of the soldiers will be equal to the natural frequency
of the bridge.

State the physical significance of the quality factor (Q) of a forced vibrator.

The quality factor (Q) gives the measure of sharpness of the resonance. The higher the quality factor
(Q), the smaller is the bandwidh of resonance and accordingly the tuning will be sharper. This fact is
used to increase the selectivity of the radio sets. The sharpness of response of a circuit allows one to
reproduce the radio signals without any interference from the signals of frequencies which are close
to it. It also accounts for the amplification factor of the signal. And at displacement resonance, the
displacement at low frequencies is amplified by a factor of Q.

What is the difference between amplitude resonance and velocity resonance?

Both the amplitude resonance and velocity (or energy) resonance gives the indication that the driven
system is vibrating at its natural frequency and the frequency of the driver system. But in case of
amplitude resonance, one considers the maximum value of the amplitude while in the other case, one
considers the maximum value of the velocity of the vibrator (i.e., the driver system).

What is the Q-factor (quality factor) of a forced oscillator? [WBUT 2008]

It is such a factor which can give the exact idea regarding the sharpness of the resonance peak. It is
defined as follows:
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0= ©® _0_o
0,-0 Ao 2b
where o is the natural angular frequency of the driven system. And @, and , are the two values of
the angular frequency at which the power dissipation becomes half of its maximum value. @, ~ @, is
known as bandwidth. In short, the quality factor gives an idea regarding the quality or sharpness of
the resonance peak.
Show that at velocity resonance the velocity is in phase with the driving force ~[WBUT 2008]
In the steady state under the influence of a periodic applied force, the displacement of the vibrating
system is given by
y=A cos (0t - &)

_ f

\/(wz _ wfz) + 40 0
And o being the phase difference between the applied force F and the displacement y, @ and @’ are
respectively the angular frequency of the vibrating system and that of the applied force.

where A

2

and o = tan™" ( 2be> 2).
o -0’

The velocity of the vibrating system is given by
dy

v=—=—Aw’ sin (0't- 0o

i ( )
, b4 ,

or, v=A® cos(§+a)t—a)

or, v=Aw cos (0t + §)

where ¢ = g — . ¢ is the phase difference between the applied force and the velocity of the

vibrator.
At velocity resonance, the velocity of the vibrating system becomes maximum.

dy , ,
VUmax = (7) =[Aw" cos ('t + P)] nax
t /max
or, Vpax = [A®"] 105 X [cOS (0t + ®)] 10x
or, Z]max = (Aw,]max
fo'

or, z]max =

\f(cu2 — 0+ 40’0 |,
Or, 0. = fw, = i

' X 2bw’ 2b

Thus, we get the maximum value of v (i.e., v,,,,) only when @’ = .

So, at velocity resonance, the phase difference between the applied periodic force and the velocity of
the vibrating system is given by

¢=7—r—a=7—r—tan_](

2bw’
2 2

0)2—0)'2

or, o= g— tan”! (o0) [ 0= @]
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Hence, at velocity resonance, the velocity of the vibrating system and applied periodic force are in
phase.

or, o=

Part 2: Descriptive Questions

1.

10.

What is the difference between forced oscillation and resonance? Explain what is meant by sharpness
of resonance.

What is resonance? Draw the graphs of displacement amplitude and velocity amplitude against the
frequency of the sinusoidal force driving a mechanical oscillator for different values of damping.

. Derive an expression for the velocity of a forced oscillator. Discuss the variation of velocity ampli-

tude with driving force frequency and show its behaviour graphically.

. Distinguish between amplitude resonance and velocity resonance. Show that at velocity resonance,

the maximum velocity is inversely proportional to damping and the velocity of the oscillator is in
phase with the periodic external force in the steady state.

. Discuss the behavior of displacement frequency versus driving force frequency in case of a forced

oscillator. Prove that the resultant frequency of the driving force is slightly less than the natural fre-
quency of the displacement.

What is the difference between natural vibration and forced vibration? An oscillator can have more
than one frequencies of forced vibration but it can have only one frequency of natural vibration.
Explain.

Distinguish between free and forced vibrations. Write down the equation of forced vibration and
solve it. Explain what is meant by Q-factor.

Establish the condition for amplitude resonance and explain the sharpness of amplitude resonance.

. Draw the variation of velocity amplitude against the applied frequency @’ for different damping

constants. Prove that the maximum power intake by the oscillator is observed at velocity resonance.

Define sharpness of resonance. Find the energy dissipated per unit time per unit mass for forced
vibration.

Part 3: Numerical Problems

1.

A body of 10 g mass is acted upon by a restoring force per unit displacement of 10’ dyne/(cm s™)
and a driving force per unit velocity of 4 x 10° dyne/(cm s™') and a driving force of 10°cos (w?) dyne.
Find the value of maximum amplitude.

A particle of 0.01 kg mass is subjected to a restoring force of 0.5 Nm™', a damping force of 10 * kg s
and an external sinusoidal force of constant amplitude. Find the frequency of the driving force for
which there will be velocity resonance.

The forced harmonic oscillations have displacement amplitudes at frequencies @, = 400 rad s and
@, = 600 rad s™'. Find the resonant frequency at which the displacement amplitude is maximum.

An object of 0.1 kg mass hangs from a spring of spring constant of 100 Nm™'. A resistive force rv
acts on it where v is the velocity in m s and = 1 kg s™'. If the object be subjected to a driving force
F=F,cos ot with £, =2 N and @ = 50 rad s™', then calculate the amplitude of oscillation and
phase, relative to the force, in the steady state.
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5. To the lower end of a massless spring of spring-constant of 200 Nm™' and hanging vertically from
a rigid support, is connected a particle of 0.1 kg mass. A resistive force —kv acts on the oscillating
mass where v is the particle velocity and k is a constant. Find (a) the value of &, (b) The Q-value of
the oscillator, and (c) the percentage change in frequency of oscillation due to damping.

6. A particle of 2 g mass is subjected to an elastic force of 0.03 Nm™' and frictional force of
0.0005 N/(cm s~1). If the particle is displaced through 2 cm and then released find whether the result-
ing motion is oscillatory or not. If so, find its time period.






CHAPTER

Interference of Light

4.1 INTRODUCTION

Light is a form of energy and it is regarded as the transfer of energy from luminous sources to the eye, either
directly or through the object seen. Energy can be transferred from one point to the other either by means of
wave disturbance traveling through the intervening medium or by the motion of material particles between
the two points. Accordingly, two different theories about the nature of light wave were brought forward in the
seventeenth century; these theories were the corpuscular theory and wave theory. The corpuscular theory is
perhaps the simplest theory of light which assumes light to be tiny particles of matter. The corpuscular theory
of light was first given by Newton in 1642. According to him, a light source emits tiny corpuscles of light
and these corpuscles travel in straight lines in a transparent medium when not acted upon by external forces.
It explaining the reflection and refraction of light, the theory says that when light corpuscles approach the
exposed surface of material medium, they feel a force of repulsion and attraction. In the case of refraction, the
corpuscles are attracted by the refracting surface and enter into the second medium and in the case of reflec-
tion, the corpuscles are repelled by the reflecting surface into the first medium. We know that when a beam of
light is incident on the surface of a medium, the beam is partly reflected and partly refracted simultaneously.
To explain this phenomenon according to the corpuscular theory, it was assumed that some corpuscles are
under the action of repulsive force favourable to reflection, others in the same condition are under the action
of attractive force favourable to refraction. The arguments put forward by Newton in solving the problem
were not very convincing. Further, a large number of experimental observations (like interference, diffraction
and polarization) could not be explained on the basis of the corpuscular theory of light.

A Dutch physicist, Christian Huygens (1629—-1695), who was a contemporary of Newton, suggested that
a satisfactory explanation of interference and diffraction phenomena can only be given if one assumes light
as a wave. Using the wave theory, Huygens explained the laws of reflection, refraction and the phenomenon
of double refraction. However, no one really believed in Huygens’wave theory until 1801 when Thomas
Young (1773-1829) performed the famous interference experiment which only could have explained the
phenomenon of interference satisfactorily on the basis of wave theory of light. The corpuscular theory was
found to be totally inadequate to explain the experimental results.

Interference is the most general phenomenon in wave motion. Many kinds of waves exhibit interference:
such as light waves, sound waves, water waves and so on. The region in which two or more waves are incident
on each other is known as the region of superposition. The principle of optical interference is based on linear
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superposition of electromagnetic waves. In this case, there is no medium like in the case of sound waves. The
modification of intensity due to superposition of two or more beams of light is known as interference
of light. In this chapter, we shall consider the interference pattern produced by two waves emanating from
two sources. It may be mentioned here that with sound waves the interference pattern can be obtained easily
because the two superposing waves maintain a constant phase relationship. However for light waves, due to
the very process of emission, interference is not observed between the waves from two independent sources.
For permanent interference pattern, the two light sources must have constant phase relationship.

The method of achieving these sources and their applications will be discussed below.

4.2 WAVE PROPAGATION AND THE WAVE EQUATION

A wave is the propagation of a disturbance. For exam- | N
ple, when a stone is dropped in a calm pool of water at A /i
‘ V.

the point P [Fig. 4.1], waves start moving from the point.
In this propagation of wave, water goes up and then goes  y

o
o

down from the initial level of water. In Fig. 4.1, XY rep- \/

resents the level of water when it is not disturbed. At A ‘ ‘ D
and B a portion of water goes up from XY. These are 47 A —N
called crests whereas at C and D a portion of water goes | P
down from XY. These are called froughs. The distance . \ \1 )
between two crests or two consecutive troughs is called P /A /C / B /D

wavelength (A). The distance of crest or trough from the
initial horizontal water level is called amplitude of the ~ Fig. 4.1 =~ Wave propagation with crests and
wave and it is denoted by a. When a wave is propagat- troughs.

ing through the medium the displacement of the water

molecule is at right angles to the direction of propagation. This type of wave is known as transverse wave.
When a transverse wave propagates, particles of water execute simple harmonic motion (S.H.M.) about their
equilibrium position and associated with this motion is a certain amount of energy. The state of vibration of
the vibrating particle is called phase of the wave.

Wave Equation The equation of motion of the particle in SHM is given by

) where a = amplitude
y =a sin ©t
o = angular and frequency

At a distance x from the first particle, another particle also execute SHM. The phase difference between

these two particles having path differences x is given by ¢ = 2z X.

A
[Since phase difference is 27t when path difference is 1]
So, the equation of motion of the second particle is

—asin(wt—zirx)—asin(zirt—zlx)
Y A T 2

=a sin 2n (vt — x) | where phase vel. v = %]

This is the general equation of wave motion.
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4.3 PRINCIPLE OF SUPERPOSITION OF WAVES

The explanation of the phenomenon of interference of light is based on the principle of superposition of
wave motion. The principle states that when two or more waves simultaneously pass through a point of
a medium, the resultant displacement at any instant at the point concerned is the algebraic sum of the
displacements produced by the individual waves provided the displacements are small. For example,
if two similar waves are oscillating in phase then the net wave amplitude is just double (Fig. 4.2a) and the
waves interfere constructively. On the other hand, if two waves are exactly 180° out of phase, the net wave
amplitude is zero (Fig. 4.2b) and the waves interfere destructively.

VW VWY
VW VWY

(a) (b)

Fig. 42 Superposition of waves: (a) The two waves are in phase. (b) The two waves are 180° out of phase.

[Note Light is an electromagnetic wave of transverse nature consisting of one electric and one magnetic
field vector. The electric field vector characterizes the nature of light. In most of the cases, one deals with
the situations in which the electric field vector vibrates in a fixed plane. This fixed plane is considered as the
plane of vibration and the light is considered to be plane polarized. While analyzing interference and dif-
fraction, it is usually considered as the interaction of coplanar waves. In the discussion of interference and
diffraction, we will also assume light to be plane polarized.]

4.4 HUYGENS’WAVE THEORY

(a) Wave front According to the wave theory, a source of light sends out disturbances in all direc-
tions. In a homogeneous medium, the points that are situated at equal distance from the source of
light will vibrate in the same phase. The locus of all particles vibrating in the same phase at any time
is called the wave front of the wave produced by the vibration of the particles.

For example, if we drop a small stone in a calm pool of water, circular ripples spread out from the
point of impact, each point of the circumference of the circle oscillates with the same amplitude and
same phase and thus we get a circular wave front.

Depending upon the shape of the source of light, wave front are classified into three categories:
(i) Spherical wave front 1f we have a point source producing waves in an isotropic homoge-

neous medium, the locus of points which are in phase is a sphere. In this case, we have spherical
wave fronts as shown in Fig. 4.3(a).

(ii) Plane wave front At a large distance from the source, a small portion of the sphere can be
considered as a plane and a plane wave front is shown in Fig. 4.3(b).
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(iii) Cylindrical wave front When the source of light is linear in shape, a cylindrical wave front
is produced. The curved surface of the cylinder indicates the position of the wave front at a par-

ticular instant [Fig. 4.3(c)].

(a)
Fig. 4.3 (a) Spherical wave front. (b) Plane wave front. (c) Cylindrical wave front.

Pl
“

i
‘
i
Source
‘
‘
i
‘

(b) ©

(b) Huygens’ principle Huygens’ principle gives a geometrical interpretation of finding the shape
and position of the wave front at a certain instant of time has compared to its earlier shape and

position. According to Huygens’ prin-
ciple, each point on a given primary
wave front acts as a source of second-
ary wavelets, sending out disturbances
in all directions in a similar manner
as the original source does. The posi-
tion of the wave front at the later time
(called secondary wave front) is the
envelope of the secondary wavelets at
that instant.

In Fig. 4.4(a) PQ represents the shape of the
wavefront (originating from the points source S)
at t = 0. The medium is assumed to be homoge-
neous and isotropic. Let us now determine the
shape of the wavefront after a time interval of
At. With each point on the wave front as center,
let us draw spheres of radius u At, where u is the
speed of the wave in that medium. The common
tangent to all these spheres gives the forward
envelope which is again a sphere centered at S.
Thus the shape of the new wave front after a time
At is the sphere P’Q’. At a large distance from the
source, the radius of wave front will be very large
and a part of the wavefront will appear as plane
[Fig. 4.4(b)]. We also obtain a backward envelope
P”Q"”. In Huygens’ theory, the presence of the
backward is avoided by assuming that the ampli-
tude of the secondary wavelets is not uniform in

’ ” ’
P P” P P
P

OO0 00

Qq Q' aQ a
(a) (b)
Fig. 44 Shape of the wave front (a) PQ is a spherical

wave front centered at S at a time say, t = 0.
After At time P’Q’ is the forward envelope and
P” Q" is the backward envelope. (b) After alarge
interval of time the distance of the wave from
the source S will be very large and consequently
the wave front will be a plane wave front.
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all directions; it is maximum in the forward direction and zero in the backward direction. The absence of the
backward wave is really explained by Fresnel and Kirchhoff. They showed that the intensity at each point of
the secondary wave is proportional to (1 + cos 6) where 0 is the angle between the wave normal and the line
joining the point of the secondary wavelets and the sources S. For the point of the secondary wavelet, which is
directly behind the wave, the value of 8= mand hence (1 + cos 0) is zero. Thus the intensity of the secondary
waves in the backward direction is zero.

4.5 INTERFERENCE OF MECHANICAL WAVES

In order to understand the phenomenon of interference of light waves clearly, let us first take an illustration
of mechanical wave.

Suppose, mechanical disturbances of identical nature 1C
are being made at A and B on the surface of water in a still i
pond. It is shown in Fig. 4.5. Waves consisting of circular
crests and troughs will move over the surface of water from
A and B. Crests have been shown by circles of solid curves
and trough by circles of dotted curves. From the principle
of superposition, we know that the resultant displacement at
a point on the surface of water is obtained by algebraically
summing up the displacements produced by the two waves
separately at that point. The points shown by circles in the
diagram will have zero displacement. The waves are said to
have interfered destructively with each other at those points.
Intensity of wave there is also zero. On the other hand, the
points shown by cross in the diagram will have maximum
displacement because, at these points either the crest of one
will combine with the crest of the other or the trough of one

—————— Trough Screen

will combine with the trough of the other. In such a case, G
the amplitude of the resultant wave is twice the amplitude  Fig, 4.5 Interference of two waves from two
of either wave and the intensity is quadrupled. The waves, at sources A and B.

those points are said to be interfere constructively with each

other.

The same thing happens in the case of light. Instead of the surface of water if we suppose that A and B are
two optical sources continuously sending out identical waves in the surrounding optical medium and GEC is
a screen, then we find very bright points at G, E, C, etc., and dark points at F, D, etc. (Fig. 4.5). It means that
the screen will be intersected by alternate bright and dark points, known as interference fringes.

4.6 YOUNG’S EXPERIMENT ON INTERFERENCE OF LIGHT WAVES
(DOUBLE SLIT EXPERIMENT)

The phenomenon of interference of light was first discovered by Thomas Young in 1801.

Young allowed the sun light to pass through a pin hole S Fig. (4.6) and then at some distance through
two sufficiently close pin holes S, and S, in an opaque screen. Finally, the light was received on a screen on
which he observed an uneven distribution of light intensity. Young found that the illumination on the screen
consisted of many alternate bright and dark bands. In accordance with the modern laboratory technique,
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narrow parallel slits replace pinholes and the slit S is illuminated with monochromatic light (Fig. 4.7). Light is
received on a screen placed at a certain distance to the right and parallel to the plane containing the slits S; and
S,. According to Huygens’ principle, cylindrical wavelets spread out from the slit S and as the path SS, = SS,
the wavelets reach slits S; and S, at the same instant. Spherical waves emanating from S, and S, are coherent
[see Section Art. 4.9 ...] and on the screen permanent interference fringes are produced. Figure 4.7 shows the
section of the wave front on the plane containing S, S, and S,. On the screen a number of alternate bright and
dark bands of equal width, called interference fringes, are observed parallel to the slits. At the center of the
screen, the intensity of light is maximum.

Y

Light
7 X y Dark
Light
%\ Central
S, ¥ o Light maximum
z
o 0 Dark
S 5 1 Light
d X Dark
D ‘ Light
Fig. 4.6 Young’s experimental arrangement. Fig. 4.7 Section of the spherical wavefront.

Young observed some characteristics of the dark and bright bands:

(i) The interference pattern disappears, if one of the slits is closed. It shows that the interference pattern
is due to superposition of waves from the two slits.

(i) As the separation between the two slits is gradually diminished the spacing between the bands
increases and as the separation is increased the bands becomes narrow and ultimately disappears.

(iii) If light is allowed to enter directly through S, and S, and the slit S is removed, the bands disappear
producing a general illumination on the screen.

[Note Young’s double slit experiment is an example of interference by division of wave front. Here the
wave front from S is divided at S| and S,. Young explained the interference pattern by considering the prin-
ciple of superposition.]

4.7 THEORY OF INTERFERENCE (ANALYTICAL TREATMENT)

Let S, and S, be two sources of monochromatic light of wavelength P
A. Let two light rays from S, and S, proceed along S,P and S,P
respectively and superpose at the point P of the medium (Fig. 4.8). Sy
From the principle of superposition, we know that the resultant
displacement at P at any instant is the algebraic sum of the dis-
placements at P due to the individual waves.

If the waves coming from sources S; and S, produce displace-
ments y, and y, at P at an instant ¢, then

Yy =a; sm ! (4D Fig. 4.8  Superposition of two mono-

and Y2 = ay sin (@1 + 0) ...(4.2) chromatic light waves
where a; and a, are the amplitudes of the waves and 6 is the phase difference between the two waves. The
resultant displacement at P is given by
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Yy =y, + Y, =a, sin ®t + a, sin (ot + J)
= a, sin @t + a, (sin @t cos & + cos Wt sin O)
= (a, + a, cos 0) sin wt + (a, sin O) cos wt

Substituting (a, + a, cos 8) =A cos @ ...(4.3)

and a,sin § =A sin @ ...(4.4)
We have y =A cos @ sin ot + A sin ¢ cos 0t

= A sin (0t + @) ...(4.5)

where A and ¢ are new constants.

Hence, the resultant displacement at point P is a simple harmonic wave of amplitude A and phase difference
¢. The amplitude A can be obtained by squaring Eqs. (4.3) and (4.4) and then adding, we get

(a, + a, cos 8% + (a, sin 8)* = A% (cos” @ + sin” @)

or, A% =al + d} cos® 8+ 2a, a, cos 8+ d sin® §
or, A’ =al + a5 +2a,a,cos § ...(4.6)
The phase difference ¢ can be obtained by dividing Eq. (4.4) by Eq. (4.3), and we get
a, sin 8
tan p = ——— ...(4.7)

a,+a,cos 0
The resultant intensity at P is proportional to square of the amplitude, hence we write I o< A%,
Generally in arbitrary units, / = A%,
So, from Eq. (4.6) the resultant intensity is given by
I=al +a%+2a, a,cos § ...(4.8)

4.7.1 Condition for Constructive Interference

2.2
b max = 41 T d3
+ 2a, a, = (a, + a,)". The two waves reinforce each other completely and the resultant is thus maximum; in
general when

When §=0, 27, 47, etc., cos O = 1 which is the maximum value of the cosine function. Hence I

6=2nw ...(4.9)
(where n =0, 1, 2, 3 ...etc.) the resultant intensity becomes maximum.
In terms of optical path difference, the condition for maximum intensity is

S, P-S5, P=2nx% 8=27n-xpath difference ...(4.10)

So, at all points where the path difference is an even multiple of %, the waves will interfere constructively

producing very bright points and their interference is known as constructive interference.

4.7.2 Condition for Destructive Interference

) min = a12 + Cl% -
2a,a, = (a; — a,)”. This is the minimum value of the intensity. Here the two waves interfere destructively. In
general, when

When 6 = &, 37, 57, etc., cos 6 = —1 which is the least value of the cosine function. Hence I

S=Qn+) 7 BRCREY

(where n =0, 1, 2, 3, ...etc.) The resultant intensity becomes minimum. In terms of the optical path difference,
the condition for minimum intensity is
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SZP—S1P=(2n+1)% ...(4.12)

So, at all points where the path difference is an odd multiple of %, the waves will interfere destructively

producing dark points and their interference is known as destructive interference.

4.8 INTENSITY DISTRIBUTION CURVE AND ENERGY CONSERVATION

A curve showing the variation of intensity with phase is called the intensity distribution curve. The same is
shown in Fig. (4.9).

Fig. 4.9 Intensity distribution curve of interference.

When two light waves interfere, darkness is produced at some points. It appears that energy is destroyed
at the points of destructive interference and created at the points of constructive interference. So, the con-
servation principle of energy appears to be violated. But this not correct. The energy is merely redistributed
between maxima and minima. The energy is only transferred from the region of destructive interference to the
region of constructive interference. The average value of the energy over any number of fringes is the same
as it would be if the interference effects were absent. For example, the average value of the intensity on the
screen over the range, 6 =0 to 6 = 27 is given by

2 21
J1d5 _[ (a} + a5 + 2a,a, cos &) dS
0 0

I = =

average 2 2
[ds [ as
0 0

[a} 6+ d 8+ 2a, a, sin 5](2)”
(817

2, 2
(aj +ay) 2m
T

This means that the energy of the maxima is increased at the expense of the energy of the minima. And the
averaged value of the intensity equals the sum of saperate intensities. Thus, in the phenomena of interference
the energy is conserved.
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4.9 CONDITIONS FOR PERMANENT INTERFERENCE:
COHERENT SOURCES

The interference pattern in which the positions of maximum and minimum intensity of light remain fixed
along the screen is called sustained or permanent interference pattern.

For producing sustained interference, following conditions must be satisfied:

(i) The two sources must be coherent. It means that the two sources should emit waves in the same phase
or should have a constant phase difference between them. Two completely independent sources will
not form coherent sources because their individual phases change in a completely arbitrary way.

(i) The sources should emit light of same wavelength and same or nearly same amplitude.
(iii) The sources should be narrow and close to each other to observe distinct fringes.

(iv) At maxima, the path difference between the waves should be even multiple of% and at minima odd

multiple of %

(v) The two light waves must be in the same state of polarization.
(vi) The two waves must propagate along the same direction to get coincidence.

4.10 CLASSIFICATION OF INTERFERENCE PHENOMENA

There are two practical methods of obtaining two coherent sources from a single source.

(a) Division of wavefront In this method, we require a point source or a line source, from which
light waves spread out as spherical or cylindrical waves. Any two points on such a spherical or cylin-
drical wave front are taken as the interfering sources, which is evidently coherent. Fresnel’s bi-prism,
Lloyd’s mirror, Billet’s split produce two coherent sources by the above method.

(b) Division of amplitude 1In this method, we require an extended source. Devices which divide the
amplitude of the incoming wave of light into two or more parts by partial reflection and refraction
and thereby give rise to two or more beams which are later made to reunite to produce the interfer-
ence effects, come under this class. Some of the examples of this class are Michelson’s interfero-
meter, Newton’s ring experimental set up, Fabry —Perot interferometer, etc.

4.11 CALCULATION OF FRINGE WIDTH

Suppose A and B are two monochromatic coherent sources of light originating from S sending out waves of
same amplitude and same wavelength keeping same phase relationship between them (Fig. 4.10). Let AB =
2d and O is the midpoint of AB. The distance of the screen from O is OC = D. Now C is equidistant from A
and B. So the waves from A and B will meet in same phase at C. So the light intensity will be maximum at
C. It is called central maximum point.

Now, let us take another point P on the screen at a distance x from C. Join AP and BP. Since the paths are
unequal, the phase of the waves arriving at P from A and B will be different. So, whether the intensity at P
will be maximum or minimum that depends on the path difference (BP — AP).
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Now, BP?> =D’ + (x + d)* ..(4.13)
and AP’ =D* + (x - d)* .(4.14)
-~ BP?— AP’ = (x+d)* - (x—d)* = 4xd
or, (BP + AP) (BP — AP) =4x-d
dxd _ _ 4xd _2xd
BP + AP 2D D
[The point P lies very close to C and D is very large compared to
2d. So BP = AP = D]

A

?

SK-—Q7

BP — AP = ¥y
B

<« D —>

The path difference of the waves arriving at P is given by Fig. 410  Diagram of double slit
experiment
BP—AP:% ...(4.15) P

(a) Bright fringes Now, if P is the position of nth bright
2x,d
fringe then path difference is —— where x, is the distance of the nth bright fringe from central

maximum.

Now for bright fringe, the path difference should be equal to even integral multiple of % So

2x,d Y

D -3

Dni
, _ Dni (416
or X, = (4.16)

Now for (n + 1)th bright fringe, from Eq. (4.16), we can express the distance of that point from cen-
tral maximum as
_D(n+ DA
Xn+1 = 2d
Therefore, the width of the fringe in case of bright bands, i.e., the distance between two consecutive
bright bands is

(417)

ﬁ—D(n+ l)l_Dn/l_D_X

o 2d 2d  2d

(b) Dark fringes 1If P is the position of nth dark fringe, then path difference should be equal to odd
multiple of A/2. So

..(4.18)

2x,d
il =Qn+D%

D
(2n + 1)DA
; = 7 ...(4.19
or. X, v (4.19)
Now for (n + 1)th dark fringe, from Egs. (4.19), the distance of that point from central maximum is
DR2n+1)+1] 4
o DRt D+114 .(4.20)

n+1 — 4d
Therefore, the fringe width in case of dark bands, i.e., the distance between two consecutive dark is

, D2+ +1A Da _ DA
B et =35 ..(421)
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So from Egs. (4.18) and (4.21) we see that the distance between two consecutive bright or dark bands is
independent of the order of the fringe (i.e., n). Hence all bright bands and all dark bands have equal width.
The fringe width (f3), varies directly with D the slit screen separation, inversely with the separation of slits 2d
and directly with the wave length A4 of light employed.

4.12 SHAPE OF INTERFERENCE FRINGES
In the preceding article, we have seen BP*=D?+ (x+ d)2 and AP* = D* + (x — d)°.
So the path difference A =BP — AP = [D* + (x + d)*]"* = [D* + (x — d)*]"?
or, A+[D?+ (x—d))"? = [D* + (x + D)}
On squaring both sides,
A’ +2A[D* + (x =" + D* + (x = d)* = D* + (x + d)*
or, 2A [D? + (x — d)*]"? = 4xd — A?

On squaring both sides, this equation easily reduces to

4(4d* - A*) X* — 4N’D* = A? (4d* - A%
X D?
A4 (4d>—AD4

This is the equation of hyperbola in a standard form. The eccentricity (e) equal to

or, 1 ...(4.22)

e =

A_2+4d2—A2]”2/(é) _2d
4 4 2 A

Since A is very small, the eccentricity is very large. Hence the fringes appear as straight lines in the region
of observation.

..(423)

4.13 COHERENCE

The coherence of a wave describes the accuracy with which it can be represented by a pure sine wave. If a
wave appears to be pure sine wave for an infinitely extended time or an infinitely extended space, it is
called a perfectly coherent wave. The characteristic of such a wave is that a definite relationship between the
phases of the wave at a certain time and at a given time later, or at a certain space point and at another given
space-point exists. A perfect coherence is however, an idealization. A real light source always emits light in
short pulses. Light waves that are pure sine waves only in a limited space or for a limited time are only par-
tially coherent waves. There are two different criteria of coherence. The first criterion is related to the concept
of temporal coherence which expresses the correlation to be expected between a wave at a given time and a
certain time later. The second criterion is related to the concept of spatial coherence which expresses the cor-
relation to be expected between a wave at a given point in space and a point at a certain distance away. Laser
light is characterized by a high degree of ordering of the light field than the other sources. Due to its coher-
ence only, it is possible to create high power (10" W) in space with laser beam only 1 ¢m in diameter.

4.13.1 Temporal Coherence

Temporal coherence refers to the correlation between the light field at a space point at a time and that at
the same space point at a later time. The oscillating electric field E of a perfectly coherent light wave has a
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constant amplitude at any point in space, but its phase will vary with time linearly. As a function of ¢, the field
E will appear as illustrated in Fig. (4.11). The displacement of the ideal electric field E remains sinusoidal
for — o< < t < + o< and does not agree with the real cases.

E =21
1)
N

ANVANVANAWAWA AN
(A VA WA WA WA WA WA WAV

Ht

Fig. 4.11 A wave train of infinite length. Displacement remains sinusoidal for —oc <t <+ o<,

An actual source (real source) can never produce an ideal sinusoidal field for all time. When an excited
atom makes a transition back to its initial state, it emits a light pulse of extremely short duration ~107'" s.
The field therefore is sinusoidal for an interval of ~107'" s. The light pulse due to this transition is not a
continuous wave of infinite extent but a wave of finite extent. It is known as wave packet. The light from a
source is a bundle of such wave packet originating from different atoms. Different atoms of the source emit
radiation in a random fashion. Every wave packet propagates with a sustainable phase for time duration of
107! s after which it has a random phase. Figure 4.12 illustrates the field due to a real source of light. In
Fig. (4.12), 7, represents the average duration of the wave trains, i.e., the electric field remains sinusoidal for
times of the order of 7. The average time-interval for which the ‘field’ of light vector remains sinusoidal, and
therefore a definite phase relationship exists, is termed as coherence time, T, (or Af).

E

\

!
‘
:
:
— 7

<\

Fig. 4.12 Coherent time for an actual source.

The distance over which the field is sinusoidal is termed the coherent length I. of the light beam and is
given by,
l.=1,xc ...(4.24)
where c is the speed of light in free space. For example, for the Ne line (A = 6328 A), T, ~ 1071 s and for the
red Cd line (1 = 6438 A) (P 107 s; the corresponding coherence lengths are 3 cm and 30 cm respectively.
The temporal coherence 7, of the light beam is related to the spectral width AA given by

/'LZ
T, = ...(4.25

C AL 425
12

and coherence length l.=-—=c ...(4.26)
AL

In terms of frequency, coherent length /. can be expressed as
[ == ..(427)

C:A_V
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where Av is the line width.

The light emitted by a laser is more monochromatic (ideal harmomic wave of infinite extent because Av is
equal to zero) than that of any conventional monochromatic source. The degree of non-monochromaticity (&)

of a wave may be defined as its relative band width and is given by & = %

For a highly stable gas laser Av =500 Hz
and v =5x10"Hz
. 500 12
the degree of non-monochromacity = =10
5% 10" 10
But for conventional monochromatic source, the degree of non-monochromacity = — = 107
10

Therefore laser source is more monochromatic than conventional source.

4.13.2 Spatial Coherence

The spatial coherence refers to the correlation between two light fields at two different space points at
an instant of time on a wave front of a given light wave. If two light fields at two different points in space
preserve a constant phase difference over any time ¢ then they are said to have spatial coherence.

Let the light waves be emitted from the source S (Fig. 4.13) and A and B be two space points on a line
joining them with S. The phase relationship between the points A and B depends on (i) the distance AB and
(ii) the temporal coherence of the beam.

If AB <<, the coherent length, then there will be a definite phase relation-
ship between A and B. So, there will be a high degree of coherence between
the points A and B. Conversely, if the distance AB >> [ the coherent length,
then there will be no coherence between the points A and B. S

'We now consider the points A and C which are equidistant from the source A
S, but unlike the previous case, not on the same line joining with S. If S is B
true point source, light waves will reach A and C exactly in the same phase.
In other words, the two space points will be in perfect spatial coherence. In  Fig. 4.13  Spatial coherence.
case the source is an extended one, the two points A and C will no longer be
in coherence. For extended source, it is not necessary that phase at two points at equal optical path distance
would be equal because optical path for different waves emitted from different parts of the source would be
different. Therefore, spatial coherence depends also on size of the source. The lateral coherence width (/)
of an extended incoherent source represents the distance over which the beam may be assumed to be spatially
coherent; it is given by

1 =2 ...(4.28)

where 0 is the angle substanded by the source at the point of observation.

In the case of interference of light, the degree of contrast of fringes depends on the degree of spatial
coherence of interfering waves. The contrast of interference fringes varies as the optical path difference (A)
is varied, beginning from an extremely good contrast for A << [_to a very poor contrast for A >> [ .

The spatial coherence is directly related to the degree of directionality of light waves. For higher degree of
spatial coherence, higher would be the directionality. Since laser beam is highly directional one, so it is more
spatially coherent than ordinary light.
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So we may conclude that degree of contrast of fringe pattern is a measure of degree of spatial coherence
and monochromaticity is a measure of temporal coherence.

4.14 CHANGE OF PHASE DUE TO REFLECTION: STOKES’ LAW

Stokes’ law states that if waves are reflected at a rarer to denser medium interface (for example air-

glass interface), the reflected waves suffer a phase change of 7 (or path difference %) compared to

incident waves.

But if reflection takes place at a denser to rarer medium interface, then no change of phase or path dif-
ference takes place. In Fig. (4.14) AB is the surface separating the denser medium below it from a rarer
medium above it. A light wave of amplitude « is incident at O in P a R
the direction PO on the surface of separation. A part of the light
is reflected along OR and the remaining part is refracted into the
denser medium along OT. If r and ¢ be the reflection and trans-
mission coefficients respectively, then the amplitude of reflected 4

B
wave OR is ar and the amplitude of the refracted wave along OT is
at. If there be no loss of energy, then r + t = 1. Now if the reflected arty X Denser
and refracted rays OR and OT be made to retrace their path, then atry—— a8t

they should combine along OP to yield the original amplitude a.

If the ray OR of amplitude ar is made to retrace its path along
RO, it is partly reflected along OP with amplitude ar* and partly
refracted along OS of amplitude art.

Fig. 4.14 Stoke ‘s’ treatment.

Similarly, when the ray TO of amplitude at is reversed, it is partly refracted along OP with amplitude azt’
(t” being the co-efficient of transmission in the rarer medium) and partly reflected along OS with amplitude
atr’ (r’ being the coefficent of reflection in the denser medium). Since originally we had an incident wave
PO of amplitude a and no wave along OS, we must have

arf +att’ =a ...(4.29)
art+atr’' =0 ...(4.30)
from Eq. (4.29), we get w=1-r
From Eq. (4.30), we get r'=—r

The negative sign implies a displacement in opposite direction that is equivalent to a phase change of 7 or
a path difference of %

Hence, the two rays one reflected from a denser medium and the other reflected from a rare medium differ
in phase by 7 from each other.

4.15 INTERFERENCE IN ATHIN FILM (REFLECTED LIGHT)

When white light is reflected by thin films like soap bubbles, oil layers on water and oxide layers on metal
surfaces a variety of colours can be seen. This is due to interference between light reflected by the front and
back surfaces of these films.
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Here we, consider a thin film of thickness ¢ and refractive index
U bounded by two plane surfaces AB and A’B’ (Fig. 4.15]. Let,
the light wave from point source P be incident at O at an angle
i. A part of the light is reflected along OT and the other part OQ
is refracted into the film towards Q making angle of refraction.
At Q, it is again partly reflected along OR inside the medium and
partly refracted out of the medium along QC. The ray OR finally
emerges out along RS.

The rays OT and RS are originated from the same source. So,
if they meet at a point will produce interference. But there is a

. Fig. 4.15 Waves reflected and
path difference between the two rays. transmitted by a thin film.

To calculate the additional path traveled by RS inside the film,
drop a perpendicular RN on OT. Hence, the path difference between the rays RS and NT is

6’ = optical path OQR inside the film — ON
=1 (0Q + OR) — ON ..(431)
=200~ ON [.0Q=0R]
=2UO0Q—-ORsin i

t

Now t=0Qcosr or, OQ:cosr and OR=2ttanr
5’:2,ucotsr—2ttanrsini
_ 2 2 ) =
_cosr(l_sm r)=2utcosr ...(4.32)

Now, an additional path difference of % is introduced in the path of the ray OT as it is reflected from the

surface of an optically denser medium.
Hence, the effective path difference between the two reflected rays

0=2Utcos ri% ...(4.33)

If the path difference be 6 = nd where n=0, 1,2,3 ...
Then constructive interference takes place and the film appears bright.

2,utcosri%=nl

~

or, 2utcosr=02n=¥1) ) ...(4.34)

If the path difference be 6= 2n = 1) % where n =0, 1, 2, ... destructive interference takes place and the
film appears dark.
2,utcosri%=(2ni 1)%

or, 2utcos r=nl ...(4.35)



4.16 Basic Engineering Physics

4.15.1 Transmitted Light

For transmitted light, the film will appear bright (constructive interference) when
2utcos r=nl ...(4.36)
and the film will appear dark (destructive interference) when

2utcosr=2n = 1)% ...(4.37)

Thus, the interference pattern in the reflected and transmitted system are complementary to each other.

Extremely thin film appears dark When the thickness of the film is very small compared to the wave
length (¢ << A), so that 2u7 cos r is negligible, the two rays will be out of phase | path difference = %) and

therefore the film will appear dark.

4.15.2 Coloring Effect in Thin Film

If white light (e.g., sunlight) is incident on the film (oil film floating on water) instead of monochromatic
light, a beautiful coloring effect is observed on the film. White light contains seven visible colors of different
wavelengths. As a result, if destructive interference occurs for one color, it will not be true for all colors.
Hence excepting one color, all other colors will be seen by the eyes. Consequently, the oil film floating on
water will show a variety of colors.

4.15.3 No Coloring Effect in Thick Film

If a film has large thickness, then at a given point, the condition of brightness will be satisfied for large
number of wave lengths. Hence no particular color will finally appear at the given point. Thus, a thick film
exhibits no color effect.

4.15.4 Necessity of Broad Source of Light in Thin Film

To produce coherent sources by the method of division of wave front (Fresnel bipsipm, Lloyd’s mirror) the
source of light is taken in the form of narrow slit. But to produce coherent sources by the method of division
of amplitude, we require extended source.

When a thin film is illuminated with light from a point source and it is observed with a lens of small apper-
ture such as the eye, the ray that can enter the eye are confined to a small range of directions. But in case of
broad source the rays incident at different angles on the film are accommodated by the eye and the field of
view is large. Due to this reason, to observe interference phenomena in thin film, a broad source is required.

4.16 INTERFERENCE IN A WEDGE-SHAPED FILM

A wedge-shaped air film is enclosed by two plane surfaces inclined at an angle ¢. If the film is illuminated
by a monochromatic light PO, then the reflected ray OT from the front surface and the other emergent ray ST
reflected from the back surface BC of the film will interfere (Fig. 4.16). There two rays are originated from
the same source P and hence they will produce interference pattern. Let i be the refrective index of the mate-
rial of the film. The path difference between the two rays OT and ST is given by
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6’ = optical path ODS inside the film — ON
=u(OD + DS) - ON
=u (OD’ + D’D + DS) - ON
=u(D’'D+DS) [ON=uOD’] ...(4.38)
Draw SME L BC. Produce OD and SM to meet at E. From
the geometry of Fig. (4.16) DE = DS and SM = ME =t = the
thickness of the film at S.

6’=u(D’'D+DE)=uD’E=2 utcos (r- o)
...(4.39)

In addition to this path difference, there is an extra phase

difference of m, or path difference + % caused by reflection at Fig. 4.16

Interference in wedge-shaped

O, from the surface backed by denser medium. The reflection film,
at D, from the surface backed by rarer medium, will not cause
any change of phase.
Hence the total path difference between the two reflected rays is,
5:5’i%=2utcos(r—a)i% ...(4.40)
(a) For constructive interference
2 A . A
utcos (r— o))+ 5= even multiple ofE
. A
or, 2ut cos (r — o) = odd multiple of 5
=2n=¥ 1)% wheren=0, 1, 2, 3, ...(441)
(b) For destructive interference
> A . A
utcos (r— o)+ 5= odd multiple of 2
or, 2ut cos (r — o) = even multiple of %
or, 2utcos (r—o) =nA wheren=0,1,2,3 ...(4.42)
A
4.16.1 Fringe Width
We take a point at a distance x; from O, where thickness of the
film ¢ (Fig. 4.17). For normal incidence (i.e., r = 0), we have ;
_ A 6
2ut cos 0—(2n+1)2 5 B

for constructive interference ...(4.43) % 4’{
[e— X5

Fig. 4.17 Fringe width.
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Since @is very small cos 8 =1 and ¢ = x; 6. Equation (4.43) reduced to 2utx; 0= (2n + 1) % ...(4.44)
Similarly, if x, be the distance for (n + m) bright band, then
2Ux,0=[2 (n+m)+ l]% ...(4.45)
From Egs. (4.44) and (4.45)
200 (xy —x;) =mA ...(4.46)
. . Xy — X A
F dth B= = ...(4.47
ringe width 8 — 210 (4.47)
This equation is also true for dark fringe
. mA
Again (xy—x)) 0= ﬂ
mA
or, f2 - tl = ﬂ .. (448)

It gives the difference of film thickness between two points.

4.16.2 Discussions

(i) When the thickness of the film is very small compared to the wavelength, i.e., # << A then 2u7 cos r
is negligible in comparison to A and we have 6 = 0. This condition corresponds to zero intensity in
the reflected part but maximum intensity for transmitted part.

(ii) Classification of fringes: We have & = 21t cos r, from this we see that 6 depends upon (i) A, (i) uz
and (iii) r.
Therefore, for variation of each of them there are different types of fringes:

(a) When ut and r are kept constant the fringe system depends upon A, i.e., on the color of the light.

These are known as the fringes of equal chromatic order (FECO).

(b) When A and r are kept constant, we have fringe system dependent upon 7. These are called fringes
of equal thickness or iso-pachic fringes. These are localized fringes.

(¢) When A and ur are kept constant, the fringe system depends upon r. These are known as fringes of
equal inclination or iso-clinic fringes. These fringes are localised at infinity. The fringes of equal
inclination is sometimes also called Haidinger’s fringes.

4.16.3 Color of Thin Wedge-Shaped Film

At the edge the thickness of the film is negligible. Therefore, the edge will appear dark under reflected light.
When ¢ increases, for a particular value of ¢ brightness condition will be satisfied first by the violet light.
Hence violet color of the fringes will be the first one. Then the fringe of other color follow, i.e., blue, green,
yellow with increasing thickness. But at certain thickness, the condition for constructive interference for two
or more wavelengths at different orders may be satisfied. Hence the regions of greater thickness will have
mixed coloration. This will ultimately terminate into uniform coloration.
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4.17 NEWTON’S RING

An air film of gradually increasing thickness outward is formed between an optically plane glass plate and
curve surface of a plano-convex lens. The thickness of the film at the point of contact is zero. If this film
is illuminated by a broad-source of monochromatic light a ring system alternately bright and bark are seen
around the point of contact. These rings were first discovered by Newton, that is why they are called Newton’s
rings. In general, in the reflected light the ring system starts with dark ring at the center and for transmitted
light it starts with bright ring at the center. Typical Newton’s rings are shown in Fig. 4.18[(a) and (b)]

7

(a) (b)

Fig. 4.18 (a) Newton’s rings in reflected light. (b) Newton’s rings in transmitted light.

Al D D.
The adjoining diagram (Fig 4.19) shows a sectional view of 3 !
the Newton’s ring apparatus. A light ray AB falls on the film

surface and a portion gets reflected along BD.

Another portion BC is transmitted through the film and par-
tially reflected from the glass plate along CB; and ultimately
follows the path B, D,. There is transmitted ray CT. It is obvious
that there is reflection also at B, which produces the next trans-
mitted ray C,;T,. Thus, BD and B;D, are two coherent beams
which may interfere. Similarly, transmitted rays CT and C; T} T T
may also interfere. This is because all the rays are obtained from
the same incident beam by the division of amplitude. Therefore Fig. 4.19 Asectional view of the Newton’s

‘ Glass plate o C\ C ‘

they are coherent beams. rings apparatus.
For reflected light the condition of interference are as follows:
2utcos (r— o) = 2n% for darkness.

2utcos (r—a)=2n+1) % for brightness

Here y is refractive index of the thin film, # is the thickness of the film at the point under consideration and
a is the angle between the surfaces at the same point. Here we have also considered the phase change 7 for
the ray B; D, due to reflection from the denser medium, i.e., the glass plate.

Generally light is made to fall normally and the radius of curvature of the lens is very large and hence we
can rewrite the above conditions as
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2ut =ni for minima ...(4.49)
2ut=02n+1) % for maxima ...(4.50)

For transmitted light as there is no extra phase change 7, the conditions for maxima and minima are just
the reverse.

As the shape of the film is symmetrical with respect to the touching point it is obvious that a constant
thickness (¢) will be on the circumference of a particular circle with center at the touching point. Therefore,
the ring system will be concentric circles. When ¢ = 0, i.e., at the center, the reflected interfering beams will be
out of phase and hence the center will be dark. Obviously, next ring will be bright due to the relation for the
condition of brightness. This will be repeated and hence the ring system will be alternately bright and dark.

The ring system with the transmitted beam will be complementary to that of reflected system due to
absence of extra phase difference 7.

4.17.1 Working Formula for Newton’s Rings

Figure 4.20 shows that the thickness 7 of the film at any point is related
to the radius of the circular ring BD on which it lies and the radius of
the curvature of the lens R. If the point of observation is dark and the
radius of the nth dark ring is r, (say) [Note: The dark ring is the nth
dark ring excluding the central dark spot]. Then from the diagram, we
have

=R - (R-1’
=(Q2R-nt ..(4.51) l

Now ¢ is very small compared to R (R is the order of 100 cm and ¢ is % n ﬁ
almost 1 cm). Therefore R >>2 t. Hence, Fig. 420 Determination of radii

r, =2 Rt ...(4.52) of Newton’s rings.
But we know from Eq. (4.49), 2ut = nA for dark fringe

2

’

’}e“ —nA or r,f:RT”)“ .(4.53)
This shows that the radius of the dark ring is proportional to the square root of natural number.
The corresponding diameter is obviously given by

d}=Qr) = —4121)‘ (454

This is the expression for the diameter of any nth dark ring. Similarly, we can show the diameter of any
nth bright ring is given by
42 22n+ 1) RA

A m ...(4.55)
Obviously, the expression for the diameter of the (n + p)th dark ring is given by
4(n+p) RA
i, =2 rp) R ..(4.56)

n+p = u
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So, from Egs. (4.54) and (4.56), we have
. ;. ,—d)u
4pR
Thus we can find out A, i.e., the wavelength of a monochromatic light if we can measure the diameters
of different rings. Same result can be obtained for bright rings by considering d and d,, the diameters of

...(4.57)

n+p
(n + p)th and nth rings.
4.17.2 Newton’s Rings in Transmitted Light
For transmitted light the central spot is bright and for nth bright rings
2ut=ni
2
Again, t = # where r, is the radius of the n™ bright ring.
Hence, for nth bright ring
5
2ul| ===
#\3R)="*
or. r2=l AR
k] n ‘Ll
For nth dark ring rn2 =2n+1) % ...(4.58)

When n = 0, for bright ring r, =0
Therefore, in the case of Newton’s rings for transmitted light, the central ring is bright (Fig. 4.18b) which
is just opposite to the rings pattern produced by reflected light.

4.17.3 Refractive Index (R.l.) Calculation of Transparent Liquid by
Newton’s Rings Method
A liquid film can be produced instead of air film by putting few drops of experimental liquid between the

plano-convex lens and the glass plate. Then by using a monochromatic light of known wavelength, the dia-
meters of nth and (n + p)th dark rings can be measured by the traveling microscope.

If d) and d}, , , be the diameters of nth and (n + p)th dark rings respectively then from Eq. (4.57)

n+p
4pRA
’ l2 —
dipp=dit == ...(4.59)
and for air film (u=1)
d>,,—d,’ =4pRA ...(4.60)
2, —d>
So, p=—==" ..(461)
dn +p_dn

4.17.4 Experimental Arrangement

To observe the Newton’s ring, the experimental arrangement is made as shown in Fig. (4.21).
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An air film is illuminated by sending light of single
wavelength from a broad source. The light is made par-
allel with the help of a lens and then directed normal to
the surface of the Newton’s ring apparatus by the help of
a plane glass plate held at 45° to the rays from the lens.
The reflected light is seen by a traveling microscope held
over the glass plate. The diameters of the ring system can
be measured with this travelling microscope. Using Eq.
(4.57) [ = 1 for air], one can easily determine the value

Microscope

, Glass
45 plate Lens

Light
source

A A

/47 Plane convex lens
4— Air film

of R for a light of known wavelength, say sodium light. ElEes e |

Then with this determined value of R, the wavelength (1) Fig. 421 Experimental set-up to observe
of any unknown light can be determined by the relation Newton’s rings.

(4.57)

4.17.5 A Few Points in Connection with Newton’s Rings

(a)

(b)

(c)

(d)

Newton’s rings with bright center due to reflected light 1f we place a liquid of refractive
index u between the plano-convex lens and glass plate such the y; > y > u, where y, and u, are
the refractive indices of lens and glass plate respectively. Then the glass plate is no longer a denser
medium with respect to the transparent liquid. Hence, there is no extra phase change 7 between the
reflected interfering rays. Therefore the center of the ring system will be bright.

The central spot will also be bright under reflected ray if y; < u < W,. In this case, path differ-

ence % take place at both surfaces.

Disappearance of Newton’s ring Newton’s rings will disappear if the glass plate is replaced
by a plane mirror because the intensity of light reflected by the plane mirror will be much more com-
pared to the intensity of light reflected by the curved surface of the lens. Under this condition, the
two reflected beams will produce no interference fringe.

White light effect For monochromatic light, Newton’s rings are alternately dark and bright with
dark centre. With white light the central spot will be dark because the condition of darkness is inde-
pendent of wavelength of light. This dark center would be surrounded by few color rings close to
it and only the first few rings will be clear and after that there will be general illumination due to
overlapping of different colored rings.

Newton’s rings for lens in contact with a concave surface If R, and R, are the radii of
curvature of the convex surface of plano-convex lens L, and the concave surface of the concave glass
plate L,, then it can be easily shown that

(dyyp,—d) L
u+7,,( L1 ) .(4.62) 1
4p

where A is the wavelength of incident light and d,, , , and d,, are diameters

of (n + p)th ring and nth ring. This relation is true for both dark and bright Fig. 4.22  Lens in contact

rings. with concave
surface.

Ry Ry

L
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(e) Newton’s rings for lens in contact with convex surface 1f
R, and R, are radii of curvature of the convex surface of plano-convex
lens L, and convex surface of plano-convex lens L, then it can be easily

shown that
udy,,-dh 1
R (_ + _) ...(4.63) Fig. 4.23 Lens in contact
P R R, .
with convex
where 4 is the wave length of incident light and d, , , and d,, are diam- surface.
eters of (n + p)th ring and nth ring. This relation is true for both dark
and bright rings.
(f) Calculation of fringe width For two successive rings of diameters d, and d, , |, the fringe width
B is given by
ﬁ _ dn +17 dn
2
Again, from Eq. (4.57) forp =1
4R
dy, —dy= T
4 AR
or, (dn+1_dn)(dn+l+dn)=T
4AR 4AR .
: d  .—d = = S d,.+d,=2d
Or, n+1 n #(dn+1+dn) 2dn/.t [ mce a, . n n]
d,,,—d, AR
So, =2t ro . (4.64
o peg (4.64)
Worked-out Examples

Example 4.1 | The path difference between the two interfering rays at a point on the screen is 1/8th of a

wavelength. Find the ratio of the intensity at this point to that at the center of a bright fringe.
Sol. The intensity at any point is given by
I=a}l+ad5+2a,a,cos &
Here a; = a, = a (say)
Therefore I=24% (1 + cos &)
At the center, phase difference §=0
. Iy =2a> (1 +cos 0) = 24> (1 + 1) = 4d*

At the point, where the path difference is %

phase difference = % x path difference
2 A_xm
A 8 4
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I, =2a2(1+cos§)=2a2(1+%)

I
Therefore A =7=—(1 +L)=O.85

0 44* 2 \2

Example 4.2 | Two coherent sources whose intensity ratio is 100:1 produce interference fringes. Find the

ratio of maximum intensity to the minimum intensity.

Sol. The ratio of maximum intensity to the minimum intensity is given by
Inax _ (a1 + 0" 0
Imin ((11 - (12)2
I, a}
Here 1= —12 = @
a1 10
or, &1 or, a;=10a, ...(2)

Substituting the value of a; from Eq. (2) in Eq. (1), we get
Imax (10 (12+(12)2 121

Lin  (10ay-a,)* 81

Example 4.3 | [f the intensity at a point due to a light wave is 0.8 W/m?, what would the intensity at that

point when two such waves interfere at that point?

Sol. If they are in opposite phase, the resultant intensity (1,
to zero. But if they are in phase, then resultant intensity (7,
equal to

) at the point of superposition would be equal
) at the point of superposition would be

Imax = (al + 01)2 = 4(112 =4x0.8=3.2 VV/I’I]2

Example 4.4 | n Young’s double slit experiment, red light of 620 nm wavelength is used and the two slits

are 0.3 mm apart. Interference fringes observed on a screen are 1.3 mm apart. Calculate the distance of the
slits from the screen.

Sol. Fringe width 8= 2_6’}

Here A=620nm=620x 10" m
2d = distance between the two slits
=03mm=03x10"m

_ DA
p= 2d
_Bx2d 13%x10°%03x107
or, D = =
A 620 x 107°

=0.629 m
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Example 4.5 | n an experiment using Young’s double slits, the distance between the center of rhe interfer-
ence pattern and tenth bright fringe on either side is 3.44 cm and the distance between the slits and the screen

is 200 cm. If the wavelength of the light used is 5.89 x 107° cm, determine the separation between the slits.
[Question Bank, WBUT]

Sol.  The distance of the nth bright fringe from the central maximum,

‘= nDA
" 2d
Here n=10, D =200cm

A=589x107 cm, x,=3.44cm

_nDA_10x200x5.89 x 107~
I 3.44

=0.0342 cm
So the diatance between the slits is 0.0342 cm.

Example 4.6 | In a Young’s double slit experiment the distance between the two coherent sources is

1.15 mm. Calculate the fringe width that would be observed on a screen place at a distance of 85 cm from the

2d

sources. The wavelength of light used is 5893 A (WBUT 2005, 2008)
. . DA
Sol.  Fringe width  fB= d
Here A =5893 A =5893x 10 cm

2d=1.15mm=0.115 cm

D =85cm

= DA_ 85x5893 10°°

2d 0.115
=043 cm

Example 4.7 1n a Young’s double slit experiment, the fringes are formed at a distance of 1 m from the

double-slit of separation 0.12 mm. Calculate the distance of 3rd dark band from the center of the screen.
Given wavelength of light A = 6000 A.

Sol. For (n + 1)th dark rings  x,,, =(n+ %) 2—2’
2

For third dark fringe, =

Also, 2d =0.012cm, D=100cm, A=6x 107 cm
: 1) 100 x 6 x 107

> w=(24) 0

=1.25cm
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Example 4.8 | 1n a Young’s double slit experiment, the angular width of a fringe found on a distant screen
is 0.1°. The wavelength of light used is 6000 A. What is the spacing between the slits?

Sol. The angular fringe width (W) is given by

A
Wo=24
.. spacing between the slits (2d) is
A
2d = —
W
Here A =6000 A = 6000 x 10 cm
Wg=0.1° = 0.118):) T radian
-8
24 = 8000 X107 X180 _ 5 44 102 em
01xm

Example 4.9 | A beam of light consisting of two wavelengths of 6500 A and 5200 A is used to obtain inter-
ference fringes in the Young’s double slit experiment. What is the least distance from the central maximum

when the bright fringes due to both the wavelengths coincide?
The distance between the slits is 2 mm and the distance between the plane of the slits and the screen is
120 cm.
Sol. The condition for least distance when the bright fringes due to two wavelengths to coincide is that the
difference between their order of fringe width should be one.

_Dnk, D+ D,

= 0d 2d
or, ndy=m+1)A, ..(1)
Here A, =6500A=65x10"cm and A,=5200A=52x10"cm

So from the Eq. (1)
65n=52m+1)
or, n=4
Now from the equation

_Dn/ll 0
X, = " we have
5
xn:120><4>(<)g.5x10 = 0.156 cm.

Example 4.10] T a double slit interference pattern at a point, the 10th order maximum is observed for light

of wavelength 7000 A. What order will be visible if the source of light is replaced by light of wavelength
5000 A.

Sol. The condition of maxima in interference is given by
Path difference = nA
Here A=7000A;n=10
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So path difference = 7000 x 107 x 10 (1)
For light of wavelength 5000 A
path difference = n x 5000 x 10°® ...(2)

Equating Egs. (1) and (2) for path difference at the same point
n % 5000 x 107* =10 x 7000 x 10~

, = 107000 x 10°°
5000 x 107
=14
Hence, the 14th order of maximum will be observed.

Example 4.11] n a Newton’s ring experiment, the diameter of Sth dark ring is 0.336 cm and the diameter

of the 15th dark ring is 0.590 cm. Find the radius of the plano-convex lens if the wavelength of the light used
is 5890 A. [WBUT 2004]
D’ZZ _ D,f D2 _D?
Sol. Radius R=—"0 =B 5
4pA 4x10%x A
Here p=10, D5=0.336cm D;5=0.590cm
A =5890x 10 cm
_(0.590)” - (0.336)
4x10x 5890 x 107
=99.83 cm

Example 4.12| Light of wavelength 6000 A falls normally on a thin wedge-shaped film of refractive index
1.4 forming fringes that are 2 mm apart. Find the angle of the wedge.

Sol.  Given A =6000x 10" m
=14, B=2mm=20x10"m
The fringe width in the case of wedge-shaped film for normal incidence is given by

R

_ A
h= 218
or angle of wedge, 0= Z—;tﬁ
u
6000 x 10~

= =1.07 x 107 rad.
2x1.4x2x107

Example 4.13] Newton’s rings are observed in reflected light of wavelength 5900 A. The diameter of the

10th dark ring is 0.5 cm. Find the radius of curvature of the lens and the thickness of the air film.
Sol.  Here 2=5900 x 10" m
n=10, D,=05cm=5x10"m
(a) The diameter of the dark ring is given by
D> =4nAR
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D? (5 % 1073)?
= = i 1.059 m
4nd 4 %10 x 5900 x 10
The thickness of the air film is given by
2t =nA
~10
or, t=%=10x59020><10 =295x10°m

Example 4.14] A Newton’s ring experiment is performed with a source of light having two wavelengths,

A =6x 107 cmand A, = 4.5 x 107 cm. It is found that the nth dark ring due to A, coincides with (n + 1)
th dark ring due to A,. If the radius of curvature of the curved surface is 90 cm, find the diameter of the nth
dark ring for 4.

Sol. The diameter of the nth ring is given by

D? =4 nRA, .1
For (n + 1)th ring
D} =4+ 1)RA, (2
The nth dark ring due to A, coincides with (n + 1)th dark ring due to A,. Hence from Egs.
(1) and (2)
4nRA, =4 (n+ 1) RA,
or, nAy—nk, =4,
or, nA=A) =4,
Lot
=2
Here A =6x10"cm and A,=45x10"cm; R=90cm
. 45%107 _45 _,

T 6x10°-45x10° 15
So the diameter of the nth dark ring for 4, is

D=\4x3x90x6x107°
=0.254 cm

Example 4.15| A soap film of refractive index 1.33 is illuminated with light of different wavelengths at an

angle of 45°. There is complete destructive interference for A = 5890 A. Find the thickness of the film.

. . sin i . sin 45° 1
. = 1. =4 ° =— = = =0. 1
Sol Given u 33, 1 5°, U pr or, sin r 133 %133 0.5317

cos r =V1 —sin’r

=1 -(0.5317)* = 0.8469
For destructive interference
2utcos r=ni
o, 2x 133 x1x0.8469 = 1 x 5890 x 107'°
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__ 5890 x 10710
2 x 1.33 x 0.8469

Example 4.16] n a Newton’s ring experiment, the diameter of a dark ring is measured to be 2 mm. The

medium in between plano-convex lens and glass plate is air. What would be the diameter of the same ring
when the air film is replaced by a liquid of refractive index of 1.6?

=2.614%x10" m

Sol. The diameter of the dark ring is given by (for air)

D? = 4nAR (1)
For liquid, the diameter of the dark ring is
4nAR
D =222 .2
i’ = @)

where  is the refractive index of the liquid.
Now from Egs. (1) and (2)

D;
D )
D?
or, pr=_"
"ou
D, Dﬁ Dn
or, ) =\—=—
T
Here D,=2mm=02cm,u=16
p =92 _0158cm
1.6

So the diameter of the ring is 0.158 cm.

Example 4.17] n a Newton’s ring experiment, the diameter of the 25th bright ring is 7.5 mm and the

radius of curvature of the plano-convex lens is 110 cm. Calculate the wave length of light used.
Sol. Givenn=25, D,=75mm=0.75cm, R=110cm, pu=1
The diameter of the nth bright ring is given by
D - 22n - 1)AR
" u
D*u 0.75)* x 1

T22n-DR 22x25-1)x 110
=5217.99 x 10 cm
=5218 A

Example 4.18] n a Newton’s rings experiment, the diameter of the 4th and 12th rings are 0.4 cm and

0.7 cm respectively. Find the diameter of the 20th dark ring.

Sol.  Here D,=04cm D;,=0.7cm

_ Dy-D, _Dh-Di _(07)-(04)
4R(m—-n) 4xRx8 4x8xR

or, A

Now A
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or, AR=04-016 1 o35, 102
32
Now Dy =VAR Am =4 x 20 x 1.031 x 10
=0.908 cm.

Example 4.19] A film of oil of R.I. 1.70 is placed between a plane glass plate and an equi-convex lens.

The local length of the lens is 1 meter. Determine the radius of the 10th dark ring when light of wavelength

6000 A is used. [WBUT 2008]
Sol. For equi-convex lens
1 =u-1) (% + %) [Herer R is the radius of the lens. u is refractive index of
f oil. fis the focal length of the lens]
L 2
100 = 1.70-1) R
2
=070 x =
*R
or, R=70%x2=140 cm
Now the radius of the 10th dark ring is r, = MTR

110 x 6000 x 10~ x 140

"0 = 1.70
8.4x107 _2.22
= = =0.22
V170 10 o
=2.2 mm
Example 4.20] The coherence length for sodium light is 2.945 x 1072 m. Calculate coherence time.
-2
Sol. Coherence time (7,) = % = 2945 107
3x 108
=9.82x10""s
Review Exercises
Part 1: Multiple Choice Questions
1. Interference phenomena indicates
(a) light is electromagnetic wave (b) rectilinear propagation of light
(c) the wave nature of light (d) None of these

2. For a linear-shaped source of light, the nature of wave front is
(a) plane (b) cylindrical (c) spherical (d) None of these
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. The nature of the wave front due to a point source of light is

(a) spherical (b) plane (c) cylindrical (d) None of these
. For interference of light, the two sources should be

(a) spherical (b) non-coherent (c) coherent (d) cylindirical
. Two sources will be coherent if they

(a) have a constant wavelength (b) have a constant phase difference

(c) have a constant amplitude (d) None of these

In interference, the law of conservation of energy is
(a) violated (b) not violated (c) partly violated (d) None of these

. The relation between the path difference and phase difference is

(a) path difference = %7: x phase difference (b) path difference = 27” % phase difference

(c) path difference = 27 x phase difference  (d) None of these

. For constructive interference, the phase difference is an even multiple of

(a) g (b) 21 o (d) None of these
. In Young’s double slit experiment, coherent waves are produced by means of
(a) division of wave front (b) division of amplitude
(c) refraction (d) None of these
The fringes in Young’s double slit experiment are
(a) equally spaced (b) not equally spaced
(c) partially equally spaced (d) None of these

Two waves having intensities in the ratio of 9:1 produce interference.
The ratio of maximum intensity to minimum intensity is equal to

(a) 4:1 (b) 4:9 (c) 10:8 (d) None of these
The fringe width of interference pattern of Young’s double slit experiment is

DA 2d DA D
@ =~ ®) © 55 G

4.31

[where A is the wavelength of light, 2d is the distance between sources and D is the distance between

source and screen]
The distance (x,) of nth dark fringe from the central maximum is given by

@ 22 (b 2202 (©) 222 @ @n+ 122
In Newton’s ring experiment, coherent waves are produced by means of

(a) division of wave front (b) diffraction

(c) division of amplitude (d) None of these

The center of the Newton’s rings for the reflected system of a monochromatic source of light is
(a) dark (b) bright (c) partially dark (d) None of these
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The center of the Newton’s rings for the transmitted system of a monochromatic source of light is
(a) dark (b) partially dark (c) bright (d) None of these
Newton’s rings are formed
(a) in a glass plate (b) in between plano-convex lens and glass plate
(c) above the plano-convex lens (d) below the glass plate
The diameter of the Newton’s ring is proportional to the
(a) square of the radius of curvature of plano-convex lens
(b) square root of the wavelength of the monochromatic light
(c) wavelength of the monochromatic light
(d) None of these
In Newton’s ring experiment, rings are
(a) of equal inclination and unequal thickness
(b) of equal thickness and equal inclination
(c) unequal inclination and unequal thickness
(d) None of these
Radii of Newton’s rings are proportional to

(a) square root of natural numbers (b) square of the natural number
(c) natural number (d) None of these
In Newton’s rings experiment, the coherent sources are
(a) spatial coherence (b) temporal coherence
(c) partially spatial coherence (d) None of these

Stoke’s law states that
(a) the light wave reflecting from the surface of denser medium suffers a phase change ofg
(b) the light wave reflecting form the surface of denser medium suffers a phase change of 7
(c) the light wave reflecting form the surface of rearer medium suffers a phase change ofg

(d) None of these
If white light is used in Newton’s ring experiment, then
(a) anumber of colored rings will be observed
(b) no rings will be observed
(c) black and white rings will be observed
(d) None of these

Two coherent sources of different intensities interfere with each other. The ratio of maximum inten-
sity to the minimum intensity is 25. The intensities of the sources are in the ratio

(a) 25:1 (b) 5:1 (c) 9:4 (d) 625:1
If interference takes place at some region, the light energy is
(a) redistributed (b) created (c) destroyed (d) None of these
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If Young’s double slit experiment with one source of light and two slits be performed in water instead
of air

(a) the fringes will be smaller in number (b) the fringes will be narrower
(c) the fringes will be broader (d) no fringes will be obtained
In Young’s experiment with one source and two slits, if one slit is covered with black opaque paper,
(a) the fringes will be narrower
(b) the fringes will be darker
(c) the fringes will be broader
(d) no fringes will be obtained and the screen will have uniform illumination

28. A source of light emits light of frequencies between v and v + Av. If coherence time of the emergent
light beam is 7., then
1 1
(@) T, <Ay (b) T, ~ (c) T,<v (d) 7. 0c 5
Answers

1. (¢ 2. (b) 3. (a) 4. (¢ 5. (b) 6. (b) 7. (a) 8. (c)
9. (a) 10. (a) 11. (c) 12. (c) 13. (d) 14. (c) 15. (a) 16. (c)
17. (b) 18. (b) 19. (b) 20. (a) 21. (b) 22. (b) 23. (a) 24. (c)

25. (a) 26. (b) 27. (d) 28. (b)

Short Questions with Answers

1.

Can we obtain interference pattern if two coherent sources are separated by distance less than
the wavelength of light? Explain.

The fringe width 8= g—;} Now if 2d < A then B will be sufficiently large which will result in uniform

illumination. Hence, no interference fringe will be visible.
Why are light waves from two different candles not seen to produce interference pattern?

The vibrations of a particle in the flame of the candle are so much influenced by inconsistent
collisions of the surrounding particles that the phase of the vibration changes abruptly many time a
second. Consequently, the waves generated from such vibrations are bound to have abrupt changes
in phase too. In a flame there are numerous particles having all possible phases and for obvious
reasons the waves coming from such vibrating particles are incapable of maintaining a constant
phase relationship among them. So two similar candles or any two parts of the same candle cannot
be regarded as coherent sources. Due to sudden and continual changes in the phase relation of these
waves, the position of maxima and minima in the fringe system undergo very rapid charge, with the
result that the screen is seen informally illuminated.

If the amplitudes of the two interfering waves are different, find out the resultant amplitude
and intensity?

When two beams of light of amplitude a, and a, from two sources having same frequency fall upon
a screen, then the resultant amplitude (A) will be given by

A’ =a} + a5+ 2a,a, cos §



4.34

10.

11.

Basic Engineering Physics

and the resultant intensity will be given by
I=1,+ 1L+ 24I;1, cos §
where 0 is the phase difference between the two beams and 7, and I, are the intensities due to two
beams.
What is the effect on the fringe pattern if we do not make the simplification S,P + S, P =2D
In this case we have to use the exact expression of the path difference

S,P—S,P=\D*+ (x +d)* —\D* + (x — d)’

When the path difference equal to nA we get maximum. Obviously, the fringes will not be equally
spaced.

What happens to fringe width when the double slit set up is immersed in water?
We know fringe width = % . Since A decreases in water so fringe width will decreased.

What would be the nature of interference pattern produced by wide slit?

Wide slit can be treated as a combination of large number of narrow slits placed side by side. Then
each of these narrow slits produce own interference pattern that overlaps with interference pattern of
others. As a result, we have natural illumination without variation in intensity.

A double slit is first illuminated by violet light and then by red light. Which color shows wider
interference pattern beyond the double slit?

The fringe width is directly proportional to the wavelength. Since A, > A, so red light produces
wider interference pattern.

Do interference phenomena violate the principle of conservation of energy?
Refer to Section 4.8.
What is the difference between temporal coherence and spatial coherence?

The temporal coherence of any wavefield implies the possibility of predicting phase and amplitude at
a point in space at different instants of time. A monochromatic wavefield is temporally coherent. The
spatial coherence is concerned with phase correlation between two wavefields at two space points at
the same instant of time.

In Young’s double slit experiment, fringes appear as straight line. Explain.

Actually, in Young’s double slit experiment, the region in which constructive interference and destruc-
tive interference take place form hyperboloid. But intersections of these hyperboloid and the screen
forms straight lines. Therefore, fringes come into sight as straight line on the screen.

How does the interference pattern by reflection in thin film differ from that of refraction
(transmission)?

In the reflected system there is an additional path difference of % between the two rays producing
interference. Here, one ray suffers reflection at a denser medium, while in the transmitted system it
is not so.

Thus, for the same path difference in the reflected system a bright band will correspond to a dark
band in transmitted system and vice versa. Thus, the two systems are complementary.
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12. Explain why an excessively thin film appears black in reflected light.

The effective path difference between the interfering reflected rays is 2t cos r — % When the film
is extremely thin, so that ¢ is practically zero, the effective path difference is % This is the condition

for minimum intensity. Hence the film appears dark.
13. Why are Newton’s rings formed?

If the air film is formed between the curved surface of a plano-convex lens and the glass plate,
the interference take placed between the reflected as well as the transmitted light. The fringes are
obtained in the form of rings known as Newton rings.

14. What change will take place in Newton’s ring system if a liquid film is used instead of air
film.

let r, be the radius of the nth bright-ring with air-film and , is the radius of the same ring with liquid
film, then

ra2=42R(2n+1)%, rl=47R(2n+l)%
r
r,zzﬂ” as p>landr,<r,

Part 2: Descriptive Questions

1. (1) What are coherent sources?

(i1) State the condition to be fulfilled for the production of sustained interference fringes.
[WBUT 2004]

(ii1) Is light energy destroyed in the region of destructive interference?
(iv) Why are light waves from two different candles not seen to interfere?
2. What is meant by interference of light?
Show that the dark and bright fringes produced in Young’s experiment are equally spaced.

3. (i) In an interference experiment d is the distance between the two coherent sources of light with
wavelength A and D is the source-screen distance. Show that the separation between the two

consecutive dark bands is given by 8 = %/l [WBUT 2004]
(i1) Interference phenomenon does not violet the principle of conservation of energy. Justify it.

[WBUT 2008]
4. (1) What are coherent sources?
(i1) Show that the law of conservation of energy is not violated in the interference process.
(iii) Will the radius of the Newton’s ring change if air is replaced by oil between the lens and the

glass plate? [WBUT 2005]
5. (1) Explain briefly with necessary theory how Newton’s rings are formed. [WBUT 2003]
(ii) Why is the center of Newton’s rings dark? [WBUT 2004]

(iii) Would you observe Newton’s ring with transmitted light?
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6. (i) What are coherent and non-coherent sources of light?
(i1) Show that the expression of the radius of curvature of the convex lens used in Newton’s ring
D..,-D;
apparatus is R = —— "
PP 4 nd
(iii)) What are basic requirements for obtaining permanent interference pattern? [WBUT 2003]
7. (i) Explain the color phenomenon exhibited by a thin film.
(i) Explain with necessary theory how you can determine the refractive index of a liquid by means
of Newton’s ring.
8. (i) Established the conditions of constructive and destructive interference of light coming out from
two coherent sources.
(i) Show how the energy is conserved in interference phenomena.
(iii) If the distance between the two coherent sources of light with wavelength A is d and D is the
source screen distance then show that fringe width separation x = %)L [WBUT 2002]
9. (i) Define temporal coherence and spatial coherence?
(i) Explain the difference between temporal and spatial coherence.
10. (i) A doublesiltis illuminated first by red light and then by violet light. Which color gives the wider
interference pattern beyond the double slit?
(i) Why is laser source more monochromatic than conventional source?
11. Define lateral coherence width. Explain the term that degree of contrast of fringe pattern is a measure
of degree of spatial coherence and monochromaticity is a measure of temporal coherence.
Part 3: Numerical Problems
1. Two coherent sources having intensity in the ratio 81:1 produce interference fringes. Find the ratio of
the maximum to minimum intensity of fringe system [25:16]
2. In Young’s double slit experiment with a light of wavelength 589.3 nm separation between the slits
is 1 mm. Find the fringe width on a screen 1 m away. [0.05893 cm ]

Two coherent sources are placed 0.2 mm apart and the fringes are observed on a screen 1 m away.
It is found that with a certain monochromatic source of light, the fourth bright fringe is situated at a
distance of 10.0 mm from the central fringe. Find the wavelength of light. [5000 A]

. A double-slit arrangement produces interference fringes for sodium light (A = 5800 A) that are 0.20°

apart. For what wavelength would the angular separation be 10 per cent greater? (6479 A]

Newton’s rings are formed by light reflected normally from a plano-convex lens and a plane glass
plate with a liquid between them. The diameter of the nth and (n + 10)th bright rings are 2.18 mm
and 4.51 mm respectively. Calculate the refractive index of the liquid. Radius of curvature of the lens
is 90 cm and wave length of light employed is 589.3 nm. [1.7]
If the diameters of two consecutive Newton’s rings in reflected light of wavelength 5890 A are 2.0
and 2.02 cm respectively, what is the radius of curvature of the lens surface in contact with plane
glass surface? [341.2 cm]
In a Newton’s rings experiment, the diameter of 5th dark ring is reduced to half of its value after

introducing a liquid below the convex surface and glass plate. Calculate the refractive index of the
liquid. (1.4]



Interference of Light | 4.37

8. Newton’s rings are formed with a source of light containing two wavelengths A, and A,. If mth order
dark ring due to A, coincides with the (m + 1)th order dark ring due to A,, prove that the radius of mth

dark ring of A, is equal to , where R is the radius of curvature of the lower curved surface.

-

9. In a Young’s double slit experiment, the distance between the slits is 0.1 mm and the perpendicular
distance of the screen from the plane of the slits is 50 cm. Find the separation on the screen between
maxima for violet light (A = 400 mm) and the red light (A = 700 mm) in the first order.

n/lD . ’

Hints: x, = g M

x1=2%()12—/11)=1.5mm






CHAPTER

Diffraction of Light

5.1 INTRODUCTION

The bending of light around the corner of an obstacle and spreading of light wave into the geometrical
shadow of that obstacle is called diffraction of light. Fresnel gave a satisfactory explanation of this on the
basis of wave theory. According to him, the wavelength of light is so small that we cannot see the bending of
light ray round the corners; so the rectilinear propagation of light is only an approximation. Diffraction also
occurs in sound and because of this, we can listen to a speaker when we stand behind a pillar, i.e., even when
we are not in the direct line with the speaker.

In order to explain the phenomenon of diffraction of light, one can represent a source of smallest possible
size (the so-called point source) by a point. Let us represent a point source by S which is in front of a screen
MN [Fig. (5.1a)]. A narrow opaque obstacle AB is placed in between the source and the screen. If one assumes
rectilinear propagation of light, then AB will cast its shadow on the screen MN which has been shown by CD.
But, one can observe that dark bright fringes near the edge are present. Similarly, if the light from the source
S is allowed to pass through an aperture and falls on a screen MN [Fig. 5.1(b)], then it is seen that the intensity
of the light does not fall exactly to zero outside the area CD, instead some fluctuations are observed in the
form of dark and bright fringes. Therefore, from the above observations it is evident that the light bends to an
extent while passing through a small aperture or by the edge of a small obstacle.

M M
A
A C o
S S
B™p D
B
N N
(a) (b)
Fig. 5.1(a) Narrow opaque obstacle AB in Fig. 5.1(b) Small aperture AB in between

between the source and the screen. the source and the screen.



5.2 Basic Engineering Physics

Definition of diffraction The phenomenon of bending of light round the sharp corners and spreading
into the region of the geometrical shadow is called diffraction.

The light waves are diffracted only when the size of the obstacle is comparable to the wavelength of
light.

The effects of diffraction increase with the increase of wavelength. Indeed since the light wavelengths are
very small (~ 5 x 1077 m), the effects due to diffraction are not readily observed.

5.2 DIFFERENT TYPES OF DIFFRACTION PHENOMENA

There are two types of diffraction phenomena known as Fresnel diffraction and Fraunhofer diffraction.
Some important characteristics of these categories of diffraction is as given below.

(1) In Fresnel’s diffraction, either the source or screen or both are at finite distances from the obstacle
and thus the distances are important.
In Fraunhofer’s diffraction, the source of light and the screen are at infinite distances from the obsta-
cle. In this class, the inclination is important.

(i1) In Fresnel’s diffraction, the incident wave front is either spherical or cylindrical while in Fraunhofer’s
diffraction, the incident wave front is generally plane.

(iii) In Fresnel’s diffraction, the centre of diffraction pattern may be bright or dark depending upon the
number of Fresnel’s zone, while in Fraunhofer’s diffraction the center of the diffraction pattern is
always bright.

(iv) In real life, Fresnel’s diffraction is more common. It is however difficult to treat and under-
stand. Fraunhofer’s diffraction is a limiting case of Fresnel’s diffraction and it is easier to handle
mathematically.

5.3 DIFFERENCE BETWEEN INTERFERENCE AND DIFFRACTION

Both of interference and diffraction are the resultant of superposition of waves. Both these effects may take
place simultaneously. The differences between the two phenomena are given in the following table.

Interference Diffraction
1. The interference occurs between two separate 1. Itis the interference that occurs between the secondary
wave fronts originating from two coherent sources. wavelets originating from the exposed part of the same
wave front.
2. The interference fringes may or may not be 2. The diffraction fringes are never equally spaced.
equally spaced.
3. Points of minimum intensity are totally dark. 3. Points of minimum intensity are not totally dark.
4. The maxima are of same intensity. 4. The intensity of central maximum is maximum and
decreases on either side as the order of maximum
increases.

5.4 FRAUNHOFER DIFFRACTION DUETO A SINGLE SLIT

Fraunhofer diffraction arises when the source of light and screen are effectively at infinite distance from
diffracting aperture.




(a)

(b)

(c)
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Single slit A slit is a rectangular aparture whose length is large as compared to its breadth. The
width of the slit should be at least comparable with the wavelength of the light used but never less
than the wavelength.

Principle The study of diffraction pattern is based on the superposition of Huygens’ secondary
wavelet which are supposed to be generated at every point on the wavefront when it occupies the
plane of the slit.

AB is a long narrow slit of width ‘a’ placed perpendicular to
the plane of the paper and illuminated by a parallel beam of
monochromatic light of wavelength A. The figure shows a
cross section of the slit and O is the center of the slit. Let i is the
angle of incidence with the normal to the plane of the slit. Due
to the diffraction these rays will generate secondary wavelets in
all possible directions and are focussed on the focal plane of the
converging lens L. Here parallel diffracted rays are focussed by
the lens on the screen at P to form the image of the slit. So the
point of observation P is also at infinity. Obviously it is a case
of Fraunhofer class of diffraction.

Fig. 5.2 Fraunhofer diffraction
Mathematical study of intensity To study the diffraction through single slit.

phenomenon, let us consider a diffracting element of width dx
at C at a distance x from O.

Through the slit let us draw incident and diffracted rays as shown in the Fig. (5.2). From O draw two
perpendicular OE and OF on the incident and diffracted rays. Then OFE and OF represent incident

and diffracted wave front. We shall find out the intensity of light at P. )
T

Let the equation of vibration on the incident wave front OF be represented by y = Ae' % where ¢ is
the velocity of light. So, the equation of vibration on the diffracted wave front OF is given by

2
y=Ae 27D (5.1
But ECE=EC+CF=xsini+xsin 0
=x (sin i + sin 6)
=x @ (say)
So the Eq. (5.1) reduces to
2 (ct—x )
y=Ae 4 ...(5.2)

Now neglecting the effects of disturbance due to inclination, the disturbance at P due to element dx
at Cis given by

2 (ct-xg)
ds =ydx=Ae 2 dx ...(5.3)
Hence the total disturbance at P due to entire slit is given by
al2 21
I—(ct—x
S=[ds=] Ae 2“7 ax .(54)
—al2
o @2 g

1—ct —1
=Ae 2 e
—al2

—_—X
2 dx
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2r Tag a@
AelTCt e+l Z, _e— A ]
e 2i
A
27 mag mag
AaeITCt e+l A _e—l l ]
rag 2i
A
Ta@
Let us put =X

izirCt iX iX
_Aae 2 €7 —¢"

§ X 2i

2n
1——ct

— Aad 7 sin X

. 2T |
- (Aa %) s ..(5.5)

Hence the vibration is simple harmonic. The intensity at P is proportional to the square of amplitude.
Let the constant of proportionality is unity. The intensity at P is given by

. ta@
siInT ——
I=A2azsin2X= zazi/l
X2 (na(p)z
A

sin’ [M (sin i + sin 6) }

2 2
4 " ra 2
{—(sini+sin 9)}

{E(Sini+sin 0)]

I = (Aa)* = sin’ -
{T (sin i + sin 0)2}

I, sin” X
where 1,= (aA)2 and X = % (sin i + sin 6)

(d) Conditions for maxima and minima

.2
Sine we have I=1, sin” X
X2
ﬂ—] X?2 sin X cos X —sin® X - 2X
X °° x4
dl 2X sin X cos X — 2 sin® X
—=1 ...(5.7
o 17).4 ¢ [ X3 (5.7
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For the above Eq. (5.7), we shall get the condition of maxima and minima by putting j—;( =0

ie d sin’X -0
B dX |’ x?
X cos X —si
or, 21, sianzo
X3
We have as conditions
(@) X=0o0 (b) sinX=0 (¢) Xcos X—-sinX=0
.. na
For condition (a), we have X = o =oc

This will be true, when A = 0. As A # 0, so this condition is invalid.
From condition (b), sin X =0

Ta
or, sin ¢ =0
. nag . .
ie., =nm when nis an integer.
ni
Hence, =" ...(5.8)

2 2
If we find % and put the condition in Eq. (5.8) in it then % = + ve. So the Eq. (5.8) gives the
X X

condition for minimum and the other successive minima are given by

_ A _ 22 _ .37

Or=%7 G=%—17 3=

From the above values of ¢ we can conclude that the minima are equidistant.
From condition (c) tan X = X, this gives the condition for maxima. Now the value of X satisfying the
above equation is obtained by drawing two curves (i) ¥ = X and Y = tan X on the same scale. Then
the point of intersection of the two curves [Fig. 5.3(b)] gives the values of X, satisfy the equation
tan X = X, the maximum value of intensity occur at

22 .2
(i) X,=0giving [,= Lt A4 s X_
X,—0 x?

(i) X, == 1.43 wgiving I, = 0.0469 A% a* and

A’d® (central band)

¢, =+143 %

(iii) X, =+ 2.46 mgiving I, = 0.0168 A? a* and
Q== 2.46%

(iv) X, =+ 3.47 mwgiving I, = 0.0083 A> a* and
0, =+347 %

Thus, it is obvious from the values of 1, I}, I,, etc., that the diffraction pattern consists of a bright
central maximum followed by minimum of zero intensity and then secondary maxima of decreasing
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a .
(a)  — Amplitude

Fig. 5.3 (a) Intensity (solid line)/Amplitude (dotted line) distributions due to single slit (b) Graphical method
for determining the roots of the equation tan X = X,

intensity on either side of it [Fig. 5.3(a)] and the maxima are not equidistant but at higher order these
are found to be equidistant.

The angle of diffraction 6, for the 1st minimum on either side of the central maximum is given by

Eq. (5.8)
Q= %}’, sin i+ sin 6= na_/l. For normal incidence i =0
asin 6, =1 A
and for first minimum n = 1 50 sin 6, = =
or, 0, =%

Therefore, the angular width of principal maximum (26, ) is inversely proportional to the width (a) of
the slit.

5.5 FRAUNHOFER DIFFRACTION DUETO A DOUBLE SLIT

The diffraction pattern due to double slit consists of diffraction fringes caused by rays diffracted from two
slits superimposed on the interference fringes caused by rays coming from each pair of corresponding points
on the two slits.

(a) Double slit Double slit is an arrangement where two single slits are parallelly placed on the same
plane. The width of each slit are generally identical and much smaller than their lengths.

The slits have an opaque space between them and width of both the slits and opaque space should be of
the order of wavelength used or greater but never less than the wavelength of the light.

Adjoining diagram [Fig. (5.4)] represents the section of the slit. Here MN and RS are two slits on which
beams of parallel rays are incident. And a is the width of each slit and b is the width of opaque space. O and
O, are midpoint of MN and RS respectively and d is the distance between O and O, which is equal to (a + b).
S, S,, the plane of the slits is perpendicular to the plane of the paper. And i is the angle of incidence with the
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normal to the plane of the slits. The rays are diffracted in all possible directions. Let us consider a beam of
rays for which the angle of diffraction is 6. L is the converging lens which focuses the diffracted rays on its
focal plane.

As the source and the point of observation are effectively at infinity, obiviously it is a case of Fraunhofer
class of diffraction.

(b) Mathematical/Analytical study of intensity To find the intensity on the screen let us consider a
diffracting element of width dx at P where PO, = x. From O, let us draw two perpendiculars O; A and O, B
on the incident and diffracted rays.

s

S,
Fig. 54 Fraunhofer diffraction through double slit.

21 |
Let the equation of vibration of the incident wave front O, A is represented by y = Ae 2 where c is the
velocity of light in free space, A is the amplitude of the wave and A is the wavelength.

The equation of vibration of diffracted wave front OB is given by

y W e ...(5.9)
But APB =AP + PB=xsini+ xsin 6
=x (sin i + sin 6)
=xQ [ =sin i + sin 6] ...(5.10)
iZE(ct-xg)

Equation (5.9) reduces toy = Ae 1
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Now, the disturbance at P, due to the element dx at P is given by

ds =ydx=Ae /l(a P gy

Hence the total disturbance at P due to entire slit RS is given by
al2

t—
[ds=] ac T 4 .(5.11)
—al2
27 a2 ZZEX(D
=Ae 2 J e A Tdx
—al2
. al2 )
2z ., 2
or, S;=Ae 2" | T ax
—al2
Hence, the disturbance due to the other slit is
2” d+al2 o
S2—Ae P J. ¢ "7 ax
—al2
Hence, the disturbance due to both the slits at P1 will be

al2 d+al2 o
—i==x¢
I dx+,[ e A Tdx
—al2 d-al2
iz_”ct [ @2 zZﬂx(p [ 2 (p]
=Ae 2 J e dell1+e %
L —al2
) r i27rx(p al2 )
AT e AT
i~=ct| e A [ —i==d ]
=Ae 27| &2 l+e 277
L A )
2T
AaelTCl [eimup//l_ eimagii [ —iz—”d(p
= - l —+ A
Ta@ 2i
A
Ta
Let us put =X
Aae % [X — X [ LY ]
S - l+e 27
X 2i
2 .
i=ct[sin X 2r .. 2r
=Aae 1 [1+c057d(p—zsm7d(p]

Here we see that the effective amplitude of vibration at P; due to two slits is

Aa(Si;X) (1 +cos27ﬂd(p—isin27”dq>)

Now the resultant intensity at P, is proportional to the square of the amplitude. Let the constant of propor-
tionality be unity.
*. intensity at P, is given
2r

(1 +0057d(p) +sin227ﬂd(p]

sin® X
X2

I1=1

o
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.2

or, I=2IOM(1+cosz—ﬂd(p)
X? A
in2 md

or, I=21()smx-2cos2 ¢
X? A
in2 md

or, I=41, sin” X cos? e
X? A
in2 md

or, I=410¥c0s2—(p ...(5.12)
X
.2

or, I1=41, S 2X cos’Y ...(5.13)
X

ndo
where Y= ——
A
sin® X

d
The factor is similar to that for the single slit pattern. The second factor cos’ ¢ is the charac-

X2
teristic of the interference pattern due to the disturbance coming from the two slits having a phase differ-

2 - . . .
ence 7” d@. The minimum intensity of interference

2 wdg

cos"—— =0
A
rd
or, T(p=(2n+1)’§’,
or. pa+by=n+ )+ d=a+b
’ 2 |@=sini+sin6
or, (sin i + sin 6) (a+b)=(2n+1)%
For normal incidence, i =0
Thus (a+b) sin9=(2n+1)%
or, sin9=2n+1&
(a+b) 2
So we shall get successive minima as
A 31 54

2a+b) 2a+b) 2a+b)
From this it is clear that minima are equidistant. The intensity of the interference pattern will be
maximum

md
when cos? _(p ==+1
A
ndo
or, ——=nn
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or, (a+b)sin 0=nA, wheren=0,x1,+2 ... etc. [for normal incidence i =0 and d = a + b]
. A
, 6=—"
or. sin P

Hence the successive maxima are at [taking +ve sign]
A P 31
a+b a+b a+b

L, do ...
gives a set of equidistant dark and

.2
bright fringes as in Young’s double slit interference experiment [Fig. 5.5(a)]. The diffraction term st

Thus we see that maxima are equidistant. The interference term cos

> gives
X
a central maximum at X = 0, i.e., in the direction 6 = 0. The maxima also occur at values of X approaching
+ 377[, + 57”, ... etc. These are secondary diffraction maxima.
sin® X
The minima are obtained when — = OorsinX=0butX=0
X
X=mn

or, MSTIHG =mn [For normal incidence i = 0]
or, asin@=mA, m==x1,+£2 ... except0

These minima are known as diffraction minima. So based on diffraction term, the pattern consists of a cen-
tral maximum in the direction 6= 0 with alternate minima and secondary maxima of diminishing intensity on
either side [Fig. 5.5(b)]. The intensity distribution in the resultant diffraction pattern is shown in Fig. 5.5(c).

Intensity
d=0.15 mm (Slit separation)
1
0.8
0.6
0.4
0.2
Theta (Radians)
-0.01 0 0.01 0.02
(a)
Intensity _ - 1
1 a=0.05 mm (slit width) d=0.15mm
a=0.05mm \
0.8 Y
0.8 / ‘ \
0.6 f fi
[LILY
0.4 /f
/ \
0.2 \
02 /JY;’(J\/ v U \/\jafb\
0

Theta (Radians) ~0-02 -0.01 0 0.01 0.0¢
—-0.01 0 0.01 0.02

(b) (©

Fig. 5.5 (a) Double-slit interference pattern. (b) Single-slit diffraction pattern. (c) Intensity distribution of
the resultant diffractions pattern.
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Figure 5.5 shows graphs of intensity versus angular position for (a) ideal interference pattern for a double
slit (b) the diffraction pattern for single slit, and (c) resultant diffraction interference pattern produced by a
double slit.

5.5.1 Effect of Various Factors on Double-Slit Diffraction Pattern

A number of factors such as slit-width, slit separation, wavelength, etc., may affect the double-slit diffraction
pattern.

(i) Ifthe wavelength Aof the incident light is increased, the envelope of the fringe pattern becomes broader
and the fringes move further apart. The converse effect occurs on decreasing the wavelength.

(ii) If the slit width is increased the envelope of the fringe pattern so changes that the central peak
becomes sharper. The spacing between the fringes does not change as it depends on the slit separa-
tion. So within the central maximum, number of interference maxima is less. Decrease in slit-width
causes the converse effect.

(iii) If the slit separation is increased, keeping the slit-width constant, the fringe become closer together,
but the envelope of the pattern remains unaltered. So, more number of interference maxima will now
fall within the central diffraction maximum.

5.5.2 Missing Order in Double-Slit Diffraction Pattern

For single slit diffraction, the condition for minima of diffraction pattern is a sin 6 = + mA.
On the other hand, the double slit interference pattern has maxima at angle satisfying the condition
(a+b)sin 6==xni
An interesting situation arises when both equations are satisfied for a particular value of 6. This happens
when

a "a' b_ % [n and m are both integers]

In this case, nth order interference maximum will have zero intensity and will therefore be missing. In

a; b = % =3,orn=3m. Hence 3, 6,9, etc., order of interference maxima are absent which corre-

sponds to 1, 2, 3, etc., order of diffraction dark bands. These are known as ‘missing order’ in the literature.

Fig.5.5(c),

Thus, if the condition for maxima of interference pattern and minima of diffraction pattern are simul-
taneously satisfied for a given value of 6 then the corresponding interference maxima will be missing or
absent. These orders are called missing orders in double-slit pattern as shown by the X marks in Fig. 5.5(c).

5.6 DIFFERENCE BETWEEN SINGLE-SLIT AND A DOUBLE-SLIT
DIFFRACTION PATTERN

1. The single-slit diffraction pattern consists of a central principal maximum with secondary maxima
and minima on either side. The intensity of secondary maxima gradually decreases. The double-slit
pattern, on the other hand, consists of a central maximum which contains equally spaced interference
maxima and minima. The intensity of central diffraction maximum is four times the intensity of the
central maximum due to diffraction at single slit.

2. The spacing of diffraction maxima and minima depends on the slit width a, but the spacing of the
interference maxima and minima depends on both a and b, where b is the slit separation. The intensity
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of the interference maxima and minima is not constant, but it decreases to zero on either side of the
central maximum.

5.7 DIFFRACTION DUETO PLANE DIFFRACTION GRATING

(a) Definition Diffraction grating is an arrangement consisting of a large number of parallel slits of the
same width and separated by equal opaque space. It is thus a structure of alternate transparent and opaque
space. Grating may be of two types:
1. Transmission grating
2. Reflection grating
A plane transmission diffraction grating is a well-polished thin uniform optically plane transpar-
ent glass plate on which equidistant, exteremely close lines (rulings) are drawn with a sharp diamond
point.
When the rullings are made on a polished metal surface, it is called reflection grating. Here, we shall
deal with a transmission grating.

On a grating the number of lines may vary usually from 2500 to 8000 per cm. Evidently to draw thousands
of lines uniformly on a small space, the ruling machine must be very accurate and sensitive. Thus, a ruled
grating is very costly. For ordinary work in a laboratory, replica gratings (commercial gratings) are used
which are actually copies of an accurately ruled grating made on celluloid film by casting.

Grating provides a very valuable means of studying spectra. Each ruled line behaves as an opaque space
while the transparent portion between two consequative ruled lines behaves as a slit. If @ be the width of a
clear space and b be the width of a ruled line, then the distance (a + b = d) between the corresponding points
is called grating element or grating constant.

(b) Theory The diffraction pattern is based on the superposition of Huygens’ secondary wavelets which
are supposed to be generated at every point on the wave front when it occupies the plane of the grating.

Let a parallel beam of monochromatic light be incident on a grating surface at an angle i. Figure 5.6(a)
represents the section of the plane diffraction grating. Here S, S, is the plane of the grating perpendicular
to the plane of the paper, a is the width of each slit and b is the width of each opaque space. The rays are

5, L
@ (0)

Fig. 5.6 (a) The section of the plane diffraction grating. (b) Incident and diffracted rays through grating.
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diffracted in all possible directions. Let us consider a beam of rays for which the angles of diffraction 6 and
L is a converging lens which focuses the diffracted rays on its focal plane.

As the source and the point of observation are effectively at infinity, obviously it is a case of Fraunhofer
class of diffraction.

(c) Analytical/Mathematical study of intensity To study the diffraction phenomenon, let us consider
a diffracting element of width dx at C a distance x from O, the midpoint of 1st slit (clear space).

Through grating let us draw incident and diffracted rays as shown in Fig. 5.6 (b). From C draw two
perpendiculars OF and OF on the incident and corresponding diffracted rays. Then OF and OF represent
incident and diffracted wave fronts. The equation of vibration on the incident wave front OF be represented

21
by y= Ae' 7 " where A is amplitude, A is wavelength of the wave and c is the velocity of light.
So the equation of vibration on the diffracted wave front OF is given by

.2
y=Ae 2 @D .(5.14)
But path difference ECF = EC + CF = x sin i + x sin 8 = x ¢ (say)

27 ct—x
So the Eq. (5.14) reduces to y —Ae 2 T

Now the disturbance at P due to element dx at C is given by

iz—ﬂ(ct—x(p)
ds=ydx=Ae 2 dx

Hence the total disturbance at P due to entire clear space is given by
al2 .271.( ) o a2 o
27 ., _i2n
S, =fds= ,[ Ae 2T P dx=4Ae 2 “ f e 2 %ax
—al2 —al2
Since the effect of amplitude is time independent quantity, the effective amplitude due to first clear space
or slit is represented by
a2 op
Si=A _[ e 2% dx
—al2

The disturbance due to second slit is given by
d+al2

iz—ﬁct —iz—nxga
S, =Ae 4 J e A Tdx
d-al2
So, the effective amplitude due to second slit is given by
d+al2 X '2ﬂd al2 21
S;=A J. e 2 Pdx=Ae 1’ J.e_l/lwdx
d-al2 —al2

Similarly, the effective amplitude due to third slit is given by

.21 a2 ag
_i%%0oq _i=r
S;=Ae % ¢ J.elflwdx
—al2
Proceeding in a similar way, we can show that the effective amplitude due to Nth slit is given by

2T 1ya a2 o
—i—(N- —i==Xx
Sy=A4e 2 ¢ J.e 7% dx

—al2
Hence the total effective amplitude due to all slits is given by

S =81+S8+S5+...+Sy
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al2

2 2 2
S’'=]A J. [1 e 2%, 172d¢+...+e_17(N_1)d¢]
L a2
271:
[AasinX]|1-e i Nde nag
= X . whereX:T
L ] l—e le(p
2r .. 27
1—[cos—Nd —isin — Nd ]
_[Aa sin X] A ¢ A ¢
- X 21 .. 2m
1—{cos—d —isin—d ;
2 4? 2 4?

Now the resultant intensity at P is proportional to the square of the amplitude. Let the constant of propor-
tionality to be unity. The intensity at P is given by

(1— ANd(p+zs1n lNd(p)

= A% % sin® X
= 2

(l—cos 1 d@+isin = N d(p)

2r
2-2cos* 2= Nd
_AYd%sin’ X A 9
- 2
X 2-2cos’ =% 2n do
A
. o TNd g
sin” ———
_ A% @® sin®> X A
X? , T do
sin
A
nd @ .
If we put ¥ = e we can write
)
1=, 30N .(5.15)
sin“Y
22
where I, = sin” X is the expression obtained due to single slit.
.2 .2
(d) Discussion From the expression (5.15) it is seen that there are two terms sin” X and 32 NY which

be sin® Y
control the intensity of the diffracted pattern. The first expression gives the diffraction pattern produced by
single slit and the second term gives the effect of interference due to N identical slits.

(e) Conditions for maxima and minima 1In order to find maxima and minima of the intensity of inter-
ference fringes, we must have

dl

L
dy
N di _, [sm2 Y-2 (sin NY) N cos NY — sin> NY (2 sin Y cos Y)
ow, — =
dy ! sin* Y
or Y Nsin NY cos NY sin> NY cos Y
’ dY ! sin® Y sin’ Y
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)
or, Al _ o1 (SNYY (v cot NY — cot ) - (5.16)
ay sin’ Y
Hence, for maxima or minima,
.2
either, S ZNY=O or NcotNY—cotY=0=NcotNY=cotY
sin“ Y

2
when sin NY =0 sin Y # 0 and N cot NY # cot Y, one gets d—12 > 0 (i.e., positive).
ay

So, sin NY = 0 gives the condition of minimum
2
when N cot NY = cot Y =0 and sin Y = 0, one gets d_12 <0 (i.e., negative).
dy

So, N cot NY = cot Y and sin Y = 0 gives the condition of maximum

(f) Principal maxima When N is very large one obtains intensity maxima at
sinY=0ie,Y=+xmn [m=0,1,2,...etc]

. nd o V4 . .
ie., ——=xmn or, —(a+b)sin O=+mn [For normal incidence]
Hence (a+b)sin 0 =xmA
These are known as the principal maxima.
sinNY _0

— = indeterminate. But in limit
nY O

For Y =mnm, —
si

Y —>mm we get

sin NY . N cos NY
= lim ————

- using L. Hospital’s rule
Yomr SINY  y—mzr cosY [ & P ]

Hence the corresponding resultant intensity is given by
2
I,=N"1, ...(5.17)
Thus the intensity of principal maxima increases as the number of slits (N) increases, but due to the pres-

.2
Sin ZX, whose value decreases with the increase of the angle of diffraction (6), the intensity
X

of principal maxima decreases with the increase in the order number of bands.

ence of the factor

(g) Secondary minima From the second condition we get zero intensity, i.e., I = 0 when sin NY = 0

provided sin Y # 0. This gives, NY = + px [where p is an integer except O, N, 2N, 3N ...etc., in these cases

sin Y = 0 and we get principal maxima]. So sin NY = 0 gives NY = £ pr.

Nm(a + b) sin 6
A

(@+bsino=+22
or, a sin 0=+~

or, ==+ pnr [for normal incidence i = 0]

such that p # sN [where s =0, 1, 2, 3, ...etc.]

N-DA (N+DA
Therefore, (a+b)sin == %, + %, + ( N ) : ( i )
Omitting the values (a + b) sin 6=0, + NW)L + 2iN)L
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which are principal maxima.

It is obvious that between two principal maxima there are (N — 1) equally spaced minima. Hence, there
should be (N — 2) secondary maxima in between these minima.

(h) Secondary maxima These maxima are weak in intensity. Intensity of these maxima are given by

11 sin? NY _ I,
s=4— =7
sin® Y  sin® Y cosec® NY
I

sin’ Y[1+ cot’ NY]

= 1 [From the condition N cot NY = cot Y]

2
sin Y| 1+ cot' Y
N2
N1, N1,
o Is= 2y] ANPsinl Y+ cost ¥
sin2 v a2+ cos2 sin coS
sin“ Y
2
N1, Ip

SN Dsin?Y+1 (V=1 sin Y+ 1
Is _ 1
Ip 1+ -1)sin’Y

Thus greater the N-value, weaker are the secondary maxima. In practice, N is very large in a grating and
secondary maxima are too weak to be generally visible in grating.

Therefore,

.(5.18)

. ) . 2
In Fig (5.7) curves are drawn by plotting (%) against X [Fig. 5.7(a)], S ZNY against Y [Fig. 5.7 (b)]
sin” Y
and also by plotting the product of them against 6 [Fig. 5.7(c)]. The intensities of secondary maxima fall of
between two adjacent principal maxima and are unequally spaced. They also lack symmetry, the lack being
greatest adjacent to principal maxima towards which their peaks get shifted. The intensity distribution for

N =35 is shown in Fig. 5.7(d).

;

X

sin X

<

sin’ NY
sin2 Y

L
\\ //\ /\
o Tl Tl T

(d)

Resultant
Intensity

Fig. 5.7 (a) Diffraction pattern due to single slit. (b) Interference effect due to secondary waves from
the N slits. (c) the resultant intensity parttern. (d) Intensity distribution due to 5 slits.
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If white light is used, instead of monochromatic light, each wavelength will produce its own maxima. So
each maxima will consist of a band of seven colours.

Now, the angle of diffraction 0 o< A, wavelength of light. So, angle of diffraction for red will be greater
than for violet. It means that inner edge of each maxima (i.e., the edge facing the central maximum) will be
violet and the outer edge red.

5.7.1 Condition for Absent Spectra

For the mth order of principal maximum in the direction 6, we have the condition

(a+b)sin @=mA [for normal incidence i = 0] ...(5.19)
If a be such that the pth order diffraction minimum occurs in the same direction 6, then
asin 6 =pA ...(5.20)

If these two conditions are satisfied simultaneously then mth order principal maximum will be absent from
the resulting spectra

From Eq. (5.19) and (5.20), we get

a+b_m (521)
a ~p

If b = a then from Eq. (5.21), m =2p =2,4,6 ... p =1, 2, 3...) which implies that the second,
fourth, sixth ... etc. order of principal maxima will be absent corresponding to the diffraction minima
p=1,273, ..

5.7.2 Ghost Lines

In case of a perfect (or ideal) grating the rulings must be equi-spaced, but practically no grating is perfect.
This imperfectness in rulings of a diffraction grating causes some errors. When these errors are random, the
grating gives a continuous background illumination. On the other hand, if they are progressive in nature, then
one may get sharper spectral lines in planes other than the local plane of the grating. But most frequently
the errors repeat themselves periodically because of some defect in the driving mechanism of the machines
which make rulings in the diffraction gratings. This results in the generation of false lines along with the
principal maxima of a perfect (ideal) grating. These false lines are called ghost lines.

5.7.3 Overlapping of Spectral Lines
If the incident light has a large range of wavelengths, then the lines of shorter wavelength and higher order
may overlap on lines of longer wavelength and lower order.

For a grating, having grating element (a + b), the angle of diffraction 6 in the mth order spectrum for
wavelength A is given by
(a+b) sin 0 =mA
Now for a given grating a + b = constant. So 8 will be the same, i.e., overlapping will occur if mA = con-

stant. For instance, red line of 700 nm in the 3rd order will overlap with green line of 525 nm in 4th order,
violet line 420 nm in 5th order, etc., since 3 x 700 =4 x 525 =5 x 420 = ... = constant.

5.7.4 Maximum Number of Orders Formed by Diffraction Grating

The condition for principal maxima is given by
(a +b)sin 0 =mA
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(a + b)sin 6
m=———
A

The number of order will be maximum when sin 6 = 1

or,

_a+b
(m)max - 2.

If (a + b) < 2 A; then (1), < 2
This means that for normal incidence, only first order of spectrum will be present, when (a + b) < 2A.

5.7.5 Condition of Minimum Deviation of Rays

For oblique incidence of a parallel beam of light of wavelength A, the grating equation is

(a+ b) (sini + sin 6) = mA ...(5.22)
Rewriting Eq. (5.22)
2(a+b) sin ¥ ecos i_zezmﬂt
Now, the deviation suffered by the rays is 6 = i + 6, so that
2(a + b) singcos % =mA

. 0 . .. i—0. .
So sin 5 and hence 8, will have minimum value when cos - 1S maximum

or, i-0=0
or, i=6
which is the required condition.

Thus, the rays forming spectrum in a grating suffer minimum deviation when the angle of incidence equal
the angle of diffraction.

5.7.6 Angular Dispersive Power of a Grating

The angular dispersive power of a grating is defined as the rate of change of the angle of diffraction 8 with

the change in wavelength A of light. It is thus %

The diffraction of the mth order principal maximum for a wavelength A and angle of diffraction 61is given
by
(a+b)sin 0=mA [For normal incidence i = 0]
Differentiating it with respect to A, we write
(a + b) cos 0dO =mdA

@= m __ims
d\. (a+b)cosO cos0

...(5.23)

where s = % = number of lines per unit length of grating
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Equation (5.23) is the expression for the angular dispersive power of a grating
Here d6 is the angular separation between two lines with difference in wavelengths as dA.
The Eq. (5.23) gives the following conclusions:
(1) The dispersive power is directly proportional to the order of spectrum ()
(i) The dispersive power is inversely proportional to the grating element (a + b)

(iii) The dispersive power is inversely proportional to cos 6, i.e., the larger the value of 6, higher is the
dispersive power.

5.8 PRISM AND GRATING SPECTRUM

Prism Spectrum Grating Spectrum
(1) Itis formed by dispersion. (i) Itis formed by diffraction.
(i) The prism spectrum is bright. (i) The grating spectra are fainter as the order increases.
(iii) The prism forms one spectrum. (iii) The grating forms spectra of many orders.
(iv) The prism spectrum depends on the material of (iv) The grating spectra does not depend on the material
the prism. of the grating.
(v) In most cases prism spectrum is not pure. (v) The grating spectra are pure.
(vi) The resolving power of a prism is small. (vi) The resolving power of the grating is large.

5.9 RAYLEIGH’S CRITERION OF RESOLUTION

Lord Rayleigh proposed a criterion for the resolution of two near by objects. According to him “The two
nearby point objects are said to be just resolved by the optical system, if the position of the central maximum
of diffraction pattern of one coincides with the first minimum of the diffraction pattern of the other”.

It is also applicable to the resolution of spectral lines of equal intensity formed by prism or grating spec-
trograph. In case of spectral lines, the criterion says, the angular separation between the principal maxima of
two spectral lines in a given order, should be equal to half angular width of either maximum.

To illustrate the above criterion, consider the diffraction pattern of the two spectral lines of wavelengths A
and A + dA and let A and B are the central maximum due to them respectively [Fig. 5.8(a)]. When the differ-
ence in the angle of diffraction is large, the two images are seen as separate.

In Fig. 5.8(b) the central maxima corresponding to the wavelengths A and A + dA are very close and there-
fore the two images overlap and they cannot be distinguished as separate images.

In Fig. 5.8(c), the position of central maxima of A corresponding to wavelength A, coincide with the posi-
tion of first minima corresponding to wavelength A + dA. Similarly, the central maxima of B coincides with
the first minima of A. The resultant intensity curve shows a dip at C in the middle of the central maxima of A
and B. It is estimated that the intensity at C is about 20 percent less than that at A or B. The position of central
maxima of A and B coincides with the first minima of the diffraction pattern of each other and it satisfies the
Rayleigh criterion. The spectral lines are, therefore said to be just resolved.

The smallest separation (linear or angular) between the two point objects at which they appear just sepa-
rated is called the limit of resolution of an optical instrument and the reciprocal of the limit of resolution is
called resolving power.
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A B

Fig. 5.8 Rayleigh criterion of resolution.

5.10 RESOLVING POWER OF A GRATING

The resolving power (RP) of a plane grating is its ability to just distinguish (resolve) two nearby spec-
tral lines with two close wavelengths.

If the wavelength of two nearby spectral lines be A and A + dA, the resolving power of the grating is defined
mathematically as d_/ll’ dA being the smallest wavelength difference for which the spectral lines can be just

resolved at wavelength A.
The mth order principal maximum of a spectral line of wavelength A of a grating for normal incidence is
(a+b)sin 6=mA ...(5.24)
where (a + D) is the grating element, 0 the diffraction angle corresponding to mth order.
The same for wavelength A + dA will be
(a+b) sin (0 + d6) = m(A + dA) ...(5.25)
According to Rayleigh criterion, these two spectral lines will be just resolved, when the principal maxi-
mum of one falls exactly over the first points of minimum intensity of the other line. This is possible if the

extra path difference introduced is %, where N is the total number of lines of the grating surface.
(a + D) sin (0 + d6) =ml+% ...(5.26)

Equating the right-hand sides of the Eqgs. (5.25) and (5.26)
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B A
m(A+dA) =mA + ¥
A
=mN ..(5.27)

which is required expression for the resolving power of a grating.
From Eq. (5.24), we have
(a+b) sin O
m=-——

p)
d_";_mN=—N(“+Z) sin 6 .(5.28)

W sin 0
-wi ..(5.29)

where W = N (a + b), the total width of the ruled surface of the grating.
For maximum resolving power sin 6= 1

. w
Hence maximum, RP =—

A

The relation ﬁ = Nm shows that RP increases with

(1) the order of the spectrum
(ii) increases with total number of lines in the effective part of the grating
(iii) resolving power does not depend on grating element

5.11 RESOLVING POWER OF MICROSCOPE

The primary function of a microscope is not to magnify an object but to reveal those finer details in the object
which are invisible to unaided eye. The limit of resolution of a microscope is measured by the least permis-
sible linear distance between two point objects so that the two images appear just resolved. The reciprocal
of the limit of resolution is called the resolving power of the microscope.

Let us consider two point objects are separated by a distance x and they are very close to the objective and
normal to the axis of the microscope. If « is the semi-vertical angle of the cone of the rays by the objective
of the microscope then it can be shown that the two image will appear just resolved if,

2xsinox=122 A ...(5.30)
1.22 4
or, X =—
2 sin o

which is the required limit of resolution. The high resolving power microscope are generally oil immersion
type in which the space between the objective of the microscope and the object is filled with an oil of refrac-
tive index U.

Then =ﬂ ...(5.31)
2usin o
where U sin & is known as numerical aperture (N,) of the objective.
Resolving power, RP = 1_ M ...(5.32)
X122
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By using ultraviolet light with smaller A and quartz lenses the resolving power of the microscope can also
be increased. Such a microscope is called ultra microscope. At present, higher resolving power is obtained in
electron microscope where electrons are used instead of white light.

Worked-out Examples

Example 5.1] A light of wavelength 6000 A falls normally on a straight slit of 0.10 mm width. Calculate
the total angular width of the central maxima.

Sol. The condition for 1st order diffraction minima is
asin 0 =A [Here @ is the half angular width of the central maximal]
Herea=0.10mm=0.01cm, A=6.0x10"cm

o A _60x107 3
sm@-a— 0.01 =6.0x 10

Since @is very small, then sin 6 ~ 8= 6.0 x 10~ radians
The angular width of the central maxima is

=20

=2x6x 107 = 1.2 x 107 radians.

Example 5.2 | Light of wavelength 5000 A is incident normally on a slit. The first minima of the diffrac-
tion pattern is observed to lie at a distance of 5 mm from the central maxima on a screen placed at a distance

of 2 m from the slit. Calculate the width of the slit.

Sol. For 1st order minima a sin 6= A4
If 6 be small, then sin 8 ~ 6. Hence
3
a9=2 or, g=2%-3000x10" ()

Further, 6 1is also given by 0= %
where x is the position of first maximum from the central maximum and D is the distance of screen from the

slit.
Here x = 0.5 cm and D = 200 cm.

_05
So 0= 200 radian ...(2)

-8
From Egs. (1) and (2), we have 50001077 _ 0.5

a 7200
or 4= 3000x10°x200 _5x2x107
’ 0.5 5

=0.02 cm
So the width of the slit is 0.02 cm.
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Example 5.3 | A convex lens of 40 cm focal length is employed to focus the Fraunhofer diffraction pattern
of a single slit of 0.3 mm width. Calculate the linear distance of the first-order dark band from the central

band. The wavelength of the light is 589 nm. [WBUT 2008]
Sol. For nth dark band
asin 6 = ni
Herea=03mm=03x10"m; n=1; A=589x107m

and sin 6 =~ @ for very small 8
-9
So 6=2-389x10_ 4 _ 196.3 x 10~ radians
0.3x 10"
. linear distancex = 0% f=196.3 x 10° x40 x 102 m
=(0.7852 mm.

Example 5.4 | A single slit is illuminated by light composed of two wavelengths, A, and 4,. One observes

that due to Fraunhofer diffraction, the first minimum obtained for A, coincides with the second diffraction
minimum of A,. What is the relation between A, and A,?

Sol. For wavelength A,; the position of first minimum (n = 1) is
asin 6, = A, (D
For wavelength A,; the position of second minimum (n = 2) is
asin 6, =24, ...(2)
It is given that the direction of first minimum (6,) due to 4, coincides with the second minimum due
to A,
ie., 6,=6,=0
So from Eqs. (1) and (2)
asin =2, =24,
A =22,
Deduce the missing orders for a double-slit Fraunhofer diffraction pattern if the slit width
are 0.16 mm and they are 0.8 mm apart. [WBUT 2008]
Sol. Missing orders are obtained when interference maximum and diffraction minimum corresponds to

the same value of direction angle 6, i.e.,
(a+b)sin 6, =nA [interference maximum]

and asin 8,, =mA [diffraction minimum]
a+b n
So, a ~m

Here ¢ =0.16 mm and 5 =0.8 mm
n _0.16+0.8 0.96 -6

m= 016 016
For valuesof m=1, 2, 3,etc., or n=6,12, 18, etc.
So, the 6th, 12th, 18th, etc., orders of interference maxima will be missing in the diffraction pattern.
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Example 5.6 | In a double-slit Fraunhofer diffraction, calculate the fringe spacing on the screen 50 cm

away from the slit if they are illuminated with blue light of wavelength 4800 A. Slit separation b = 0.1 mm
and slit width a = 0.020 mm.

AD
(a+b)

Here a =0.02 mm =0.002cm, 5=0.1 mm=0.01 cm
A =4800 A =4800x 10%cm, D=50cm

_ 4800 x 10 x 50
0.012

=0.2cm

Sol. The fringe spacing can be obtained by the formula d =

d cm

So the fringe spacing is 0.2 cm.

Example 5.7] A parallel beam of light of wavelength (5890 A) falls normally on a plane transmission grat-
ing having 4250 lines/cm. Find the angle of diffraction for maximum intensity in first order. [WBUT 2006]

Sol. We known that (a + b) sin 6= nA

or, sin 6 =

Heren=1 and _1 = 4250 lines/cm
(a+b)

A =5890 A =5890 x 107 cm
Therefore, sin 6 = 5890 x 107 x 4250
=0.25
6=14.5°

Example 5.8] Light of wavelength 5000 A is incident normally on a plane transmission grating. Find the
difference in deviations in the first and third order spectra. The number of lines per cm on the grating surface

is 6000.

Sol. Given A=5000 A =5 x 107 cm, 1 6000
a+b

For the first-order spectrum
(a+b)sin 6, =21 [Heren=1]
or, sin 6, = A 5% 107 % 6,000 =030
a+b

or, 0, =17.5°
For the third-order spectrum
(a+b)sin 0, =34 [Here n=3]

sin 93=a3—jb=3><5><10‘5x6000

=09
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or, 0, =64.2°
Now the difference in deviation is 6; — 6, = 64.2° — 17.5° = 46.7°

Example 5.9 | Light of wavelength A = 500 nm falls on grating normally. Two adjacent principal maxima

occur at sin 8= 0.2 and sin 6 = 0.3 respectively. Calculate the grating element.

Sol.

The position of the principal maximum of order n is given by

(a +b)sin 0 =nld
The two adjacent orders, say n and n + 1 occur at sin 8 = 0.2 and sin 8 = 0.3 respectively.
Thus (a+b)x02=nA and (@+b)x03=n+1)A1
Subtracting, we get

(a+b)x0.1 =2A=500nm=2500x10"m

=5000 x 10°* m

So, the grating element is

(a+b)=5x10"*cm.

Example 5.10] How many orders will be visible if the wavelength of the incident light is 5000 A and the

number of lines per inch on the grating is 2620?

Sol.

or,

We know that (a + b) sin 0=nA
For maximum order to be possible, 8 =90°
sin 8 =sin 90° =1

Given that (q+b) == cm: A =5000 A = 5000 x 10 cm
2620
Hence o _a+b___ 254
A 2620x5x% 107
n>19

So, the highest order of spectrum possible =19.

Example S.11] Tn a grating spectrum, which spectral line in fifth order will overlap with fourth-order line

of 5890 A?
Sol. The grating equation for principal maximum is,
(a +b)sin 0 =nl ...(D
For fifth-order spectrum, (a + b) sin 6 =54 ...(2)

or,

Here A is wavelength of the fifth spectral line
The wavelength of fourth-order spectrum is 5890 A, hence

(a+b)sin =4 x5890 x107° ...(3)
The two spectral lines overlap, so 6 is same.
Equating Egs. (2) and (3), we get

5A=4x5890x 107
4 x5890 x 107
5

So the wavelength of the fifth-order spectral line is 4712 A.

A= =4712x 108 =4712 A
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Example 5.12| How many orders will be observed by a grating having 4000 lines per cm if it is illuminated

normally by light of wavelength in the range 5000 A to 7500 A.

Sol. The maximum order visible with grating is
n—at b
max l
Given, (a+b)= 1 Hence n... = 1
4000 4000 4
For A=5000A=5x%x10"cm nmax=;=5
4000 x 5 x 107
o 1
and for A=7500 A My =———————=33
4000 x 7.5 % 107
=7.5% 107 cm

So, the observed orders range between 3 to 5.

Example 5.13] What is the minimum number of lines of a grating which resolve the third-order spectrum

of two lines having wavelengths of 5890 A and 5896 A. [WBUT 2004]
Sol.  Given: 1, =5890A; 1,=5896A; dA=6A
M+ A, o
The average wavelength A= ;= 5893 A and n=3
-8
The resolving power (Rp) = 3 _ 3893 x 107 _ 982
dA  6x107°
Further Rp=nN [Nis the number lines on the grating]
or, nN =982
or, W=982 o, N=22=327.33 = 327

So the minimum number of lines in the grating will be 327.

Example 5.14]  Calculate the least width that a grating must have to resolve two components of the sodium

D-line in the second order, the grating having 800 lines/cm. The wavelength for D, and D, lines of sodium
are 5893 A and 5896 A respectively. [WBUT 2008]

Sol. We know that
Number of slits on the grating = Width of the total number of lines x Number of lines per cm.
=xx 800 [Here x is the width]

Given A, =5893A and A,=5896A

. M+, .
So dA=3A and average A= 7= 58945 A
The A _ 58945 _ 196483 = 1965

p= d_ﬂf - 3
Further Rp =nN =1965
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or, 2 x N =1965
or, N= @ —982.5
To obtain least width x x 800 = 982.5
9825 _
X =200 cm = 1.228 cm

Example 5.15] A microscope is used to resolve two equally bright points separated by 5.55 x 10~ cm.

What is the numerical apperture (NA) of the objective if light of wavelength 5461 A is used?
Sol. The limit of resolution of the microscope is
_ 1222
2usin o
Here u sin ais called numerical apperture (NA),
A=546110"° cm
x=5.55x10"cm
1.22 x 5461 x 107

2x555x%x107°
=0.60

So, numerical apperture of the objective is 0.60.

Example 5.16] The microscope objective gathers light over a cone of semi-angle 30° and uses visible light

of average wavelength 5500 A. Estimate the resolving limit of microscope.

So, Hsin o =

Sol. The resolving limit of microscope is given by
= 1.22 4
2sin 0

Here A =5500 A =5500 x 108 cm, 6=30°
o2 1.22x5500x 10 _ 1.22 x 5500 x 10™°
2 sin 30° 2x0.5
=6.71 % 10> cm

Example 5.17] A diffraction grating, which has 4000 lines/cm is used at normal incidence. Calculate the

dispersive power of the grating in the third-order spectrum in the wavelength region S000A°
Sol.  Here A=5000x 10 cm; n =3
s = 4000 lines/cm

1 _ -4
a+b—4000—2.5x10 cm

nA__3x5000x10°° _
atb  25x107"

cos 8="1—sin> 8 =1-(0.6)> = 0.8

dispersive power 40 _ _ns__3x4000
dA cos 0 0.8

So,

Now sin 0 = 0.6

= 15000
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Review Exercises

Part 1: Multiple Choice Questions

1. In diffraction, the size of the obstacle should be such that it
(a) is comparable to the wavelength of the light used
(b) is greater than the wavelength of the light used
(c) has no connection with the wavelength of the light used
(d) None of these
2. In Fraunhofer diffraction, the incident wave front is
(a) plane (b) cylindrical (c) spherical (d) None of these
3. Double-slit interference pattern is the limiting case of double-slit diffraction pattern when the
(a) distance between the slits tends to zero
(b) distance of the source and the slits tends to infinity
(c) slit widths tend to zero
(d) distance between the slits tends to infinity {WBUT 2008]
4. Fraunhofer diffraction arises when the source of light and screen is effectively at

(a) finite distance (b) infinite (c) semi-finite (d) None of these
5. In a Fresnel diffraction the source of light is effectively at
(a) finite (b) infinite
(c) both finite and infinite (d) None of these
6. In Fraunhofer diffraction minima are
(a) all perfectly dark (b) never perfectly dark
(c) perfectly bright (d) None of these
7. If the wavelength of the light used in single-slit diffraction is increased then the width of the central
maximum
(a) decreases (b) increases (c) remains same (d) None of these
8. The intensity of central maximum due to double slit diffraction pattern is times greater than
that of single slit pattern.
(a) eight (b) three (c) four (d) two
9. The intensity of principal maximum in the spectrum of a grating with N number of lines is propor-
tional to
@ L ®) N (©) N2 @ L  [WBUT 2008]
N N?

10. Missing order in the interference maximum in Fraunhofer double-slit pattern occurs if the
(a) slit width is decreased
(b) slit width is constant, but the slit separation is increased
(c) slit width is increased
(d) None of these



11.

12.

13.

14.
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Angle of diffraction of the first order maximum in a diffraction grating

(a) increases if the separation between the ruling is increased

(b) decreases if the separation between the ruling is increased

(c) does not change if the separation between the ruling is increased

(d) change depends on the wavelength of the incident light [WBUT 2006]
The resolving power of a grating, having N number of total rulings, in nth order is

@ 2 (b) nN X (d) None of these

With the increase of number of lines per centimeter of plane transmission grating
(a) both dispersive power and resolving power decreases
(b) both dispersive power and resolving power increases
(c) dispersive power decreases but resolving power increases
(d) dispersive power increases but resolving power decreases
A diffraction pattern is obtained using a beam of red light. What happens if the red light is replaced
by blue light?
(a) Bands disappear
(b) Bands becomes broader and farther apart
(c) No change
(d) Diffraction bands became narrower and crowded together

Answers

1. (a) 2. (a) 3. (c) 4. (a) 5. (a) 6. (b) 7. (b) 8. (¢
9. (c) 10. (b) 11. (b) 12. (b) 13. (b) 14. (d)

Short Questions with Answers
1.

Distinguish between Fresnel and Fraunhofer classes of diffraction.

In Fresnel diffraction phenomena, either the source or the point of observation or both are at
finite distances from the diffraction obstacle. Here, the incident wave front is either spherical or
cylindrical.

In Fraunhofer diffraction phenomena both the source and the point of observation are effectively at
infinite distance from the diffraction obstacle. Here the incident wave front is plane.

What is the effect of (a) increasing the slit width, (b) increasing the slit separation, and (c)
increasing the wavelength of light in a double slit diffraction pattern?

(a) Effect of increasing the slit width: If we increase the slit width the central peak becomes
sharp. The spacing between the fringes does not change as it depends on the slit separation so
within the central maximum, number of interference maximum is less. Reverse effect happens
if we decrease the slit width.

(b) Effect of increasing the slit separation: If the slit separation is increased, keeping the slit
width constant, the fringe become closer together, but the envelope of the pattern remains unal-
tered. So, more number of interference maxima will be observed within the central diffraction
maximum.
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(c) Effect of increasing wavelength of light:  If the wavelength A of the incident light is increased,
the envelope of the fringe pattern becomes broader and fringe move further apart.

. What is missing order?

Refer to Section 5.5.2.

. What is the difference between single-slit and double-slit diffraction pattern?

Refer to Section 5.6.

. What is replica grating?

Good transmission grating could be made by taking a cast of the ruled surface with some transparent
material and such casts are called replica gratings. Replica gratings give satisfactory performance
where the highest resolving power is not needed.

. What is the Rayleigh criterion?

According to the Rayleigh criterion the maximum resolving power of an optical instrument corre-
sponds to the condition that the principal maximum of a diffraction pattern of one point object falls
exactly on the first minimum of the diffraction pattern of an adjacent point object.

. What is the limit of resolution of an optical instrument?

The smallest separation (linear or angular) between the two point objects at which they appear just
separated is called the limit of resolution of an optical instrument and the reciprocal of the limit of
resolution is called its resolving power.

. What is the difference between grating spectra and prism spectra?

Refer to Section 5.8.

. In a plane transmission grating 15000 lines/inch are taken. Why?

With the increase in the number of lines the secondary maxima relative to the principal maxima
decreases and becomes negligible. When N becomes large enough the secondary maxima are not
visible with a grating having about 15000 lines or more per inch.

Part 2: Descriptive Questions

. What is meant by diffraction of light? Distinguish between Fresnel and Fraunhofer classes of diffrac-

tion [WBUT 2005]
(i) Explain the difference between interference and diffraction

(i) Derive the expression of intensity at a point for Fraunhofer diffraction due to double slit. Draw
the intensity distribution carve (diffraction pattern) and explain it. [WBUT 2006]

. The intensity distribution for single-slit diffraction is

2 A

b is the width of the slit and A is the wavelength of light. Show that secondary maxima are given by
the equations

tan B =8 [WBUT 2006]

-2 .
Izlo(sm ﬁ) whereﬂ:M

4. What do you mean by (i) ghost lines, and (ii) absent spectra.
. What is the condition for the missing order spectra for a diffraction grating? What particular order

will be absent if width of the slit is equal to width of opaque space of a grating?
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. Plot a intensity distribution curve for Fraunhofer diffraction due to single slit and find the positions

of maxima and minima.

7. What is grating element? What is its relation with the number of rulings?

9.
10.
11.

12.

13.

. What is meant by the resolving power of an optical instrument? Explain Rayleigh’s criterion for just

resolution.
What do you understand by resolving power of a grating? Derive the necessary expression.
Define the resolving power of microscope. Deduce an expression for it.

Obtain an expression for the resultant intensity in a single-slit Fraunhofer diffraction process and
show the intensity pattern graphically. [WBUT 2005]

Show that the intensity of secondary maxima formed by single-slit Fraunhofer diffraction process is
nearly 4.5% of the principal maximum. [WBUT 2004]

State Rayleigh criterion of resolution and discuss its significance in studying spectral lines.

Part 3: Numerical Problems

1.

A single slit form diffraction pattern of Fraunhofer class with white light. The second maximum for
red light of wavelength 6500 A coincides with the third maximum of an unknown wavelength. Find

the unknown wavelength. (4642 108]
What is the highest order spectrum which may be observed with monochromatic light of wavelength
5000 A by means of a grating using 5000 lines cm™"? [Ans. 4]

. Find the missing orders for a double-slit Fraunhofer pattern if the width of each slit is 0.15 mm and

they are separated by a distance of 0.60 mm. [5, 10, 15 etc.]

. A diffraction grating 2 cm wide is just able to resolve sodium D-lines in second order. Find the num-

ber of rulings per mm. [24.5]

. A plane transmission grating has 15,000 lines per inch. Find

(a) the resolving power of grating, and
(b) the smallest wavelength difference that can be resolved with a light of wavelength 6000 A in the

second order. [(a) 3 x 10* (b) 20 108]
. Calculate the angles at which the first dark band and the next bright band are formed in the Fraunhofer
diffraction pattern of a slit 0.3 mm wide (1 = 5890 A). [6=6"; 6=12"]

. Calculate the number of lines per cm of a grating which gives an angle of diffraction equal to 30° in

the first order of light of wavelength 600 nm. [8333.3]

A microscope is used to resolve two point sources separated by a distance 4 x 1075 cm. If the wave-
length of light be 5461 A, calculate the numerical aperture of the objective. [1.665 cm]






CHAPTER

Polarization of Light

6.1 INTRODUCTION

A wave is a disturbance which can propagate through a medium. While propagating through the medium,
the wave cause the particles of the medium to vibrate either along the direction of propagation of the wave
or in a direction perpendicular to that of propagation. The wave which causes the particles of the medium
to vibrate along the direction of propagation of it is known as longitudinal wave and the wave which
causes vibration of the particles of medium in a perpendicular direction is called transverse wave. Light
is a form of electromagnetic wave.

The phenomena of interference and diffraction of light were successful beyond doubt to prove that light is
a form of wave. But they failed to decide wheather light is a transverse or longitudinal wave. The fact that
light is a transverse wave was established only after the discovery of a phenomenon of light which is
known as polarization. It was Huygens who first discovered the phenomenon of polarization in 1690. The
phenomena of interference and diffraction can be exhibited by all types of waves but polarization can be
exhibited by the transverse waves only. So, it was the discovery of polarization of light that helped us to prove
that light is a transverse wave.

6.2 MECHANICAL DEMONSTRATION OF POLARIZATION

Analogy is very much important in physics. It helps one to understand the physical phenomena easily through
comparison. To understand polarization clearly, let us take the help of an analogous mechanical illustration.

Let us consider a horizontal string AB attached to a fixed point B at one end [Fig. 6.1]. Holding its other
end A at hand, one can generate transverse waves in many different planes along the string. The particles of
the string will vibrate perpendicularly to the direction of propagation of the waves. Let us repeat the experi-
ment in the presence of two parallel slits S} and S, between points A and B as shown in the diagram. Amongst
all the generated waves, only one wave, which is contained by the plane passing through the pair of parallel
slits S} and S,, will be able to pass through up to the point B.
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S (a) S,
A\ ! B
S, S,

(b)

Fig. 6.1 Polarization of mechanical wave, such a wave containing vibrations confined in a given plane, is
called a polarized wave.

The polarized wave passes through the parallel slit S,. But if the slit S, is turned and made perpendicular
to S, as shown in the Fig. 6.1(b), no wave is obtained beyond S,. If the string AB is replaced by a spring of
very small cross section and longitudinal waves are generated along it, then turning of the slit S, through 90°
[Fig. 6.1(b)] makes no difference to the wave. In the changed situation also, it can pass through both the slits
S, and S, undisturbed. This shows that a longitudinal wave cannot be polarized.

6.3 SYMBOLIC REPRESENTATION OF UNPOLARIZED AND POLARIZED
LIGHT

In Section 6.2, we have observed that the wavelength of the wave to be polarized should be comparable to the
length of the slit. The wavelength of light waves is very small, so it is required to have slits of comparable
length for getting polarization of light. It is difficult to make such small slits artificially. But some crystals
provide us such slits for getting polarized beam of light. Before discussing polarization by crystals, let us see
how unpolarized and polarized beams of light are represented in sym- B

bolic form. Light is considered as a transverse electromagnetic wave
which consists of two mutually perpendicular vectors. One of them is
the electric vector and the other is the magnetic vector. The direction of
propagation of the light wave is also perpendicular to each of the afore-
said vectors. In an unpolarized or natural light beam, the electric and

Direction of

magnetic vectors keep on vibrating continuously. The average effect of D C propagation
Fhese two rapdorp vibrations gives. rise to the impression that in unpolaf— Fig. 6.2 Vibration is normal
ized light, vibrations of the electric and magnetic vectors are symmetri- to the direction of
cally distributed in their plane which is perpendicular to the direction of propagation.

propagation of light (Fig. 6.2).

A light beam in which the electric and magnetic vectors vibrate symmetrically about the direction
of propagation of it, is called unpolarized light. On the other hand, a light beam in which the electric
and magnetic vectors do not vibrate symmetrically about the direction of propagation of it, is called
polarized light. The conventions of drawing unpolarized and polarized light rays are given below: (i) If the
vibrations of the polarized light beam take place in the plane of the paper, then they are represented by small
straight lines perpendicular to the direction of propagation with two opposite arrow-heads [Fig. 6.3(a)], (ii) If
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the vibrations of the polarized beam take place in a plane perpendicular to the plane of the paper, then they
are represented by small dots all along the direction of propagation of light [Fig. 6.3.(b)]. (iii) An unpolarized
beam of light has vibrations in all possible directions in a plane perpendicular to the direction of propaga-
tion. Each vibration in this case may be considered as the resultant of two mutually perpendicular component
vibrations. And for this reason, an unpolarized beam is usually represented by the simultaneous use of dots
and small straight lines along with two opposite arrow-heads [Fig. 6.3(c)].

Line of propagation
of light

Y

<
<
<
pa
<
pa
pa
Y
z

Fig. 6.3 Symbolic representation of polarized and unpolarized light.

6.4 EXPERIMENT OF POLARIZATION WITH TOURMALINE CRYSTAL

Let us now experimentally exhibit polarization of light with the help of tourmaline crystal. It is made up of
silicates of various metals and boron. It is a natural crystal with some interesting optical effects. It is a hex-
agonal crystal and almost transparent with a greenish tinge. The greatest diagonal of the hexagonal is known
as its optic axis (the diagonal ab in the crystal of Fig. 6.4).

a
T1

SV TN
SV TN
SV TN
SV TN
SV TN

<>
<>
<>
<>

b
Fig. 6.4 Polarization of light by tourmaline crystal.
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As can be seen in the Fig. 6.4, T) is a thin piece of tourmaline crystal. A narrow beam of light moving
along the direction XY is normally incident on a flat surface of the crystal. A part of the light transmits through
the crystal. No change in the intensity of the emergent light is observed except slight tinge in it. The color
depends upon the nature of the crystal. There is no change in the intensity of the transmitted beam of light
if the crystal T, is rotated about the line XY as axis. Let us now allow the transmitted light to fall on another
similar crystal T, placed behind the first one and observe the light passing through 7 and T,. When the axes
ab of Ty and a’b’ of T, of the crystals are parallel to each other, the light passing through T, appears slightly
darker but without any change in the intensity. If we now slowly rotate the second crystal 7, about the line
of vision keeping its plane parallel to that of T/, then the light passing through 7, becomes dimmer and
ultimately it disappears completely when the axes ab and a’b” are crossed at right angles. If the crystal 7, is
rotated further, the light reappears and becomes brightest when the axes ab and a’b’ become parallel again.
The same result is obtained if the crystal T is rotated keeping the crystal 7, fixed in its initial position. The
simple experiment exhibited above leads one to conclude that the light waves are transverse waves, otherwise
we could not get light emerging from 7', extinguished by simply rotating the crystal 7,. A similar effect was
observed in case of the mechanical illustration in Section 6.2.

6.5 PLANES OF POLARIZATION AND VIBRATION

When a plane polarized beam of light is obtained by using a suitable polarizer (e.g., a calcite crystal),
the vibrations of the electric vectors are confined in a plane. Such a plane is called plane of vibration.
The plane perpendicular to the plane of vibration is called the plane of polarization. The plane of vibra-
tion contains the vibrating electric vectors. In Fig. 6.5, a polarized beam of light transmitted through a tour-
maline crystal AB has been shown. The plane ABCD contains both, the vibrations of the electric vectors of the
polarized beam and the direction of propagation OQ. The plane EFGH represents the plane of polarization.
The line OQ, which represents the direction of propagation, also lies on this plane.

Plane of vibration
A fo

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Plane of polarization

B C

Fig. 6.5 Planes of vibration and polarization.

6.6 VARIOUS METHODS OF PRODUCING A PLANE POLARIZED BEAM
OF LIGHT

A beam of light in which the vibrations of electric vectors are confined in a plane is called a plane
polarized beam. In the previous section, we have seen how a plane polarized beam of light can be obtained
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by using a tourmaline crystal. There are many other methods to obtain a plane polarized beam of light. Let

us discuss some of them in brief.
(a) Polarization by reflection
(b) Polarization by refraction
(c) Polarization by double refraction
(d) Polarization by selective absorption
(e) Polarization by scattering

6.6.1 Polarization by Reflection

The simplest method of obtaining a polarized beam of light is that of
reflection. In 1808, Malus discovered that a polarized beam of light
can be obtained if ordinary light is reflected by a transparent reflect-
ing surface like a plane sheet of glass. He also found that the degree
of polarization depends on the angle of incidence of light. He further
observed that at a particular angle (which depends on the nature of
the reflecting surface) the reflected beam becomes totally polarized.
This angle of incidence at which totally polarized beam of light is
obtained is called the angle of polarization of the reflecting sur-
face. The angle of polarization for glass is about 57°. Figure 6.6 shows
complete polarization by reflection at the polarizing angle 6,.

6.6.2 Polarization by Refraction

When a beam of unpolarized light is
refracted through a transparent medium,
the refracted light becomes partially
polarized. To obtain a completely polar-
ized beam of light, one has to get the beam
refracted through a number of transparent
refracting plates, which are placed in such
a way that they become parallel to each

W o e e s e e e el =
(0]

Fig. 6.6 Polarization by reflection.

<— 15% normal vibration

other having been separated by an air gap.
The more the number of plates, the more
will be the purity of the polarized light.

For example, if a beam of unpolar-
ized light be incident on a number of
glass plates at polarizing angle, then the
reflected ray is completely plane polar- n=15

+—— 100% parallel vibration

— 85% normal vibration

ized. But the refracted light is not com-
pletely polarized, rather it is partially

Fig. 6.7(a) Incomplete polarization through single refraction.

polarized. The refracted ray retains cent per cent parallel vibration and a reduced percentage of normal
vibration. The normal vibration can further be reduced if the beam is repeatedly passed through more parallel
plates. Hence degree of polarization can be increased by increasing the member of plates which are parallel

to the first glass plate (Fig. 6.7).
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Unpolarized Plane polarized
light light
|
Partially polarized : 6,
light }
2 |
)

Plane polarized
light

Fig. 6.7(b) Complete polarization through multiple refraction.

6.6.3 Polarization by Double Refraction or Bifringence

Let us see what are isotropic and anisotropic crystalline media before starting the analysis of double refrac-
tion. An isotropic crystalline medium is such a medium which consists of a periodic, regular and identi-
cal arrangement of particles (atoms or molecules) in all directions. When a light ray passes through such
a medium, it travels with the same velocity in all directions. On the other hand, there are many a crystalline
substance in which the interparticle distances along different directions are different. For this reason, when
a light ray in such a medium passes through such a medium, the velocity of light is different in different
directions. The medium which exhibits different velocities in different directions is called anisotropic
medium, one gets more than one refracted rays in such a medium because of the presence of more than one
velocities. Example of anisotropic media are calcite and quartz crystals.

Double refraction is a phenomenon in which one gets two refracted rays from a refracting medium
following incidence of natural light on it. In the year of 1669, double refraction was discovered by Erasmus
Bartholinus. He observed that when a ray of ordinary light is incident on a calcite crystal, it splits into two
refracted rays, one of them always obeys ordinary laws of refraction and other one, in general may not obey
them. The refracted ray which follows laws of refraction is called ordinary ray (O-ray) and the other
one which does not obey laws of refraction is called extraordinary ray (E-ray). In Fig. 6.8, a calcite
crystal (CaCQOy) is placed over an ink-dot (P) on a paper. Looking through the crystal one can see two images
of the dot. If a glass slab is placed instead of the calcite crystal, one can see only one image. The two images
seen through the calcite crystal evidently represent two different emergent rays. Hence, we get evidence of
double refraction. The crystals like calcite which give rise to double refraction are called bifringent crys-
tals and the phenomenon is called bifringence. The refractive index of a substance is related to the velocity
of light in the concerned medium and is given by the following relation:

c

u=3 (6.1
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The refractive index for the ordinary ray remains same in all direc-
tions but that for the extraordinary ray varies from one direction to
another. Hence, the velocity of the extraordinary ray is variable

(as u= % and c is the velocity of light in free space). For one direc-

tion, the refractive indices for the ordinary and the extra ordinary

rays are equal. This direction is called the optic axis of the crys- A

tal. There are two types of crystals; in one type there exists only one )

direction in which the velocities of the two refracted rays (O-ray and !
E-ray) remain same. This type of crystal is known as uniaxial crystal. A a (Y

In another type of crystal there exist two such directions in which the
O-ray and the E-ray have same velocities. Such crystals are known Fig.6.8 Double refraction through
as biaxial crystals. Uniaxial crystals have only one optic axis while a calcite crystal.

biaxial crystals have two optic axes. Examples of uniaxial crystals are

calcite (CaCOj) and quartz (SiO,), that of biaxial crystals are aragonite

and coper sulphate (CaSO,).

Positive and Negative Crystals

The anisotropic crystals can be categorized into two categories depending on the velocities of O-ray and
E-ray inside the crystal: (i) positive crystal, and (ii) negative crystal. The crystal in which the velocity of the
O-ray (v,) is greater than that of the E-ray (v,) is called the positive crystal and the crystal in which the veloc-
ity of E-ray (v,) is greater than that of O-ray (v,) is called the negative crystal (Fig. 6.9). Examples of positive
crystals are quartz and iron oxide and that of negative crystals are calcite and tourmaline crystals.

Optic axis Optic axis
Positive crystal Negative crystal
(v,>7v,) (v,>v,)

Fig. 6.9 Positive and negative crystals.

6.6.4 Polarization by Selective Absorption

If a substance absorbs one or more wavelengths from the several wavelengths present in a beam of light, then
the absorption is called selective absorption. As for example, a transparent red colored substance absorbs
all colors except the red. Tourmaline is one of the several substances which produce plane polarized beam
of light by selective absorption. We have observed in Section 6.4 that when unpolarized light is transmit-
ted through a thin piece of tourmaline crystal, the transmitted beam of light becomes plane polarized with
vibrations parallel to the optic axis of the crystal. The unpolarized light on entering the crystal splits into two
polarized components—one known as ordinary ray whose vibrations are perpendicular to the optic axis of
the crystal and the other—known as extraordinary ray with vibrations parallel to the optic axis. The crystal
absorbs the O-ray and transmits the E-ray causing polarization through selective absorption.
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6.6.5 Polarization by Scattering

When very small particles scatter a beam of light, the resulting scattered light is found to be partially polar-
ized. For light scattered at an angle of 90°, the degree of polarization is the greatest. But this is usually far
from complete polarization. Light from the blue sky, being the result of scattering by small atmospheric
particles, is partially polarized.

6.7 BREWSTER’S LAW

It was observed by Malus that when a beam of unpolarized light is incident on the surface of a transpar-
ent material or medium, both the reflected and refracted beams are partially plane polarized. By changing
the angle of incidence, Malus observed that for a particular value of the angle of incidence, the reflected
light beam becomes completely plane polarized, the plane of vibration being at right angles to the plane
of incidence. This angle for which the reflected beam is completely polarized is known as angle of
polarization.

Brewster’s law Brewster obserbed that there exists a simple relation between the angle of polarization
(Op) and the refractive index (u) of the reflector relative to the surrounding medium. This relation is given
by
M =tan 6, ...(6.2)
The relation (6.2) is known as Brewster’s law. The polarizing angle for glass is 57°.
It can be proved from Brewster’s law that when light is incident at the polarizing angle, the reflected beam
and the refracted beam make an angle of 90°.

Let PO be a beam of unpolarized light incident on the surface AB of a transparent medium at angle of
polarization 6,, OR and OQ are the corresponding reflected and

N
refracted beams. Let 6, be the angle of refraction (Fig. 6.10) from R A
Brewster’s law, we can write
—ang =% 6.3) %
H= p_cosep R O [\
From Snell’s law again, we can write 0
sin .
4 Air
u= Sn 0, (64 A" Gass o
Now, from Egs. (6.3) and (6.4), we can have
sin 6, ~ sin 6,
cos 6, " sin 6,
which implies, cos Gp =sin 6, =cos (90° - 6,) 6,
. 6,=90° -6, N’ Q
or, 6,+ 6, =90° ....(6.5)

Fig. 6.10 Incidence at an angle of
polarization results in

0,+0,=90"

Hence, 6=90° [. 0[, + 6, + 6=180°]

6.8 MALUS’ LAW

To discuss about this law one requires the concept of polarizer and analyzer. Let us define polarizer and
analyzer.
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Polarizer A polarizer is an optical device which can generate a polarized beam of light when an unpolar-
ized beam of light is incident on it.

Analyzer An analyzer is an optical device which can determine whether an incident beam of light is polar-
ized or not when the same is incident on it.

While working experimentally with polarization of light in 1809, E L Malus observed that the intensity of
light transmitted by the analyzer varies with the angle between the plane of transmission of the analyzer and
that of the polarizer. This is called Malus’ law.

Statement of Malus’ law This law states that if a completely plane polarized light beam is incident on
an analyzer, then the intensity of the light emerged varies directly as the square of the cosine of the angle
between the plane of transmission of the polarizer and that of the analyzer. Let a be the amplitude of the light
transmitted by the polarizer and 0 be the angle of the plane of transmission of the polarizer with that of the
analyzer (Fig. 6.11)

Let us now resolve ‘a’ into two components; a cos 6

A
and a sin 6, respectively along the plane of transmis-
sion of the analyzer and a direction perpendicular to it. - Plane of the
. . C e . *___I polarizer
One of these two components (i.e., a sin 6) is elimi- s a
nated and the other component (i.e., a cos ) is freely ©
transmitted through the analyzer. Hence, the intensity o
of light emerging from the analyze;r is %wen by, pyvvrs 5\ Plane of the
Ig=a cos” 0 analyzer
_ 2
or, ;. ) lo=1 CO'S 0 ) - (6.6) Fig. 6.11 Resolving of the amplitude a of the plane
where I = a” is the intensity of polarized light incident polarized light.

on the analyzer. The Eq. (6.6) is the Malus law.
Two special cases of Malus’ law are given below.
(1) If the polarizer and the analyzer are parallel to each other, then we get 6= 0° or 8 = 180°
So, Ig=1
(i1) If, however, the polarizer and the analyzer are crossed (i.e., the angle between them is 90°), then
0=90°, this implies /,= 0.

6.9 CLASSIFICATION OF POLARIZED LIGHT

So far we have discussed about plane polarized light only. Depending on the nature of the polarized light, it
can be classified as (i) linearly (or plane) polarized, (ii) circularly polarized, and (iii) elliptically polarized
light. In case of plane polarized light, the electric vector vibrates in a fixed plane along a straight line. In case
of circularly polarized light, the electric vector rotates along a circle without changing its magnitude. And in
case of elliptically polarized light, the electric vector rotates along an ellipse. The magnitude of the electric
vector varies between a maximum and a minimum values which are respectively the semi-major and semi-
minor axes of the ellipse. Circularly and elliptically polarized light waves can be generated by superposing
two mutually perpendicular linearly polarized light waves. When the amplitudes of the two superposing
waves are equal, the resultant light wave becomes circularly polarized and when they are unequal, the resul-
tant light wave becomes elliptically polarized.




6.10 Basic Engineering Physics

6.10 PRODUCTION OF PLANE, CIRCULARLY AND ELLIPTICALLY
POLARIZED LIGHT BY ANALYTICAL METHOD

Let us consider two orthogonal light vectors (i.e., electric vectors) of frequency v (: %) and amplitudes a,

and a, given by the following two equations:
X =a, sin (w?)
y = a, sin (0t + 6)
Rearranging Eqgs. (6.7) and (6.8), we get
X s
a = sin (w1)

and Y sin (w7 + 0)
a

Now, Eq. (6.10) can be written as

al = sin (@) cos &+ cos (1) sin &
2

2
y X x° .
or, — =2 cos 0+4/1 —=sin o
a,  a 2
aj
2
Yy x x° .
or, — = cosO|=41-=sin b
a, a 012

Now squaring both sides, we get

2 2 2
YooxXr o 2xy B P B
= +=; cos 5—mcos5—(l——2)sm 1)

a a ap
2 2 9
X y Xy .
or, 2l T cosS=sin’ S
27 2T aa,
ay a

Equation (6.11) represents the general equation for an ellipse.

This generalized ellipse has been graphically represented in

Fig. 6.12 (for 5# 0 or §# nmor 5+ (2n + 1) ’5‘ and a, # a,).

If a, = a, = a (say), Eq. (6.11) reduces to

x> +y> = 2xy cos 8 =a’sin & ....(6.12)

This equation represents a general circle. This circle also can
have its centre any where in the plane as the ellipse of Fig. 6.12.

Let us now have a look at the various cases of the general
Eq. (6.11).
Case 1 When phase difference 6=0, 27, 4r, ..., 1.e., 6=2nm, for
n=0,1,2,.., we obtain sin =0 and cos 6= 1.

So, from Eq. (6.11), we get

..(6.7)
..(6.8)
..(6.9)
...(6.10)
..(6.11)

Y

X X
o

v’

Fig. 6.12  Graphical representation of

the general ellipse. It can
remain in any of the four
quadrants of the plane
depending on the values of
x and y.
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or, ...(6.13)

Equation (6.13) is an equation of a straight line pass-
a

ing through the origin with a slope s = a—2 2 0. So, the
1

resultant emergent light will be plane or linearly polarized
with vibrations in the same plane as the two superposing
components (Fig. 6.13).

Case 2 When phase difference 6 = &, 37, 57, ..., i.e.,
6=2n+1) g, forn=0,1, 2, ..., we obtain sin § = 0 and

cos 0=-1.
So, from Eq. (6.11), we get

or, ...(6.14)

Equation (6.14) is again that of a straight line passing
a
through the origin with a slope s = — a—2 <0.
1
In this case also, the resultant emergent light will be
plane polarized with vibrations as in Case 1 (Fig. 6.14).

m 3w 5w

= == i

> 3 o e e
6=(2n+1)§,f0rn=0,1,2,....,sin5=1andcos5=().

Case 3 When phase difference 8 =

So from Eq. (6.11), we get

2
x_2+y_—1
2 2

ay a

6.11

a

X

y”

Fig. 6.13 Superposition of two plane polarized
light rays to generate plane polarized
light.

X

Y’

Fig. 6.14 Superposition of two plane
polarized light rays to generate
plane polarized light.

.. (6.15)

This equation (Eq. (6.15)) is that of a symmetrical ellipse with major axis and minor axis coinciding with
X-axis and Y-axis respectively. The emergent light will be elliptically polarized (Fig. 6.15).

Case 4 When phase difference 6 = g, 37”, 57”, e, 0=02n + 1) g forn =0,1, 2, ..., and
a, = a, = a (say).
In this case Eq. (6.11) takes the following form:
Y+y=d ... (6.16)

The equation (Eq. (6.16)) represents a circle having the center at origin. So, in this case the emergent light

will be circularly polarized (Fig. 6.16).
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Y
Y
a
a,
X X
, (@] a
X 0 a, X
Y’ Y’
Fig. 6.15  Superposition of two the plane Fig. 6.16 Circularly polarized light formed
polarized light ray to generate by superposition of two linearly
elliptically polarized light. polarized light.

6.11 OPTIC AXIS AND PRINCIPAL PLANE OF A CRYSTAL

While describing an experiment of polarization with a tourmaline crystal in the Section 6.4, we had simply
made a mention of optic axis of the crystal and we have also discussed optic axis in subsection 6.6.3 from
one point of view.

To understand the phenomenon of polarization well, one has to acquire good idea regarding the optic axis
and principal plane of a crystal. In this section we are discussing optic axis from other point of view.

6.11.1 Iceland Spar or Calcite Crystal

A chemically hydrated calcite (calcium carbonate, (CaCOs;)) crystal

is transparent and colorless. It is also known as iceland spar. When

a transparent variety of calcite is struck, it breaks obliquely through g
three different planes. Thus it breakes into a number of pieces where

each piece takes a regular geometrical form of a rhombohedron like

the one given in Fig. 6.17.

>
]

° 78°
h 102°

£

The six faces of the rhombohedron are parallelograms, having two
acute angles of 78° each and two obtuse angles of 102° each. There
are two diagonally opposite corners A and C’ where the three obtuse g’ fod
angles (each of 102°) meet together and these two corners (A and C”)
are known as blunt corners. At each of the other six corners, two  Fig. 6.17  The optic axis is
acute angles and one obtuse angle meet together. This crystal has the re,PI'eseflted l.)y A_P or
property of producing a pair of refrected rays for a single incident ray. C’Q.1tisa G‘hre"tmn
For this reason, this crystal is known as doubly-refracting crystal. parallel to either AP or

c’Q.

\\)::
N
|
|
|
Q

N

N\
N

6.11.2 Optic Axis of a Crystal

A line passing through either of the two blunt corners (A or C’) which is also equally inclined to the three
faces that meet together at the corner gives the direction of the optic axis of the crystal, the optic axis of a
crystal is merely a direction and not any particular line; so any other line which is parallel to the one
mentioned above is also the optic axis of the crystal. The line AP and C’Q in Fig. 6.17 are optic axes. They
are parallel to each other.
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The special features of the optic axis are as follows:
(a) Itis a direction rather than any particular line.
(b) The optic axis divides the crytal symmetrically.
(c) The velocities of both O-ray and E-ray along the optic axis are equal.

6.11.3 Principal Section of a Crystal

The principal section of a crystal is its section or plane which contains the optic axis and is perpendicu-
lar to the two opposite refracting faces or surfaces of the crystal. Since there can be infinite number of
lines parallel to the direction of the optic axis, there can be infinite number of principal sections. In Fig. 6.17,
one such principal section is ACC’A’. Tt has cut the crystal surface in a parallelogram (ACC’A’) with angle
71° (LA’AC) and 109° (LAA’C). In fact, each principal section cuts the crystal surface in a parallelogram
having same angles.

6.12 NICOL PRISM

Itis an ingenious optical device which is designed from a calcite crystal and can be used in optical instruments
for producing and analyzing linearly polarized light. But recently it has been replaced by polaroids. While
discussing double refraction (Section 6.6), we have observed that when a beam of ordinary (i.e., unpolarized)
light is transmitted through a crystal of calcite, in general, two completely plane polarized beams, the beam
of O-rays and the beam of E-rays, having vibrations in two mutually perpendiculer planes are obtained. Now
if by some means we can eliminate one beam the calcite crystal may be used for obtaining plane polarized
light from ordinary light. A device for elemination of the O-ray was accomplished in an ingeneous manner by
William Nicol in 1828 by utilizing the phenomenon of total internal reflection of light at a thin film of Canada
balsam separating two pieces of calcite. This device is now known after his name as Nicol prism. But it is not
really a prism, in fact it is a parallelo-pipendron.

6.12.1 Construction of Nicol Prism

A calcite crystal is shaped as rhombohedron from a natural crystal (having a length to breadth ratio of 3:1) by
stricking. A cross-section ABCD of the rhombohedron is shown in Fig. 6.18. Next, the end-faces containing
AB and CD are properly ground by a grinding machine to make the angles in the principal section 68° and
112° in place of 71° and 109° respectively as a result of grinding the end faces now contain edges A’B and
CD’. The crystal is then cut into two halves along the plane which contain A’D” the two surfaces are optically
flat. Then they are cemented together by Canada balsam — a transparent liquid with refractive index (= 1.55
for sodium light (wavelength: 589.3 nm). The crystal is finally enclosed in tube which is blackened inside and
the construction of Nicol prism is then complete.

6.12.2 Action of Nicol Prism as Polarizer and Analyzer

(a) Polarizer 1Let a light ray PM of ordinary (unpolarized) light, almost parallel to BD’, be incident on
the face A’B. It splits into two refracted rays inside the crystal, MR and MQ — the so-called ordinary ray
(O-ray) and extraordinary ray (E-ray) respectively. Both of the rays are plane or linearly polarized. The O-ray
has vibrations perpendicular to the principal section of the crystal and the E-ray has vibrations in the prin-
cipal section (i.e., vibrations parallel to the principal section). The refractive index . of Canada balsam lies
between (1, and U1, respectively the refractive indices of calcite crystal (the material of Nicol prism) for E-ray
and O-ray, i.e., U, < U. < U,.
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X Optic axis

Canada balsam

Fig. 6.18 The cross section view of a Nicol prism.

So, when the O-ray reaches the layer of Canada balsam, it passes from an optically denser to an optically
rarer medium. Since the crystal length is large, the O-ray is incident at the calcite Canada balsam surface of
separation at an angle greater than its critical angle (69°) and thus gets totally internally reflected and finally
it gets absorbed by the blackened tube which encloses the crystal.

The E-ray, however, is transmitted by the calcite-Canada balsam surface of separation and emerges from
the Nicol prism as plane polarized light with vibrations parallel to the principal section of the crystal.

(b) Analyzer When an unpolarized ray of light is incident on a Nicol prism, the emergent ray becomes
linearly polarized having vibrations in the principal section of the Nicol prism [Fig. 6.19(a)]. When the emer-
gent light ray falls on a second Nicol prism whose principal section is parallel to that of first one, the vibra-
tions remain on the principal section of the second one and the light ray, behaving as E-ray, is transmitted
through it completely. The intensity of the emergent light ray becomes maximum.

If now the second Nicol prism is rotated to make its principal section normal to that of the first one
(Fig. 19(b)], the vibrations of the incident polarized light becomes normal to its principal section and the ray
behaves as O-ray inside the second Nicol prism. So, it is lost by total internal reflection at the calcite-Canada
balsam surface of separation. In this situation, no light ray gets imerged from the second Nicol prism and the
two Nicol prisms P and A are said to be crossed to each other.

If the second Nicol prism (A) is further rotated tilll its principal section is again parallel to that of the first
Nicol prism (P) [Fig. 19(c)], the intensity of the emergent light again becomes maximum. By using a rotating
Nicol prism, we can detect whether the incident light ray is linearly (plane) polarized or not. If the intensity
of the emergent light varies between a maximum and a minimum and the value of the minimum is zero, then
the incident light ray is plane polarized.

Here, the Nicol prism P acts as polarizer and A acts an analyzer. Whenever we need to use polarizer and
analyzer of light beams for various purposes, we can use Nicol prisms. There is a limitation of the use of
Nicol prism, it can be used only when the incident beam is slightly divergent or convergent. It cannot be used
in a situation where the incident beam of light is highly divergent or convergent.
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Fig. 6.19 Use of two Nicol prisms; one as polarizer (p) and the other as analyzer (4).

6.13 RETARDATION PLATES (QUARTER OR HALF-WAVE PLATES)

Definition A retardation plate is an optical device which can make a finite optical path difference between
the O-ray and the E-ray while they travel through it in the same direction by retarding the motion of one of
these rays.

A plate cut from a doubly refracting crystal by making sections parallel to the optic axis can be used as a
retardation plate (see subsection 6.6.3).

If both the rays (O-ray and E-ray) propagate along the optic axis, they have same velocities and they have
different velocities in any other direction. If the rays propagate along a direction normal to the optic axis of
the plate, the difference in the velocities of O-ray (v,) and E-ray (v,) is maximum. So by allowing light to
propagate through a direction normal to the optic axis a plate of calcite or similar crystal cut parallel to the
optic axis can be used as a retarding plate. Usually, there are two types of retardation plates in use. They

are quarter-wave plates and half-wave plates (they are very frequently denoted by % - plate and % - plate

respectively).
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The optical path difference for a retardation plate may be deduced as follows:

Let ¢ be the thickness of the plate in the direction of propagation of light and let (i, and i, be the refractive
indices of the material of the plate for the O-ray and E-ray respectively. Within the plate, then, the optical path
for the O-ray is simply p,¢ and that for the E-ray is u,t. The optical path difference is, therefore, given by

A=,—u)t [if u, >l ...(6.17)
Quarter-wave plate If the thickness of a doubly refracting crystal plate is so adjusted that it is able to
produce an optical path difference of one quarter of a wavelength between the O-ray and the E-ray, then it is
called a quarter-wave plate.

For a negative uniaxial crystal the refractive index for O-ray is greater than that of E-ray (i.e., i, > L,).
So, the optical path difference between the O-ray and E-ray in such a crystal for incidence of light normal to
optic axis is given by Eq. (6.17). In case of a positive crystal, it is given by

A=(u,—u)t ...(6.18)

As at present we are considering quarter-wave plate, the thickness the plate is given by

A=, -py=4
A

or, f=——— ...(6.19)
4 (/Jo - :ue)
For a quarter-wave plate of a positive crystal, the thickness of is given by
A
t=—""— ...(6.20)
4 (/Je - :uo)

A quarter-wave plate is used to produce circularly and elliptically polarized light by placing it in
the path of a plane polarized light. Further, in conjunction with a Nicol prism, it becomes a versatile
analyzer and can analyze all kinds of polarized light.

Half-wave plate If the thickness of a doubly refracting crystal plate is so adjusted that it is able to produce
an optical path difference of one half of a wavelength between the O-ray and the E-ray, then it is called a
half-wave plate.

For a negative crystal like calcite (1, > ,), the path difference for a half-wave plate is given by

A=, -my=% 1byEq 617
So the thickness, t= A ...(6.21)
2 (.uo - lue)
For a positive crystal plate (¢, > U,)
The thickness, A
t=——"— ...(6.22)
2~ 1) (

Quarter wave plate and half wave plate are also known as phase retarding plate. The phase retardation ()
is given by

6=2TnxA ...(6.222)

where A is the optical path difference.
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6.14 DETECTION OF POLARIZED, PARTIALLY POLARIZED AND
UNPOLARIZED LIGHT

According to Stokes, light can be classified into seven classes on the basis of its status of polarization.
These classes are (i) unpolarized, (ii) linearly polarized, (iii) circularly polarized, (iv) elliptically polarized,
(v) mixture of unpolarized and linearly polarized, (vi) mixture of unpolarized and circularly polarized, and
(vii) mixture of unpolarized and elliptically polarized light.

In order to detect the status of polarization of a given beam of light, the beam at first may be allowed to
pass through an analyzer which is capable of rotating about the direction of propagation of the light beam as
axis [Fig. 6.20 (a)]. This can be considered as the first step of analysis. If the status of polarization of the light
beam is not completely known in this step, then one can carry on a second test with the help of a pair of one
quarter-wave plate and one analyzer separated by a distance as shown in Fig. 6.20(b). This may be considered
as second step of the detection analysis.

If, in the first step, no variation of intensity of the transmitted light beam is observed, then it may be
either unpolarized or circularly polarized beam of light. If two maxima and two minima are observed in the
first step, then the given beam of light may be either partially polarized or elliptically polarized. And if two
maxima and two extinctions are observed in the first step, then there is no need to carry out the second step
of the detection process. The given light beam is linearly polarized.

On observation of no change in the intensity of light in the first step, the second step of the detection
process is carried out. In this step if no change of intensity is observed, then the given light is unpolarized.
If two maxima and two extinctions are observed, then it is circularly polarized. Again, on observation of two
maxima and two minima in the first step, the second step of the detection process is carried out. In this step,
if two maxima and two minima of intensity are observed, then the given light is partially polarized. On the
other hand, if two maxima and two extinctions are observed, then the given light is elliptically polarized.

Nicol prism

Light 27 radian
Transmitted light

(a)

(Nicol prism
Light 27 radian
W Transmitted light
A
Quarter-wave
plate (b)

Fig. 6.20 Detection of unpolarized and polarized light in two steps.

6.15 DICHROIC CRYSTALS AND POLAROIDS

We have discussed various methods of generating plane polarized beams of light in Section 6.6. Selective
absorption was one of them. In double refraction method of polarization, we came across the phenomenon of
selective absorption. In this section we will to throw more light on this matter.
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6.15.1 Dichroic Crystals

Some doubly refracting minerals and crystals show the property of absorption of one of the two doubly
refracting rays (i.e., O-ray and E-ray) very strongly by allowing the other to transmit through them with very
little loss. This phenomenon of selective absorption of light rays is known as dichroism and those crys-
tals which exibit the property of dichroism are called dichroic crystals.

Tourmaline is a dichroic crystal and absorbs the ordinary ray (O-ray) completely as shown in Fig. 6.21.
But the extraordinary ray (E-ray) is partly absorbed and so it emerges out of the crystal. Thus if an unpolar-
ized light is allowed to pass through a dichroic crystal of proper thickness, one of the components is totally
absorbed and then other component transmits in appreciable amount. The emergent beam will thus be plane
polarized. A thin tourmaline crystal of approximately 1 mm thickness with its faces cut parallel to its optic
axis can be used as a polarizer. But as the polarized light of a tourmaline crystal is colored due to unequal
absorption of the light of various wavelengths, its use as a polarizer is limited.

O-ray
(completely
absorbed)

Plane polarised light

D\
E-ray

Fig. 6.21 Dichroism exhibited by a crystal. It absorbs the O-ray completely and allows E-ray to
pass through.

6.15.2 Polaroids

In 1852, an English Physician WH Herapath discovered a synthetic crystaline material iodo-sulphate of qui-
nine known as herapathite (named after its discoverer). This material exhibits strong dichroism. It transmits
plane polarized light of all color and wavelengths unlike a tourmaline crystal. But these crystals are not at all
stable and they are affected by even slight strain. In 1932, EH Land developed a process which arranges hera-
pathite crystal side by side, oriented with their optic axis all parallel, so that they function like a single crystal
of big dimensions. This is done by producing a paste of crystals in nitrocellulose which is then squeezed out
through a very narrow slit. Only those crystals pass through the slit whose axes are parallel to the length of it
thereby producing a fine sheet of millions of tiny crystals, having their optic axes parallel to each other. This
is then mounted between two thin sheets of glass forming what is called a polaroid. It has largely replaced the
Nicol prism for producing and analyzing polarized light in the laboratory.

Another variety of long-sized polaroids called H-polaroids is formed by heating and stretching polyvinyl
alcohol films so as to orient the complex molecules in the direction of stress, which then become double
refracting. And when these polaroids are impregnated with iodin, they exhibit the characterization of dichro-
ism. These polaroids are colorless and transmit 33% more light than the herapathite polaroids.

It was later discovered by Land and Rogers that when stretched polyvinyl alcohol film is heated along with
a dehydrating catalyst, e.g., HCI, it darkens slightly but shows strong dichroism and becomes very stable.
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This polaroid is called K-polaroid. When two pieces of polaroids are crossed, light is perfectly extinguished
but if they are made parallel to each other, the light transmitted by the first one is also transmitted by the
second one [Fig. 6.22(a) and (b)].

(a) (b)
Fig. 6.22 (a) Two parallel polaroids transmiting light. (b) Two crossed polaroids showing extinction of light.

Applications of polaroids are versatile. They are cheaper than the Nicol prisms and are used in
laboratories for producing and analyzing of linearly polarized light. Polaroids are also used in the
sunglasses for cutting off glare of light coming from horizontal surfaces.

To cut off the dazzling light of an approaching car which is coming from opposite directions, K-polaroids
are extensively used in the headlights and the windscreens of cars. They are also used in windows of trains
and aeroplanes to control intensity of light entering into them and in viewing stereoscopic motion pictures.

Worked-out Examples

Example 6.1 ] The angle of polarization of a material is 60°. What is the (i) refractive index of the transpar-

ent material, (ii) the angle of refraction corresponding to the angle of incidence, 6; (= 60°), and (iii) the angle
between the reflected and refracted rays?

Sol. (i) Here, 9[, = 60°. From Brewster’s law, we get, 1 = tan 9,, =tan 60° = 1.73.

(i1) Also from Brewster’s law, we know that for incidence at polarization angle, the sum of angle of
reflection and that of refraction is 90°.

6,+ 6,=90° [. angle of reflection 6, = polarizing angle = 6]

.. angle of refraction 6,=90°-0,
=90° - 60° = 30°
(iif) Again, since 8, + 6,=90°, the sum of angle of reflection (8,;) and angle of reflection (6,) is given
by
6,+6,=6,+6,=90° [6,=6=06,]

.. the angle between the reflected and the refracted rays is 90°.

Example 6.2 | Calculate the polarizing angle for a light ray traveling from water of refractive index 1.33 to
glass of refractive index 1.53.[WBUT 2008]

Sol. The refractive index of water with respect to air is ,u,, = 1.33 and that of glass with respect to air is
allg=1.53.
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So, the refractive index of glass with respect to water is given by

- _aMe 153
Rl =0 =133

Now, if 6, be the angle of polarization in water, by using Brewster’s law, we get

_ _1.53
H=tan b, =133
or, Op = tan”! (%)
or, 6, =tan™' (1.1504)
or, Op =49°

Example 6.3 | Two polarizers are crossed to each other, a third polarizer is placed between them which

makes angle of 8 with the first polarizer. An unpolarized light of intensity /, is incident on the first one and
passes through all of the three polarizers. Calculate the intensity of the light which emerges from the second

polarizer. [WBUT 2008]
Sol. The angle between the first and third polarizer is 6 and that between the third and second polarizer
is
0’ =90° - 6.
So, by using Malus law, the intensity of the light emerged from the third polarizer is given by
I’ =1,cos°6
Similarly, the intensity of the light emerged from the second polarizer is given by,
I=1"cos’®’
or, I=1, cos” 6 cos” (90° — 6)
or, I=1, sin® O cos® 6

... the light which finally emerges from the second polarizer has an intensity of / =1, sin® 6 cos” 6.

Example 6.4 What is the refractive index of glass if the light of 550 nm wavelength is completely plane
polarized when reflected at an angle of 60°?

Sol. As the reflected light is completely plane polarized, the angle of incidence is the angle of polarization
for glass. So, from Brewster’s law, we get the required refractive index u as follows:

4 =tan 6, = tan 60° = V3
u=1732

Example 6.5 | The refractive indices of canada balsam and calcite crystal are 1.550 and 1.658 respectively
for the ordinary ray (i.e., O-ray) formed through double refraction. Find out the maximum angle of inclina-
tion of the O-ray with the surface of Canada balsam so that it is still quenched.

Sol. The refractive indices of Canada balsam and calcite crystal are (, = 1.550 and t. = 1.658. Let the
critical angle of the O-ray in the crystal of calcite be 6..
Ky 1.550

sin 90 = ,U_C = m =0.935.

Hence, 0. =69.2°

c
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So, when the O-ray is incident on the surface of Canada balsam at an angle of inclination < (90° - 6,)
the O-ray will quench.
... the required maximum angle of inclination (8,,,,) for quenching is given by

0nax = 90° = 69.2° =20.8°

max

Example 6.6 | Calculate the velocity of O-ray and that of E-ray in a calcite crystal in a plane which is nor-

mal to the optic axis. Also, find the ratio of the greater velocity to the smaller one and comment on the ratio.
The refractive indices of calcite crystal for the E-ray and the O-ray are 1.485 and 1.659 respectively.
Sol. Let v, and v, be the velocities of the O-ray and the E-ray respectively, then we get

c c
M, = v and H,= v

o e

where c is the velocity of light in the free space.

c _3x10° g
=—= =1.808 x 10° m/
%=, T 1659 0 ms
c _3x10° 8
=—= =2.020x 1
and 0, L= 1485 020 x 10° m/s
... the velocity of E-ray is greater than that of O-ray and the ratio is given by
Y. _2.020
=—="—"==1.12
v, 1.808

.. the E-ray moves faster than the O-ray and its velocity is 1.12 times of the velocity of the O-ray.

Example 6.7 ] Calculate the thickness of a mica sheet required to make a quarter wave-plate for A= 546 nm.
The refractive indices for the O-ray and E-ray in mica are 1.586 and 1.592 respectively. [WBUT 2002]

Sol. From the given data, we find that y1, = 1.592 and p, = 1.586 for mica and y, > u,. So, mica is positive
crystal and for this crystal, the required thickness is given by

oA
4 (.ue - nuo)
__ 546 107°
4 (1.592 — 1.586)
546 x 107
" 4x0.006
or, t=2275%x10°m
or, t=22.75 um

Example 6.8 | A sheet of cellophane is a half-wave plate for light of A =4 x 107 cm. Assuming that there

is negligible variation in indices of refraction with wavelength A, how would the sheet behave with respect to
the wavelength of A’ =8 x 107 cm ?

or,

Sol. Let 7 be the thickness of the half-wave plate, so we can write
fo A 4x107
2 (ﬂe - :uo) 2 (:uf - /'LO)
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8§x107 X
or, t= =
4 (ﬂe - nuo) 4 (I“le - ;uo)
which is the formula for a quater wave plate for wavelength A" = 8 x 107 cm.

So, for A’ =8 x 107 cm wave, the sheet would behave as a quarter-wave plate.

Example 6.9 | A quartz plate is a half-wave plate for light whose wavelength is A. Assuming that the varia-

tions in the indices of refraction with wavelength can be neglected, how would this behave with respect to
light of wavelength A, = 2A?

Sol. The thickness of half-wave plate is given by

‘= A
2 (= M)
which can be easily rewritten as follows:
21 A

= =
4 (/‘1() - :u“e) 4 (u() - ILLE)
which is the expression for a quarter-wave plate for a light with wavelength 4,.
So, the given plate will behave as a quarter wave plate for light of wavelength 4,.

Example 6.10] A quarter wave plate is fabricated with smallest possible thickness for wave length of 589.3
nm. What phase retardation will be obtained with this plate with light having wave length of 435.8 nm. You

may neglect the variation of refractive indices with wave length for this problem. [WBUT 2011]
Sol. The path difference between ordinary and extraordinary waves is given by (for quarter wave plate)
A _589.3
~ ===
(Mo ~ W)t =7 ==

where ¢ is the thickness of the plate.
The phase retardation

6= i—n x path difference
1

__2m 5893
4358 4
=0.676 7

Review Exercises

Part 1: Multiple Choice Questions
1. Which of the following phenomena causes polarization of light?
(a) Reflection (b) Refraction (c) Double refraction (d) Diffraction
2. Linearly polarized light can be produced by
(a) simple reflection (b) simple refraction
(c) reflection at the angle of polarization (d) None of these
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. Which of the following phenomena proves that light is a transverse wave?

(a) Interference (b) Dispersion (c) Diffraction (d) Polarization
. Plane polarized light can be produced by

(a) reflection at polarizing angle (b) Nicol prism

(c) piles of plates (d) All of these

In case of elliplically polarized light which of the following statements is true?
(a) Amplitude of vibrations changes in direction only
(b) Amplitude of vibration changes in magnitude only
(c) Amplitude of vibration changes both in magnitude and direction
(d) None of the above
From polarization of light, one can conclude that
(a) lightis a transverse wave
(b) light is a longitudinal wave
(c) light can bend while facing a sharp edge of an object
(d) None of the above

. The plane of vibration makes an angle 6 with that of polarization. The value of 0 is

(a) 0° (b) 90°
(c) 45° (d) None of these

. An unpolarized light consists of

(a) infinite number of plane polarized light (b) finite number of plane polarized light
(c) only two plane polarized light (d) None of these

. In plane polarized light

(a) the magnitude of light vectors changes and the orientation remains same
(b) the magnitude of light vectors remain same and the orientation changes
(c) both of magnitude and orientation change continuously
(d) None of the above

Number of optic axes in a uniaxial crystal is

(a) one (b) two (c) five (d) ten
Number of optic axes in a bi-axial crystal is
(a) one (b) five (c) two (d) ten

The optic axis is a direction along which
(a) the O-ray travels faster than the E-ray
(b) the E-ray travels faster than the O-ray
(c) both O-ray and E-ray travel with the same velocity
(d) None of the above

In a quarter-wave plate, the path difference (in terms of wavelength 1) between the O-ray and the
E-ray is

(a) % (b) zero (c) % (d) None of these
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14. In a half-wave plate, the phase difference between the O-ray and the E-ray is
@ 7 b) 7
(c) zero (d) None of these
15. If 6, be the angle of polarization, then the refractive index u of the material is given by
(a) sin 6, (b) cos 6, (c) tan 6, (d) sec 6,
16. A Nicol prism can act as a
(a) polarizer (b) analyzer
(c) both analyzer and polarizer (d) None of these
17. If the refractive index of water is 1.33, the polarizing angle of light reflected from the surface of a
pond is given by
(a) cos™ (1.33) (b) tan™" (1.33) (c) cot™ (1.33) (d) sin™' (1.33)
18. An elliptically polarized light is a general case of
(a) only the linearly polarized light
(b) only the circularly polarized light
(c) both of linearly and circularly polarized light
(d) None of the above
19. If light is incident at the angle of polarization then the angle between the refelcted ray and the
refracted ray is
@ % ® = © 7 @
20. The action of Nicol prism is based on the phenomenon of
(a) scattering (b) double refraction (c) refraction (d) reflection
Answers
1. (c) 2. (c) 3. (d) 4. (@) 5. (¢ 6. (a) 7. (b) 8. (a)
9. (a) 10. (a) 11. (¢) 12. (¢) 13. (a) 14. (b) 15. (¢) 16. (c¢)

17. (b) 18. (¢) 19. (a) 20. (b)

Short Questions with Answers

1

. Why is polarization so important in case of light?

The phenomenon of polarization is very important in case of light, because it is polarization which is
capable of proving that light is a transverse wave. No other property of light can confirm this fact.
What is polarization? State Brewster’s law of polarization? [WBUT 2002, 2004]
Polarization is a phenomenon of light due to which the vibrations of the electric and magnetic vectors
of a light wave can be restricted to remain confined in a plane only.

Brewster’s law states that at angle of polarization, the refractive index of a polarizing substance is
equal to the tangent of the angle of polarization and the angle of polarization is that incident angle
for which the reflected beam becomes completely polarized. Also, the angle between the reflected

ray and the refracted ray becomes g radian.
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. Explain why light waves can be polarized but that of sound cannot be polarized.

As we know, the sound waves are longitudinal waves where the particles of the medium vibrate along
the direction of propagation of the wave, for this reason, they cannot be polarized. The propagation of
the wave cannot be cut-off due to the longitudinal nature of it. But in case of light waves, polarization
is possible as it is a transverse wave. The polarization of light proves that light is a transverse wave.

. What is the difference between the natures of ordinary and extraordinary rays of light when
they pass through positive and negative crystals?

In case of the positive crystal, the ordinary ray moves faster than the extraordinary ray and hence the
refractive index of the extraordinary ray is more than that of ordinary ray. Quatz crystal is an example
of positive crystal. On the other hand, in case of a negative crystal, the extraordinary ray moves faster
than the ordinary ray, and hence the refractive index of the ordinary ray is greater than the extraordi-
nary ray. Calcite crystal is an example of negative crystal.

. What are meant by uniaxial and biaxial crystals? Cite one example of each one.

In some crystals there exists only one direction (or optic axis) along which the velocities of ordinary
and extraordinary rays are same. Such crystals are called uniaxial crystals. There is another kind of
crystal in which there exist two optic axes along which the velocities of O-ray and E-ray are same.
These type of crystals are called biaxial crystals. Examples of uniaxial crystals are calcite and quartz
crystals. Examples of biaxial crystals are aragonite and copper sulphate crystals.

. Show that the maximum transmission through any polarizer is half of the maximum intensity
of the incident light.

Let 1, be the intensity of the light which is incident on the polarizer. Let 8 be the angle made by the
direction of polarization of the polarizer and that of vibrations of the electric vector in the incident
light beam. So, according to Malus law, the intensity of the light which has been transmitted through
the polarizer is given by the following equation:

I=1,cos* 0
where I is the intensity of the polarized light.

The incident light beam is unpolarized one. So, it vibrates in all directions on the plane normal to
the direction of propogation of the light. So, in order to compute the intensity /, one has to take the
time-average value of /. Now, the time average value of cos® @is 0.5. Hence, I,,,, = I, cos” = 0.5 L,
An ideal polarizer will be able to transmit this maximum quantity which is equal to one-half of the
intensity of the incident light. This implies that even an ideal polarizer can at best have a maximum

transmission which is only fifty percent of the light incident on the polarizer.
. Two polarizers are placed at crossed position (angle between their polarizing planes is 90°) a
third polarizer making an angle 6 with the first one is placed between them. An unpolarized
light of intensity I, is incident on the first one and passes through all the three polarizers. Find
the intensity of the emergent light. [WBUT 2008]
Let us use the Malus law in two steps. In the first step, the first and the third polarizers are considered
the first polarizer acts as a polarizer and the third one making and angle 6 with the first one acts as
an analyzer.
So, by using Malus law, we can write

I,=1,cos* 6

where /, is the intensity of the light which is coming out of the third polarizer.
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Again, if we apply Malus Law considering the third polarizer as polarizer and second one as ana-
lyzer, we can write
I =1, cos® (90° — 6) = I, sin” 6
or, I=1, cos® Osin’ 0
Hence, the intensity of the emergent ray is given by

I L in” (260
—Zsm()

Why is the color of the sky blue?

It was proved by Lord Rayleigh that the percentage of scattered hight varies inversely as the fourth
power of the wavelength of it when the size of the scattering particles is comparable to the wavelength
of light waves. In case of blue light, the scattering is 16 times greater than that of red light. While
the white light of the sun falls on the small particles in the atmosphere of the earth, the blue light is
scattered and polarized far more than the light of any other color. For this reason, the sky appears to
be blue. This blue color of the sky is more brilliant when the atmosphere of the earth remains free
from the dust particles and water molecules and only the scattering is due to the gas molecules.

Why does the sky appear to be red at the time of sunrise and sunset?

During sunset and sunrise, the sun remains near the horizon, so the light rays coming from the sun
have to traverse a greater distance to reach the eyes of the observer as the surface of the earth is
spherical the percentage of the dust particles (including smoke) are more near the earth’s surface than
the upper sky and as the size of the particles are comparable to the wavelength of the blue light, it gets
scattered (and polarized) by these particles and lost. So the blue color is removed from the sunlight
in this process of scattering and the red color with its largest wavelength remains more in the rest
sunlight. At the time of the sunrise and sunset, such lights are reflected by the clouds and thus the
color of the sky appears to be red.

Discuss Nicol prism as polarizer and analyzer.
Refer to Section 6.12.2.

Part 2: Descriptive Questions

1.

Explain the terms (a) polarization of light, (b) plane of polarization, (c) plane of vibration, and
(d) optic axis.

Distinguish between polarized and unpolarized light. What is meant by principal section of a
crystal?

3. Define polarization. How can you distinguish between circularly and elliplically polarized light?
[WBUT 2002]
4. Write short notes on (a) positive and negative crystals, and (b) Nicol prism. [WBUT 2003]
Write a note on Nicol prism and its working as polarizer and analyzer. [WBUT 2004]

o v

. What is polarization of light? What do you mean by positive and negative crystals? How can you

distinguish between an unpolarized, a circularly polarized and a plane polarized light.
[WBUT 2004]

7. Write the name of different types of polarized lights.

. Distinguish diffraction and double refraction. What are the advantages of a polaroid over a Nicol

prism?
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. What is a Nicol prism? How is it prepared? What do you mean by crossed and parallel Nicol

prisms?

State and explain Brewster’s law of polarization by clearly indicating the nature of polarization of the
reflected and the refracted rays.

What are the differences between (i) isotropic and anisotropic media, (ii) uniaxial and biaxial crys-
tals, and (iii) positive and negative crystals?

What are O-ray and E-ray? How is the concept of total internal reflection used in the construction of
a Nicol prism? Discribe the method of obtaining a polarized light with the help of a Nicol prism.
Describe the construction of a quarter-wave plate and explain how you can produce circularly and
elliptically polarized light in such a plate.

How can you distinguish unpolarized linearly polarized, circularly polarized and elliptically polar-
ized light?

Part 3: Numerical Problems

1.
2.

The critical angle of light in a certain substance is 45°. What is the polarizing angle?

Calculate the thickness of a quarter-wave plate for light of wavelength A = 589.3 nm, given
U, =1.544 and u, = 1.553.

. Plane polarized light passes through a quartz plate with its optic axis parallel to the faces. Calculate

the least thickness of the plate for which the emergent beam will be plane polarized.

. Calculate the thickness of a half-wave plate given that u, = 1.533 and p, = 1.544 and A = 500 nm.

. Calculate the thickness of a double refracting plate capable of producing a path difference of %

between the E-ray and the O-ray.

A polarizer and an analyzer are oriented so that the amount of light transmitted is maximum. To what
fraction of its maximum value is the intensity of the transmitted light reduced when the analyzer is
rotated through an angle of (i) 30°, (ii) 45°, (iii) 60° and (iv) 90°?

. The refractive index of a glass plate is 1.60. Calculate the angle of polarization and the corresponding

angle of refraction.

. An unpolarized light wave of intensity 10 mW/cm? passes through two Nicol prisms with principal

section at 30° to each other. Calculate the intensity of the transmitted wave.

. A beam of plane polarized light is changed into a circularly polarized light by passing it through

a 0.003 cm thick slice of crystal. Calculate the difference in the indices of two rays in the crystal
assuming it to be the minimum thickness that will produce the effect (=6 x 10~ m).






CHAPTER

Laser Optics

7.1 INTRODUCTION

Laser is an important discovery of modern physics and it gave the branch of optics a new impetus. The beam
of light emitted from a laser source can have high degree of coherency, monochromaticity directionality and
light-power density. All these properties of laser made it so important.

To be familiar with the history of laser one has to go through the history of development of maser. The
word maser is an acronym of microwave amplification by stimulated emission of radiation while the
word laser is that of light amplification by stimulated emission of radiation. Historically, the laser is
nothing but outgrowth of the maser. In 1917, Einstein first theoretically predicted the stimulation process
(i.e., stimulated emission) in addition to the spontaneous emission in a quantum system while establishing
two relations known after him between two coefficients known as Einstein’s A and B coefficients. Charles
H Townes and his associates at the university of Columbia, USA and two Russian physicists Aleksander M
Prokhorov and Nicolay G Basov independently successfully built maser in early fifties of the 20th century.
The aforesaid trio were honored with the Nobel prize in physics in 1964 for their outstanding work in quan-
tum electronics which ultimately led to the discovery of maser and laser. In 1958, A H Shawlow and C H
Townes set forth the principles of laser, then known as optical maser. And because of the development of
laser optics in the sixties of last century, the attention of researchers in physics was drawn afresh in the field
of optics. The first successful laser based on the principles of Schawlow and Townes was built in 1960.

Laser is one such gift of science that has found a good number of applications in the fields of biology
medicine, chemistry, metallurgy and aeronautics. Townes and his co-workers built maser in 1954 by using
ammonia (NH;) gas working at the operation frequency of 2.4 x 10" cycles/second. Schawlow and Townes
in 1958 tried maser technique in the visible range of frequency. Finally T H Maiman could have successfully
constructed the first optical maser (i.e., laser) in the year of 1960.

7.2 CHARACTERISTICS OF LASER

Laser has four distinct characteristics which were just mentioned in the previous section. Laser can be eas-
ily distinguished from ordinary light because of these four distinct chararistics of it though both of them
belong to the same visible range of electromagnetic radiation. The said four striking features of laser are
(a) high monochromaticity, (b) high degree of coherence, (c) high directionality (or low divergence), and (d)
high brightness (or high power density).
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(a) High monochromaticity of laser The energy levels of the atoms which are responsible for
generation of a laser beam through transitions of electrons from higher to lower levels are not completely
discrete and sharp. A transition of an electron in an atom between two energy levels produce an emission
or absorption of a photon whose wavelength lies within the range between A and A + dA. This variation in
the wavelength (or frequency) of radiation is called spectral broadening. Doppler broadening, collision
broadening, and natural broadening are three most important broadening mechanisms which are responsible
for creation of spectral broadening. At the time of emitting a radiation, the atoms do not remain at rest. In
fact, the frequency of the emitted radiation varies slightly depending on the velocities of the atoms concerned
and their direction of motion. This is known as Doppler broadening. When an atomic electron in a solid
substance causes emission of radiation through transition between two energy levels and produces a photon,
an exponential decay of the amplitude of the wavetrain is observed. It is just like a collision broadening
where shortening of the wave train occurs and results in broadening of the spectral line. It is called natural
broadening.

When a source emits light the degree of monochromaticity of the light can be expressed in terms of line
width or spectral width of the souce which is the frequency spread of the spectral line and can be denoted by
Av. We know that the frequency v is given by

or, Av=—- AL w (7.1)

Equation (7.1) expresses the relationship between the frequency spread (Av) and wavelength spread
(AN).

For a laser beam, A1 = 0.001 nm while in case of gas discharging in a tube AA =0.01 nm and for a source
of white light AA = 300 nm. One can minimize this spectral width by using different modern techniques. To
become perfectly monochromatic a laser in expected to have Av = 0.

(b) High degree of coherence of laser Laser waves are highly coherent. So, if one wants to under-
stand the laser well, one must aquire some knowledge of coherence. Coherence is the predictable cor-
related motion of two waves when there is a fixed amplitude and phase relationship between them. If
two light waves coming out of two sources are coherent then these sources are also said to be coherent.
In other words, coherence is related to definite phase relationship between two waves (or sources) at
different points of space and time. For a source to be coherent, it must be able to emit radiations of single
frequency or the frequency spread must be very small. The wavefronts spreadings from the source must also
be able to maintain a constant shape. Thus, we can categorize the coherence into two categories: (i) temporal
coherence, and (ii) spatial coherence.

(i) Temporal coherence 1f one is able to predict the phase and amplitude of a wave at a given point
in space at different instants of time or if two waves always maintain a fixed phase and amplitude difference
while passing through a fixed point in space, then such waves are called temporally coherent ones and the
phenomenon is known as temporal coherence. The definition given above is an ideal one. A real source of
light emits light in short pulses known as wavetrains. As for example, when an excited atom of a substance
goes from a higher state to a lower state, it emits a pulse of light during a short interval of time (A¢) ranging
from 10'% to 107® s. For example, in case of red cadmium line (A = 643.8 nm), At = 107 s. There cannot
be any phase relationship between the pulses which originate from two different atoms of a substance since
atoms of a given substance emit radiations randomly. However, one can predict the phase and amplitude of a
wave at a given point in space at two instants of time if the same wavepulse keeps on passing through the said
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fixed point. This longest time span (¢,) during which one can make a prediction on phase and amplitude of
a wave is called coherent time. The length of the wavepulse corresponding to ¢, is called coherence length
(1.). The coherence length [, is given by

l.=t.xc ..(1.2)
where c is the speed of light in the free space.

(ii) Spatial coherence The spatial coherence refers to the

phase relationship between two waves present at two space points P
at the same point of time. If there is a point source S then, two equidis-
tant points P and Q (which are not along the same line with the source
S) will always have a definite phase relationship (Fig. 7.1)
But if one gradually increases the size of the source S, then after Q

some time the points P and Q will fail to maintain definite phase rela-
tionship. The maximum lateral dimension of the source up to which
the radiations from it remain coherent determines the spatial coherence. Fig. 7.1 Points P and @ which

That is, the spatial coherence depends on the size or dimension of are equidistant from
the source concerned. the souac? S hcan
. . maintain definite phase

Though, theoretically the output of a laser is expected to be perfectly relationship.

coherent, but in reality, it does not show perfect coherence because all
photons are not instigated by the original stimulating photon which initiates the stimulated emission. A
detailed discussion on temporal as well as spatial coherence has been made in the first chapter of this book
along with interference of light. Interested readers may refer to that chapter. An analytical discussion of
coherence has been made in appendix-B

(c) High directionality of laser A beam of conventional light spreads very fast as it passes away from
the source, i.e., the rays of the light beam diverge quickly resulting in the rapid increase of the area of the
moving wave front. On the other hand, in case of a laser beam, it is observed that the divergence is very less.
This property of a laser beam to maintain the parallelity between any two rays of it for a long distance can be
termed as its directionality. Laser beams are highly directional as compared to those of conventional light.
As for example, a laser beam of 10 cm in diameter will not be wider than 5 km in diameter while traveling
from the earth to the moon where the distance between the two said celestial bodies is 3,84,000 km. In case
of perfectly directional light beam the diameter of the wavefront will remain same. But in reality no light
beam is perfectly directional.

The degree of directionality is generally expressed in terms of divergence. As stated above, the divergence
gives a measure of spreading of the beam when it is emitted from the source. Using small angle approxima-
tion, it can be shown that the laser beam increases in diameter about 1 mm while travelling through a dis-
tance of one metre resulting in a beam divergence of 1 milliradian per metre. If one considers two points at
distances r, and r, respectively from the windows of the laser souce and measures the diameters of the laser
spot at the aforesaid points and finds the values of the diameter to be d; and d, respectively, then the angle of
divergence in degrees can be expressed as

o= 24 (1.3)
== (7.
The full angle of divergence () in terms of the minimum size of the spot (d,)) is given by
9= 1274 . (74)

2d,
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where d,, is the intrinsic size of the beam within the optical cavity of the laser and A is the wavelength of the
radiation emitted from the laser source.

(d) High intensity or brightness of laser The laser source emits the radiation through its window
in the form of a narrow beam having its energy concentrated in a small area. On the other hand, the light
from a ordinary light source gets emitted in all possible directions. As in the case of laser, the beam travels
in the form of plane wave, the intensity of it remains nearly constant with distance while it travels forward.
In fact, a one milliwatt He-Ne laser is brighter than the mid-day sun. It acquires this property because of its
other two properties namely — coherence and directionality. When two photons each having amplitude a are
in phase with each other and interact with each other, then due to the principle of superposition, the resultant
amplitude becomes 2a. Hence the intensity in (2a)* i.e., 4a>. In case of laser a large number of photons (say
n photons) is in phase with each other. As a result, the amplitude of the resultant wave becomes (na) and the
corresponding intensity is (n*a®) consequently the intensity becomes very high because of coherent addition
of amplitudes and negligible divergence. For this reason, one can directly look at a glowing 100 watt electric
bulb, but on the other hand one cannot look at a one milliwatt He-Ne laser that has 10° times lesser power than
that of the electric bulb. A one milliwatt He-Ne laser source is 100 times brighter than the mid-day sun.

7.3 ABSORPTION AND EMISSION OF RADIATIONS BY MATTER

When light energy interacts with matters, both the activities of absorption and emission of photons take place
in the concerned matters. By absorbing photons, the atoms of the matters get excited and as the atoms can-
not remain in the excited state for a long time, they return to the ground state or for the time being to some
metastable states by emitting light.

7.3.1 Absorption of Radiation

The atoms of the active medium have a number of dis-
crete energy states called quantized energy states. They
are characterized by their principal quantum number n
(where n is an integer). These atoms of the medium usu-
ally remain in the ground state with a minimum energy hv ~~~~rr~>
E| in absence of any external influence. When they are
subjected to some interaction, e.g., irradiation by light
photons of frequency v, they transit to some higher
energy state E,, by absorbing the energy Av of the inter-
a'ctlng phot.on§. This phenomenon is kngwn as 'flbsorp- Fig. 72 An atom transits from the ground
tion or excitation of the atoms of the active medium. In state E, to a higher state E, by
fact, it is a stimulated or induced absorption because absorbing a photon of energy hv.
absorption is necessarily a stimulated or induced
process (Fig. 7.2). The frequency of such a transition is given by,

E,—-E,

= (7.5)

7.3.2 Spontaneous Emission of Radiation

Let us now consider an atom which is initially in the excited state E, (Fig. 7.3). As an atom cannot stay in
an excited state for a long time it returns, of its own, to the initial state £, by emitting a single photon of
frequency Vv after a time interval of about 107% s or it returns to the ground state in two or more steps by

E,
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emitting photons of energy v’ (where v’ < v) one after another via the metastable states of intermediate energy
E’ where E; < E’ < E,.

E,

hv” <~~~

Y
E 1

Fig. 7.3 Spontaneous emission. An excited atom transits from the excited state E, to the ground state E,
directly or via a metastable state E’.

This process of returning to the initial state E, is called spontaneous emission (or spontaneous
de-excitation). And the energy of the emitted photon is given by,
hv=E,—E, or h'=E,—E’ ... (7.6)
In fact, the active material under observation contains an assembly of atoms and the photons emitted spon-
taneously by the atoms (due to the process of spontaneous transition) have no directivity. They are emitted
randomly in different directions with random or uncorrelated phase. Therefore, the light emitted by the atoms
of the sample under observation is non-coherent in nature.

7.3.3 Stimulated Emission of Radiation

The quantum description of the processes of stimulated absorption and spontaneous emission is identi-
cal—just a transition from one level to another level of energy—though as a result of the former the atom
gets excited and as result of the later the atom gets de-excited. But when a photon of precise frequency v (or
precise energy hv = E,— E|) interacts with an atom which is already in the excited state E,, it fails to excite the
atom concerned as it is already excited. Instead, it produces the following equivalent effect, i.e., it de-excites
the atom and brings it back to the ground state. So, under the influence of the electromagnetic field of the
interacting photon of frequency v, it makes a transition to the lower energy state £, and emits and additional
photon of the same frequency v (Fig. 7.4). So, now there

are two photons of frequency v, the original one and the E,
one which has been emitted through the process of pres-

ent influenced emission of radiation in contrast to the
spontaneous emission. This kind of transition is known

as induced or stimulated emission of radiation. It is to

be noted that in the spontaneous emission, photons get
emitted in random direction while in case of stimulated > hv
emission, the light photon always gets released from
the atom in the same direction in which the stimulating  E 4
inci.del?t photon moves. It is also noteworthy that both Fig. 74 Stimulated emission—a photon of energy
the incident and the stimulated photons are coherent and hv (= E, - E,) interacts with an excited
contribute equally to amplify the incident beam. Now if atom and causes it to emit the absorbed
these two photons interact with two other atoms in the energy hv.

hV ~~~~ >




7.6 Basic Engineering Physics

excited state E,, it will result in stimulated emission of two more photons and so on. Ultimately, the process
will form a geometric progression or chain. So, if a lage number of excited atoms get involved in the process,
the stimulated emission of photons can generate an intense beam of light having very high coherence and
directionality.

7.4 EINSTEIN’S A AND B COEFFICIENTS: EINSTEIN’S THEORY AND
RELATIONS

If in an assembly of atoms of an active medium, some atoms remain in the excited state, then they will de-
excite at a certain rate. But nobody can predict which atom will transit to the lower state first. In fact, this is
a statistical process. So, to take account of the transition process one has to adopt a statistical method. The
theory of probability can be used to calculate the rate of relative transitions between any two energy levels
with a good accuracy. Einstein used the theory of probability of statistics to calculate the rate of transition
assuming the atomic system to be in equilibrium with an electromagnetic radiation.

7.4.1 Derivation of Einstein’s Relations

Let us consider an assembly of atoms which is in thermal equilibrium at a certain temperature 7 with radia-
tion of frequency v and energy density u (v). The energy density u (v) is the amount of energy per unit volume
of the active medium which is due to the photons of energy Av. Let N, and N, be the number of atoms per unit
volume of the active medium respectively in energy levels 1 and 2 at an instant of time. The rate of transition
of atoms from state 1 to state 2 (P;,) in the process of absorption depends on the said states and it is also
proportional to the energy density u(v) of the radiation.
: P, =B, u®),

where the proportionality constant B, is called Einstein’s coefficient of absorption of the radiation.

So, the number of atoms in state 1 that absorb a photon and transits to the state 2 per unit time is given
by

NPy =N B, u(v)

The probable rate of spontaneous transitions from state 2 to the state 1 depends on both the state 1 and the
state 2 and does not depend on the energy density u (v). So, the number of atoms in the state 2 which transit
to the state 1 by the process of spontaneous transition per unit time is given by

Ny Py = NyAy,
where A, is called Einstein’s coefficient of spontaneous emission and P,, is the rate of downward spon-
taneous transition. According to Einstein, there is again a downward stimulated transition from the state 2 to
the state 1 due to the presence of electromagnetic radiation in the assembly of atoms. The probability of such
stimulated downward transition is proportional to the energy density u (v) of the stimulating radiation, apart
from its dependence on the state 1 and the state 2 and it is given by
Py, =By u(v)
where B, is called Einstein’s coefficient of stimulated emission.

So, the number of atoms undergoing stimulated transition from the state 2 to the state 1 per unit time is

given by
Ny Py =NyByu(v)

So, at the state of equilibrium, the absorption and emission per unit time must be equal.

Hence, N, P, =N,P,, + NPy,
or, Ny Py + Ny Py =N Py
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or, N2A21+N2321u(v) =N1312 M(V)
NyAy,
Hence, u(y)=——-——
NyBj,—N, By,
A
or, u®v) = a1
By M (ﬁ) -1
Ny \ By
A
or, u@v) =—2L. 1 (. NN, = "6 A(1.7)

By (B,,/B,))e"™" D 1

Now, this relation of energy density of the radiation of frequency v must be in accord with the Planck’s
formula for radiation which is given by

8hy’ 1
u(v) = - ...(7.8)
JERR
Now, having compared Eqgs (7.7) and (7.8), we get the following two relations:
A 3
Bp=By and 2= Szhy .(1.9)
21 c

Thus, from the above two relations, we can see that the probability of stimulated absorption is equal to the
probability of the stimulated emission. And the second equality implies that the probability of spontaneous
emission varies as v°. In equilibrium the ratio of stimulated emission rate to spontaneous emission rate is
given by

By u(v) B 1
A, VKT _

...(7.92)

The A’s and B’s are respectively called Einstein’s A and B coefficients. These coefficients cannot be deter-
mined with the help of classical electromagnetic theory. But the coefficient B can be determined through
quantum mechanical process by making use of Dirac’s theory and hence the value of the coefficient A can
be calculated. The reciprocal of A,; can be taken as a measure of the life-time of the upper state against the
spontaneous transition to the lower or ground state.

7.5 WORKING PRINCIPLE OF LASER

The working of laser depends on the phenomenon of stimulated emission of radiation. As was stated earlier,
the theory of stimulated emission of radiation was developed by Einstein in 1917. He was considering the
equilibrium of matter and electromagnetic radiation in a chamber of black body at a constant temperature
where exchange of energy occurs due to absorption and spontaneous emission of radiation by atoms. It was
observed by him that the absorption and emission processes together fails to explain the equilibrium situa-
tion. There is a difference between the two. In order to explain the cause of the difference between the said
absorption and emission processes, he predicted that there must be an additional process of radiation in the
blackbody chamber and then termed it as ‘stimulated emission’. But his aforesaid prediction regarding stimu-
lated emission attracted little attention of the people engaged in research until 1954. In 1954, one American
physicist C H Townes and two Russian physicists N Basov and A M Prokhorov discovered independently and
almost simultaneously the phenomenon of construction of maser using ammonia gas. Townes and Schawlow
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in 1958 successfully showed that the maser principle can also be extended to the field of visible light radia-
tion. And finally in 1960 Maiman first built the device of laser using ruby as the active medium.

If one considers the interaction of the atoms or molecules of an active medium with the radiation then for
the interaction to take place, the energy carried by the photon of the interacting radiation (Av) must be equal
to the difference of energy between the two energy states of the concerned atoms or molecules. There are alto-
gether three possibilities for the transitions of the electrons of participating atoms or molecules between two
energy levels, namely, (a) induced absorption (or stimulated absorption or simply absorption), (b) stimulated
emission, and (c) spontaneous emission.

7.6  POPULATION INVERSION IN LASER

By the term ‘population’ we mean number of atoms which remain in particular energy state or level, e.g.,
ground state, first excited state, etc. Normally, in the thermal equilibrium state the higher energy levels are

much less populated than the lower ones since by Boltzmann law we have N,IN, = ¢ ~EVKD) and E,>E;

s0, ¢ (B2m EVID) o

Hence, N, < N;. Now, if even B, = B,,, the stimulated emission is normally unlikely to occur because the
higher energy level is less populated. But we can initiate and sustain it; only if we can make a large number
of atoms available in the concerned excited energy state by using some means, i.e., if we can make N, > N,.

When in a laser active medium, the number of atoms in the higher energy state exceeds the number
of atoms in the lower energy state, the active medium is said to have population inversion condition.
And the process of obtaining population inversion is called pumping.

7.6.1 Various Methods of Population Inversion

Many different methods of pumping are available. One can adopt either of them for achieving population
inversion. The main principle is to selectively transfer a good number of atoms from the ground state to a
higher energy state of the atoms so that the number of atoms in the higher state becomes bigger than that
of the ground or any other lower energy state. We are selectively discussing some of the pumping methods
here.

(a) Optical pumping In this method of pumping, a high energy light source, e.g., xenon flash lamp, is
used. It can supply sufficient photon-flux in a given spectral range to excite atoms. The atoms of the active
medium are allowed to rise to the appropriate excited state from the lower state through the process of
selective absorption of radiation. These excited atoms then make non-radiative transition through which some
energy is transferred to lattice thermal motion. And the atoms reach a metastable state where they remain for
arelatively longer time. Thus, one gets population inversion resulting the number of atoms in the excited state
more than the number of atoms in the ground state. Optical pumping method is used in case of ruby laser.

(b) Excitation by electrons In this method of pumping, the electrons are released from the atoms of
laser active gases by passing high voltage electrical discharge through the gas. The intense electrical field
accelerates these electrons to high speeds and they collide with neutral atoms in the gas. A fraction of the gas
atoms make thereby a transition to the excited state. This method of pumping is used in some gas lasers.

(c) Inelastic collision of atoms When an electric discharge passes through a gas having two types of
atoms X and Y, some of the former are raised to excited state X* and some of the latter to the excited state
Y*. Let one of them (X*) be in a metastable state — having a mean lifetime longer than normal mean lifetime
(approximately 107 s) of an excited atom of X. If the excitation energies of both types of atoms are nearly
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equal, then some Y-atoms in the ground state may transit to the excited state through inelastic collision with
X* atoms:

X¥+Y >Y*+X
and the number of Y*-atoms continually increases because of the property of metastability of X* atoms. This
pumping is used in case of helium-neon (He-Ne) laser.

(d) Chemical pumping 1f an atom or a molecule is produced through some chemical reaction and remains
in an excited state at the time of production (e.g., HF), then it can be used for pumping. The HF-molecule
is produced in an excited state when hydrogen and fluorine gas chemically combine. The number of so
produced excited atoms (or molecules) may considerably be more than the number of atoms (or molecules) in
the normal state and hence one can get a population inversion in this process. As an example, we can consider
the following chemical reaction:

H,+F, > 2HF
This chemical reaction generates sufficient energy to pump a CO, laser.

(e) Thermal pumping Sometimes we can obtain a population inversion in an active lasing medium by
heating the said medium. As in this method population inversion is achieved by supplying heat, it is called
thermal pumping.

7.7 BASIC COMPONENTS OF LASER SYSTEM

Structurally a laser device may have the following three main components along with some other less impor-
tant components: (a) an active medium (in the state of either solid or liquid or gas), (b) A source of pumping
(for population inversion), (c) Optical resonator (for causing oscillation). Let us discuss the basic laser system
with a block diagram in the following subsection.

7.7.1 Basic Laser System

Irrespective of the active medium (solid dielectric, semiconductor, liquid or gas) a basic laser system should
have at least the three components as stated above. Figure 7.5 shows the block diagram of the basic laser
system.

e
«— e
A L
D e
e
X X

Fig. 7.5 A basic (simple) laser system.

T : Totally reflecting mirror, P : Partially reflecting mirror,
E : Exciting source (pumping), L : Laser beam (outgoing)

A : The active medium.
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The active lasing medium A (which is either a solid or a liquid or a gas) is capable of sustaining the stimu-
lated emission. The pumping device or external source of excitation, E supplies pumping energy to cause
population inversion in the active medium. The optical resonator consisting of two mirrors P and 7 is respon-
sible for the capacity of the laser system to sustain the laser oscillation, a part of the output must be fed back
into the laser system. Such a positive feedback is brought about by placing the active medium A between the
said plane mirrors P and T, facing each other. The mirror 7 is totally reflecting while the other mirror P is
partially reflecting. So it allows a part of the generated laser beam L to pass through. The arrangement of the
two mirrors 7 and P is known as the optical resonator.

To cause population inversion in the system, the medium A is fed with pump energy from E. Then this
energy is released from the excited atoms by the process of stimulated emission. One photon released by one
excited atom stimulates another atom it encounters in the path of it to release a second photon; now these two
coherent photons add completely to a beam of double intensity. While the beam moves to and fro through
the active medium, its intensity gets rapidly inhanced by more and more stimulated emissions. The reflector
mirror 7T gets the beam reversed and allow it another passage (in fact a number of reversions occurs) through
the excited medium for further amplification while the beam reaches P, a part L of the beam escapes as a laser
beam. The stimulated photons, which are emitted obliquely with respect to the axis, get lost through the sides
of the lasing system so that the final emergent beam is always along the axis of the lasing system.

7.7.2 Characteristics of the Active Medium

The active lasing medium is very much important for a laser system. So we are throwing some more light on
its characteristics. This medium consists of an assembly of atoms, molecules or ions (in the form of solid,
liquid or gas) which possessed the capability of amplifying light waves. And in normal situation, there always
remain a larger number of atoms or molecules in the lower energy levels as compared to the number of such
partcles remaining in the higher excited energy levels. While passing through such an assembly of aforesaid
particles, an electromagnetic radiation would get attenuated due to absorption of energy of the electromag-
netic wave. And in this process, the energy density of the radiation decreases. Thus, to achieve amplification
of the electromagnetic radiation, the active lasing medium must be kept in a state of population inversion. In
order to obtain population inversion, the active medium must have the following properties:

(a) It should be transparent to both of the stimulating radiation and the laser output.

(b) It should possess good optical properties such as it should exhibit negligible variation in the refrac-
tive index and scattering. It should not undesirably absorb the stimulating radiation and the laser
output.

(c) It should have a capability to accommodate the active species that help in lasing action without mak-
ing any change in the desired properties.

(d) It should have good thermal and mechanical properties due to which deformation or fracture will not
occur during any extreme working condition.

7.8 OPTICAL RESONATOR AND Q-VALUE

An optical resonator is used in a laser system to sustain the lasing action for a long time through oscillations
of the light rays. The optical resonator can have a number of different types of configurations. Out of them,
the simplest one has already been discussed in the earlier section (Fig. 7.5). Such a simple device is not used
nowadays because with such a device, the required critical precise alignment of the mirrors cannot be obtained.
Out of the other alternative configurations (Fig 7.6), we can mention the following four configurations:
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(a) Confocal configuration
(b) Spherical or the concentric configuration

(c) Hemispherical cavity configuration

TN
A
)/
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|
Y

(d) Long radius cavity configuration. r,

In the confocal configuration, two identical (a) Confocal
concave mirrors are placed face to face and the
distance between their centers is made equal to
the radius of them. In the spherical configura-
tion also, two identical concave mirrors of same
radius are placed face to face and the separation
of them is made equal to twice of their radius.
In the hemispherical configuration, one concave
mirror is placed at one end and a plane mirror is
placed at its centre of curvature. And in the case
of long-radius cavity configuration, two concave
mirrors of long but equal radius are placed face to
face as shown in Fig. 7.6.

It has been observed that in the confocal < > n=r,

configuration the alignment problem is much

less. In the hemispherical cavity configuration, r,

though, it is easier to align but the power out-

put of this configuration is comparatively low. (d) Long-radius cavity

The long-radius cavity configuration is most fre- Fig. 7.6  Fourconfigurationsof mirrorsusedinresonators:

quently used for commercial lasers. (a) Confocal. (b) Concentric. (¢) Hemispherical
cavity. (d) Long radius cavity.
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(b) Concentric

n=r
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(c) Hemispherical cavity
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7.8.1 Generation of Standing
Wave in the Resonator

Though for lasing action population inversion is essential but it is not only the decisive factor for the same.
A large number of atoms or molecules undergo spontaneous transition and each so generated photon is
capable of producing stimulated transitions. These spontaneous phtons have different phase, directions and
polarizations. So these photons cannot contribute in the coherent amplification. In order to obtain a coherent
emission, the number of photon states must be kept under control. The selectivity of proper photon states and
positive feedback are necessary for offsetting the lasers. It can be obtained by enclosing the radiation in a
cavity or resonator which is tuned to desired frequency. o me3 me2 me1 o

Two plane parallel mirrors at the two ends of the active
material play the role of resonator. If sufficient population
inversion occurs in the active medium, then the light is ampli-
fied by the laser action. The light is reflected back and forth
by the two mirrors and standing waves are generated. These
stationary waves have node at each mirror. When the cavity
resonates, the distance L between the mirrors has clearly an
integral multiple of half-wavelengths (Fig. 7.7).

Mirror
JOMIN

A
~
Y

Fig. 7.7 An optical resonator with two
L=m ( & ) parallel mirrors which are L
2/ distance apart from each other.
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where m corresponds to the axial mode number and m = 1, 2, 3, .... If one expresses the above equation in
terms of frequency of axial mode, one gets

y 2o _ cn
" A A 2Lm
where v is the speed of light in the active medium, » is the refrective index of the medium. And c is the speed
of light in free space.

.. the equation finally can be written as

_mc
Vi = 2Ln

An infinite number of longitudinal cavity modes for oscillations are possible, each with a distinct fre-
quency v,,. The frequency difference Av between two consecutive modes is given by

..(7.10)

Av=vm+1—vm=ﬁ[(m+l)—m]
, Av=z— (711
or. v=or (7.11)

One can note the important point that the resonant modes of the cavity are narrower in frequency than the
width of a single spontaneous emission line that may engulf several resonant modes of the cavity. The narrow
cavity modes and the broad emission line are shown in Fig. 7.8.

Intensity
A

Atomic emission lines

» Frequency

Intensity
A

Cavity modes

» Frequency

Fig. 7.8 Atomic emission line and cavity modes are shown for an optical resonator.

From the broad range frequencies of an emission line, the cavity mode selects and amplifies only certain
narrow bands. It is possible to choose, by changing the separation of the mirrors, only one mode in the band-
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width of an emission line. And this explains the property of the extreme monochromaticity of the laser beam.
The laser cavity may be either stable or unstable. In the stable resonator, the beam is close to the axis and
bounces back and forth between the two mirrors without much energy loss. On the other hand, in an unstable
resonator the beam moves away from the axis at each reflection and leaves the resonator within a very short
time.

7.8.2 Q-value or Quality Factor

The resonator does not have sharp line resonant mode. In fact, it has a finite, though small, frequency spread
or frequency band. The various losses which are involved with the modes in cavity are linked to this fre-
quency band. The usual losses are principally due to absorption, scattering and diffraction.

A measure of these losses can be expressed in terms of a factor known as quality factor Q or the Q - value
of the cavity. Q is defined as

Maximum energy stored per cycle in the concerned mode

=271 X
0 Energy dissipated per cycle in the concerned mode

in the mode under consideration.
Another alternative expression for the quality factor Q is given by
w
Q_AW

where A W is the line width, so that a high quality factor Q implies a low loss and narrow width of a mode.

e (7.12)

7.9 THRESHOLD CONDITION FOR SUSTAINING OF LASER ACTION

When population inversion is produced in the cavity, light amplification takes place in a laser system. A laser
consists of an active medium kept in between two mirrors which form the optical resonator of the laser sys-
tem. The light radiation which bounces back and forth within the resonator is amplified by the active medium.
The light radiation also suffers some losses due to various reasons. These losses are to be sufficiently com-
pensated by induced transitions in the active medium for the laser action to sustain. Those losses which draw
more attention are due to absorption by the active medium, transmission, scattering and diffraction by the
mirrors, scattering by optical inhomogeneities of the medium, etc., for the compensation, as has been reffered
to above, a minimum strength of population inversion is required. And this minimum population inversion
is called threshold population inversion. The density of atoms in the higher energy state (i.e., excited state),
when population inversion is achieved, is called population inversion density. Different materials have dif-
ferent threshold values of population inversion density as it is related to the intrinsic properties of the material
concerned.

7.10 TYPICAL LASERS

Many types of lasers are nowadays being used. They can be classified broadly into four categories: (a) solid
dielectric laser, (b) gas laser, (c) semi-conductor laser, and (d) tunable laser. They emit red, blue, blue-green
or invisible radiation ranging from microwave to ultraviolet. Some of them produce continuous waves (cw),
and others produce flash or pulse laser. The pulse rate is very short. It may be in the order of milliseconds,
nanoseconds or picoseconds. We shall describe only two lasers here: (a) pulsed ruby laser, and (b) continuous
helium-neon gas laser.
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7.10.1 Pulsed Ruby Laser

The first successful laser built by Maiman (1960) was ruby laser. It is a solid state laser and was built by using
a ruby crystal (i.e., a Al,O; crystal dopped with Cr 3* jons at a concentration of nearly 0.05% by mass).

Construction of the Lasing System

Doped ruby crystals as stated above are used as active medium. These crystals are grown in special furnaces
and then given a shape of a cylinder about 1 cm in diameter and 5 cm in length (Fig. 7.9). The end faces A
and B are polished in such a manner that they become optically flat and parallel.

G (Glass tube) L (Xe-light)

Laser
beam

Capacitor
+ -

Fig. 7.9 Ruby laser system. AB is cylindrical ruby rod, A-totally reflecting face, B-partially reflecting face.

The two ends are silvered in such a way that face A reflects light totally and B reflects partially. As the face
A reflects light totally, it forces the radiation to proceed backward to B, which being semisilvered, allows a
small fraction (1%) of the intense radiation to emerge out of the laser cavity as laser beam. And the major part
of radiation (99%) is reflected back into the crystal. The cylindrical surface is also coated with silver to make
it reflecting. A xenon flash lamp L (helical in shape) surrounds the ruby rod. The output of the lamp is rich
in yellow-green light and it is flashed for optical pumping. A cylindrical glass tube G through which liquid
nitrogen circulates also surrounds the rod to keep the rod cool.

Working of Ruby Laser

When the xenon lamp L is switched on, a flash of light from it excites a large number of chromium ions from
the ground state E, to the wide band and excited state E; by absorption of the light of wavelength A = 550 nm
(Fig. 7.10); as can be seen in the diagram, the chromium ions have an intermediate metastable state E,. Soon

E,

A =550 nm

! i £

Fig. 710 Energy level diagram of ruby laser.
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the excited chromium ions decay to the metastable state E, through radiation less de-excitation process. And
stay therefore relatively longer time (several milliseconds) to transit finally to the ground state by spontane-
ous emission of wavelength A = 694.3 nm. The lamp L through its flashing, thus increases the population
in the metastable state E, via the wide-band state of energy E;. The state E, being metastable one, the chro-
mium ions cannot stay in this state for long time. They emit photons spontaneously when one or two photons
are emitted spontaneously by them, the photon(s) induce stimulated emission and coherent laser beam in
obtained through the partially silvered face B. The output beam of the ruby laser obtained is in the form of
pulse mode. So it is not continuous laser. The construction of the ruby laser is simple and the operation is very
easy. So it is used for many practical purposes. Hence it is called practical laser.

7.10.2 Continuous Helium—Neon Laser

Ali Javan and his associates developed the helium—neon (He—Ne) laser in 1961. It was the first gas laser.
He — Ne laser is one of the most popular continuous wave lasers.
Construction of the Lasing System

It consists a discharge tube about 1m long, 4 —6 mm in diameter and filled with a mixture of pure He — Ne gas
in the ratio of 5:1 under the total pressure of 1 torr (Fig. 7.11). The ratio of 5:1 is rather critical. The gain of
this laser system is proportional to the tube length. The intensity varies with diameter.

DC power supply
/

Laser beam

Fig. 711 He-Ne gas laser system.

The relative intensity of the laser depends to a great extent on it. The other parts of the He — Ne laser
system are one high-voltage dc power supply, two concave spherical mirrors M, and M,, mirror M, having
99.5% reflectivity and mirror M, being partially reflecting. Each of the mirrors has a radius of curvature equal
to the length of the cavity and mounted on a rotatable support to bring them into alignment. Two optically flat
windows W and W,, called Brewster’s windows, are fitted by cementing to the ends of the tube at Brewster’s
angle 0 (= tan™! 1), where u is the refractive index of the material of the window, to provide a plane polarized
beam of light. The window W, is fully reflecting while W, is partially reflecting. The laser operates continu-
ously at low power (in the range between 5 and 10 W). The output lies between 1 mW and 50 mW and it gives
laser of wavelengths 632.8 and 115.2 nm.

Working Principle of He—Ne Laser

In order to understand the operation of He — Ne laser, let us take help of the energy-level diagram as shown
in Fig. 7.12. Due to discharge in the mixture of the two gases, some atoms of helium are raised by electron
collision to the metastable state F, and F; and the number of so excited helium atoms gradually builds up



7.16 Basic Engineering Physics

as no radiative transition to the lower states is possible. Now, some of the excited states of the neon gas are
lower than but very close to the aforesaid metastable states of the helium gas. For this reason, when atoms of
helium gas in states F, and F; collide with those of neon gas in the ground state £, exchange of energy takes
place among them. As a result of this type of collisions between atoms of the two gases, some neon atoms
get excited and raised to levels E, and E, and returning of the helium atoms to the ground state through de-
excitation occurs. The process of energy transfer has a high probability as the states F, and F; are unstable.
The discharge in the cavity (i.e., the gas mixture tube) thus continuously increases the population of neon
atoms in excited states E, and Ej.

eV +
21 + He
Ne
19 4 Through atomic
collisions
Fs E, 3.39 x 10° nm
17 + Y
E5
F, t E, 7, 632.8 nm
15 1 E,
Ne—_|
<= Excitation by 600 nm (Spontaneous emission)
collision with
131 electrons — E,
Dexcitation by
11+ atomic collision
0 | _Y
F, E,

Fig. 712 He-Ne gas laser system.

So, population inversion takes place between E, and E; or Eg and E5 or Eg and E; as shown in the diagram
by arrowheads. The various transitions between different pairs of layers lead to the emission of radiations of
wavelength 3.39 x 10° nm, 1.15 x 10° (both lie in infrared region) and 632.8 nm. The last is the well-known
red-light laser. The excited neon atoms then fall from the level E; to E, by spontaneous transition resulting in
the emission of photons of wave-length A = 600 nm. The He — Ne laser is more directional and more mono-
chromatic than any solid laser as it is a gas laser. The solid lasers suffer from many imperfections in solids and
the heating effect of the flash lamp used while the He — Ne laser does not suffer from such imperfection.

7.11 APPLICATIONS OF LASER

A laser beam possesses a good number of mentionable properties which are usually not found in the light
beams obtained from other sources. It is these properties of laser that impart special importance to the laser
and because of these specialities of lasers, they have many applications in daily life as well as in science and
industries. Let us discuss the applications of laser in the following four categories:
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(a) In technical and industrial fields, the laser beam is used for cutting fabrics for clothing in one hand
and sheets of steel on the other hand. Laser can be used to make minute holes through drilling in
paper clips, single hair strand and hard materials including teeth and diamond. And through such
diamond holes extremely fine wires in cables are drawn. Laser welding method can be used to join
metallic rods by melting them. Laser heat-treatment is able to harden surfaces of engine crank-shafts
and cylinder walls. Laser beams can be used to vaporize unwanted materials during the time of
manufacturing of electronic circuits on the chips of semiconductor.

(b) In the field of medicine, the laser beams are used for ‘spot welding’ of detached retina, in grafting
cornea, in drilling holes in the bones, for destroying specific cancerous areas within tissues of the
body in bleeding-free surgery like vocal chord operation, ulcers of stomach, stones in the kidneys, in
cutting and sealing small blood vessels during brain operation and also while microsurgery on cells
and chromosomes are performed.

(c) In science and for research in science, the laser has become a very useful tool. In Raman spectro-
scopy, He — Ne lasers are fast replacing mercury arcs with the help of laser multiphoton processes
which are being studied in determining the symmetry of wave functions in spectroscopy. Laser
beams can be used to confirm the phenomenon of temporal coherence. Laser is also being used in
the field of ionization and dissociation studies of gases, in kinetic studies of fast chemical reactions,
in spectrochemical analysis of solids in conjunction with mass and emission spectrometer and in
the investigation of energy transfer by exciting a specific vibration level and observing its decay in
polyatomic molecules.

(d) Other uses of lasers include — ‘inertial confinement’ of plasma and determination of its temperature;
destruction of enemy missiles, to aim at the enemy at night; laser rifles, laser pistols and laser bombs
are also being made; detection of earthquakes and nuclear explosions, vaporization of solid fuels
of rockets and study of the surfaces of distant planets and satellites, accurate measurement of very
long distances, the distance between the earth and moon has been measured to an accuracy of 15 cm.
Laser can also be used to make three-dimensional motion pictures. Now laser is essential in com-
munication technology.

Worked-out Examples

Example 7.1 | Find the difference of energy between two energy levels of neon atom if the transition

between these levels gives a photon of wavelength 632.8 nm. Also calculate the number of photons emitted
per second to give a power output of 2 milliwatt.

Sol. The energy difference between the said energy levels of neon atom,

AE=E2—E1=hv=h—)f

_6.63 10 x3x 108
632.8 x 107°

—19
Ap = 314310
1.6 x 107"
or, AE =1.96 eV

or, AE =3.143x 107997

eV[-1eV=16x10"J]

or,
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If n be the number of photons emitted per second to give a power output of 2 mW, then
P=nxAE
P 2x107 watt

n=——s=
AE 3143 x10"7J
So, the number of photons emitted per second is given by 6.363 x 10%5.

Example 7.2 | If the wavelength of radiation of ruby laser is 694.3 nm, what is the energy of a photon

emitted?

or, =6.363 x 10"

Sol. Given the wavelength of radiation is A = 694.3 nm.
The energy of the radiated photon is

—34 8
E oo e 6.625x10%x3x10° |
A 694.3 x 107

or, E=1.787 eV.

Example 7.3 | In a He — Ne laser transition from E; to E, level gives a laser emission of wavelength

632.8 nm. If the energy of the E, level is 15.2 x 107" J, how much pumping energy is required, if there is no
energy loss in the He — Ne laser ? [WBUT - 2008]

Sol. Wavelength of He — Ne laser is A = 632.8 nm = 6328 x 107" m.

The energy of the laseris E” = hv = h—;

_6.625x 10 x3 x 10°

or, E’ J=31x10"7J
6328 x 10710
or, E’ =1935¢eV
The energy of the level E, is E”=15.2x 10" I.
i.e., E” =9.488 eV
Now if E be the energy of the pumping source, then E=E’ + E”.
Hence, E=1935eV +9.488 ¢V.
or, E=11423¢eV.

Example 7.4 | 1n a lasing process, the ratio of population of two energy states E , and E, (E, being a meta-

stable state) is 1:1.009 x 10*°. Calculate the wavelength of the laser beam at a temperature of 320 K.
Sol. Let N, and N, be the number of atoms per unit volume of the states E; and E, respectively, then

N N
Do b o 2221009 % 1047
Ny 1.009 x 107 N,

And temperature 7 = 320 K.

Now, using the Boltzmann relation, we get
N,
N

or. In & -_AE
’ N, kT

= o~ (= EDIKT) _ ,~AEIKT)
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Now, considering magnitude only, we get

AE = kT'1 M
= n ﬁl

or, AE =1.38 x 1072 x 320 x In (1.009 x 10%)
or, AE =1.38 x 1072 x 320 x 57.57
or, AE=254%107"7J
Now, if A be the wavelength of the laser, then
he
AE =2
A
q o he (6.63%x1074T7-21)-(3x 10* ms™)

or, =—=

AE 254 %107
or, A=783%x10"m
or, A =783 nm

Example 7.5 | Two plane mirrors forming a resonant cavity in a He — Ne laser are at a distance of 0.5 m.

Find the frequency separation between two consecutive modes in longitudinal cavity.

Sol. The distance between the two plane mirrors L = 0.5 m. So, the difference between the frequencies of
two consecutive modes is given by

__c
2Lu

where velocity of light ¢ = 3 x 10 m/s

Av

and refractive index of the medium u =1

be 3x 108
2x05x1

Example 7.6 | A relative population (Boltzmann ratio) of 1/e is representative of the ratio of populations

in two energy states at room temperature (7 = 27°C). Determine the wavelength of the radiation emitted at
the temperature.

=3x10° Hz

Sol. With usual meanings of the symbols, we have
& — o (Ea—EDIGT)
N,
Ny 1
But, here, —==
ut, here N, e
1_ 1
Hence, e~ B~ EDIKT)
L, -E, 1
or, =
kT

or, E-E =kT = kT:hv:h—f
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Loch_ (3 10%) (6.62 x 10734
KT (1.38 x 1072 (273 +27)

or,

or, A=48x10"m

Example 7.7 ] Calculate the probability of stimulated emission if the probability of spontaneous emission
is 0.07 in a laser action which emits radiation of 6328 A wavelength.

Sol.  GivenA, =0.07 and A=6328 A =6328x10""m

We know that 5
a21 _ 8rhv
B, c?
A 8mh
But V= £’ SO l ="
A By A
Ay A2 0.07 x (6328 x 10719y
or, B21 = =

87h 8 x3.14 % 6.625 x 107
=1.06 x 10"

the probability of stimulated emission is 1.06 x 10"

Example 7.8 | A ruby laser emits a radiation of 694 nm wavelength. Calculate the coherence length, band
width and line width if the duration of the pulses is 0.1 ns.

Sol.  Here A=694 nm =694 x 10~ m.
1,=0.1ns=0.1x10"s
The coherence length
l.=t.xc

=0.1x10°x3x10%

=003 m
Bandwidth Av=t=—1 " _ 10"y
Ie 0.1x107°

2 694 x 107)> x 10
Linewidth AL = ’% Ap= (89410 ) %
3x 108

=1.605x% 10" m

Example 7.9 | Calculate the ratio of stimulated emission to spontaneous emission rate for sodium D lines

at a temperature 300°C.
Sol. Here T=300+273=573k

and Anep = 589.3 nm
=589.3 x 10 nm
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Now Stimulated emission rate _ 1
Spontaneous emission rate VKT _ |
_ 1
o ke
eMT — 1
he 6.63 x 1072 x 3 x 10°

=42.6

AT~ 589.3 x 107 x 1.38 x 1072 x 573
By neglecting 1 in the denominator, we have

e ?0=315%x10"

So, the ratio between stimulated emission rate to spontaneous rate is 3.15 x 107", The stimulated
emission is negligibly small and hence laser action is not possible.

Review Exercises

Part 1 : Multiple Choice Questions

1. In He — Ne Laser, neon atoms obtain energy (WBUT 2008)
(a) on collision with helium atoms (b) from chemical reactions
(c) from electrical pumping (d) optical pumping

2. In aruby laser, population inversion is achieved (WBUT 2007)
(a) through optical pumping (b) through inelastic collisions
(c) through chemical reactions (d) by applying strong electric field

3. Population inversion in preparing laser beam can be achieved (WBUT 2006)

(a) when one of the excited states is less populated than the ground state
(b) when one of the excited states is more populated than the ground state
(c) when the population of one excited state and the ground state are equal
(d) on the basis of none of the above conditions

4. Emission of photons due to the transition of an electron from a higher to a lower energy state caused
by external energy is known as

(a) stimulated absorption (b) amplified emission
(c) stimulated emission (d) spontaneous emission
5. The population of electron in different energy states of a system in the thermal equilibrium is gov-
erned by
(a) Bragg’slaw (b) Einstein relations
(c) Boltzmann distribution law (d) Wien’s displacement law

6. The color of the laser output in case of ruby laser is
(a) violet (b) blue (c) red (d) green

7. In case of laser, variation of divergence of a laser beam with distance gives us an idea about its
(a) brightness (b) coherence (c) monochromaticity (d) directionality
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8. The ratio of He to Ne in a helium-neon laser is of the order of
(a) 1:15 (b) 1:1 (c) 1:10 (d) 5:1
9. In the active medium of ruby laser the percentage of chromium ions in Al,Oj is
(a) 0.5 (b) 0.05 (c) 0.005 (d) 0.0005
10. The wavelength of He — Ne laser is
(a) 632.8 nm (b) 600 nm (c) 532.8 nm (d) 500 nm
11. The wavelength of ruby laser is
(a) 694.3 nm (b) 632.8 nm (c) 600 nm (d) 633.3 nm
12. Coherence of light can be measured from
(a) wavelength of the beam (b) variation of spot size in distance
(c) brightness of the beam (d) None of these
13. A three-level laser system will be
(a) always pulsed (b) either CW or pulse (c) always CW (d) None of these
14. For a laser action to take place, the medium used must have at least
(a) 4 energy levels  (b) 2 energy levels (c) 3 energy levels (d) None of these
15. In a gas laser, generally optical pumping is not applied because
(a) absorption band of the medium is narrow
(b) absorption band of the medium is broad
(c) the process is not able to excite atoms in such a higher energy state of gaseous atom
(d) None of these
16. The metastable state has a mean life-time of more than
(@ 107°s (b) 107 s (©) 107*s (d) 10725
17. The ratio of Einstein’s A and B coefficient, i.e., A,,/B,, (say) is proportional to
(@) v (b) v () v’ (v
Answers
1. (a) 2. (a) 3. (b) 4. (¢ 5. (o) 6. (¢) 7. (d) 8. (d)
9. (b) 10. (a) 11. (a) 12. (¢) 13. (a) 14. (c) 15. (a) 16 (a)
17 (¢)

Short Questions with Answers

1.

What are the differences between ordinary light and laser light?

The ordinary light may be either polychromatic or monochromatic depending on the nature of sources
which produce it while the laser light is perfectly monochromatic irrespective of the source which
produces it. The conventional sources produce ordinary light which is basically incoherent because
the producing sources emit light of random wavelengths with no common phase relationship. On
the other hand, laser light is highly coherent having constant phase relationship among various rays
produced by the laser source. Ordinary light sources emit light in all directions whereas laser sources
emit light rays in a unique direction making it highly directional. The brightness of a laser beam is
much more than that of the ordinary light.
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2. What is working principle of laser?
Refer to Section 7.5.
3. What is stimulated emission?

If an atom is excited, then at least one electron of the atomic shell(s) occupies higher energy level(s).
In such a situation an incident photon having energy equal to the difference of the energies of the
occupied higher orbit and any other lower orbit (where the number of electrons is less than the
required number of electrons for a complete shell), may cause one electron in a higher shell to jump
to the said lower shell and as a result of this act a photon is emitted. This kind of emission of photons
is called stimulated emission.

4. What are population inversion and pumping?
Usually, due to thermal equilibrium, the higher energy levels of atoms are much less populated than
the lower energy levels (including the ground level) since by Boltzmann law N,/N, = ¢ B BT
ie., N,< N, for E,> E,. So, even when B,,, = B,,; the stimulated emission is normally unlikely to
occur. It can be initiated and continued; if only by some means a large number of atoms are made to
attain in appropriate excited energy levels. The situation in which the number of atoms in the higher
energy level exceeds that in the lower energy level is known as population inversion and the pro-
cess of obtaining population inversion is known as pumping. Pumping may be done in many ways.
Optical pumping, chemical pumping, etc., are a few of the various ways of pumping to cause popula-
tion inversion.

5. What is optical resonator? Discuss it in brief.

For sustaining the laser oscillation, a part of the output must be fed back into the laser producing
system (i.e., the laser cavity consisting of the active medium). Such a positive feedback is caused to
occur by placing the active lasing medium in between two plane parallel mirrors which face each
other. One of them is placed at one end of the active medium and the other one is placed at the other
end of the medium. One of the mirrors is partial reflector and the other one is total reflector. The
partial reflector allows a part of the generated laser beam to go out of the system. This arrangement
is known as the optical resonator. This device is capable of causing a resonance between the stimulat-
ing photons and the excited atoms capable of emitting photons of same frequency. Hence the name
optical resonator.

6. What are the characteristic properties of a laser beam?
Refer to Section 7.2.

7. Describe in brief, the working principle of laser?
Refer to Section 7.5.

8. Discuss briefly the application of laser in the medical field?
Refer to Section 7.11(b).

9. Why is helium gas used in the helium-neon laser system?
In He — Ne laser the masses of the two types of atoms are not comparable. The atoms of neon are
much heavier than those of helium. So, it is not possible to excite the neon atoms easily efficiently
with the help of collision with electrons generated from electric discharge in the mixture of neon
and helium atoms. At the same time, the possibility of the transfer of energy of an electron which
is accelerated through the collision with helium atoms is maximum because they are lighter atoms.
There are some metastable states in helium atoms which are almost identical to the two energy states
of the neon atoms. Therefore, at first the energy of accelerated electrons is transferred in helium
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atoms through inelastic collisions, then that energy is transferred to the neon atom through resonance
transfer of energy. So, the excitation is transferred to the neon atoms via the helium atoms. The He
atoms act as carriers of excitation energy.

What is resonance transfer of energy?

If there be two atoms of different kinds with identical or almost identical energy levels, then transfer
of energy from one atom to the other is possible when they take part in the event of collisions. This
type of energy transfer is called resonance transfer of energy.

Part 2: Descriptive Questions

1.
2.

Explain clearly the terms ‘absorption’ ‘spontaneous emission’ and ‘stimulated emission’
(a) Define Einstein’s A and B coefficients and deduce their mutual relation.
(b) Show that the ratio of spontaneous to stimulated emission is proportional to the cube of the

frequency.

(c) Explain the construction and action of the optical resonator in a ruby laser. [WBUT - 2008]

3. Explain the working principle of He — Ne laser with energy level diagram. [WBUT - 2007]

4. What is the full form of laser? Describe different properties of laser. State the difference between
laser and ordinary light.

5. What are the different transition process involved with lasing action? Describe with energy level
diagram, the phenomena of spontaneous emission, stimulated emission and stimulated absorption in
a two-level system.

6. What is population inversion in case of laser? Explain it. Obtain a raltion between Einstein’s A and B
coefficients. What are their physical significance?

7. What do you understand by a metastable state? What is rule of a metastable state in order to obtain
population inversion in an active laser medium?

8. Draw a net sketch diagram of ruby laser. Discuss the operation of a ruby laser with the help of energy
diagram.

Part 3: Numerical Problems

1. Calculate the ratio of stimulated and spontaneous emission rates for the wavelength A = 5893 nm at
200°C.

2. The energy gap between two levels corresponds to wavelength A = 500 nm. Find the ratio of popula-
tions of the two states in thermal equilibrium at 27°C.

3. Find the ratio of stimulated to spontaneous emission rate at a temperature of 240°C for sodium D
lines.

4. If the wavelength of the radiation of the He — Ne laser is 632.8 nm, calculate the energy of the radia-
tion. [1.9625 eV]

5. A normal optical source emits a radiation of wavelength 600 nm at a temperature of 900 K. Show that

the stimulated emission in the system is negligible compared to the spontaneous emission.
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Holography

8.1 INTRODUCTION

Dennis Gabor invented holography in the year of 1948. He developed the principle of holography and then
used it to record the hologram. For this reason, he received the Nobel prize in the year of 1971 in Physics for
the invention of holography. The word ‘holography’ has been coined from the Greek words ‘holos’ which
means ‘the whole’ and ‘graphos’ which means ‘to write’ therefore, the so created combined word holography
means ‘to write wholly’ (or ‘whole writting’).

8.2 BASIC PRINCIPLE OF HOLOGRAPHY

Holography is a method of producing three-dimensional images of objects employing the properties of coher-
ence of laser beam. In this technique, the information about the amplitude and that about the phase of the
light reflected from an object (i.e., and encoded image of the object) is recorded on a photographic plate and
referred to as the hologram. This hologram is subsequently decoded by a read-out light wave to produce the
three-dimensional image which manifests a vivid realism.

In the case of an ordinary photography the image of a three-dimensional objects is recorded on a two-
dimensional film (i.e., photographic plate). This photographic plate senses the intensity of the wave and
records the information about the amplitude for the object under consideration. In ordinary photography, the
information about the phase is not utilized. So it gets lost and wasted. On the other hand, in holography the
information about the phase is successfully used along with that of the amplitude to get a vivid image. There
are two steps involved in holography: (i) Recording of the hologram, and (ii) reproduction (or reconstruction)
of the holographic image.

8.3 RECORDING OF THE HOLOGRAM

The holographic method is based on the principle of interference of light and thus it requires highly coherent
beam of light. Figure 8.1 illustrates schematically the recording technique in holography. Light coming out
of the laser source L strikes the light beam splitter S. The splitter splits the laser beam into two components.
The reflected beam R is incident on the object O and the transmitted beam 7 is incident on the photographic
plate P. The object O reflects the beam incident on it. A part of the beam reflected and scattered by the
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object (and denoted by R,) is incident on the photographic plate P where the transmitted beam has also been
incident. The transmitted beam 7 acts as the reference beam. The interference of the two beams incident on
the photographic plate gives an interference pattern which is recorded on the photographic plate P. Then the
plate P is developed. This developed photographic plate is called the hologram which contains the encoded
image of the object in the form of the interference pattern.

S

O'\
N1

Fig. 8.1
T: transmitted beam.

24

o

Recording of hologram: L: laser source, S: beam splitter, O: object, P: photographic plate and

8.4 RECONSTRUCTION OF THE IMAGE

The reconstruction (i.e., reproduction) of the image is schematically represented in the Fig. 8.2.

(@)

N

N
NN
\
T

/

r

Fig. 8.2 Reconstruction (or reproduction) of the holographic image for viewing L: source of reconstruction
wave, W,: Reconstruction wave, O: observer, I,: virtual image, I,: Real image and H: Hologram

This viewing diagram is slightly modified view of the recording diagram. The object and the light split-
ter have been removed from their respective places. So, in this case the hologram is illuminated by the laser
beam, which is now called reconstruction wave or read-out beam. This wave interacts with the interference
pattern recorded on the hologram and two images are formed due to diffraction of the laser beam. Out of the
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two images, one is a virtual image and the other one is a real image. The real image is known as the pseudo-
scopic image and the virtual image is known as orthoscopic image. The virtual image appears at the original
position of the object, and the real image is formed in the other side of the hologram. The real image can be
photographed directly without employing a lens.

The interference pattern on the hologram contains information of the geometric characteristics of the
object. The virtual image, which is observed through the hologram, appears in full three-dimensional form.
One can view the different sides of the object by moving the eye. The real image is also three-dimensional,
but it is inverted in depth, i.e., the features of the object farther from the viewer appear closer. For this reason,
this image is called the pseudoscopic image and it is not of much interest.

8.5 CHARACTERISTICS OF HOLOGRAM

The unique characteristics of hologram are recorded below:

(i) Two images can be reproduced from the hologram out of which one is real image and other one is a
virtual image.

(ii) The wave from each point of the object reaches all the parts of the holographic plate through scatter-
ing of light. So, a copy of the entire hologram constructed from a diffused object can be reconstructed
by using small portion of the hologram.

(iii) A cylindrical hologram provides a 360° view of the object.

(iv) The holographic system must be absolutely still during the time of exposure. The exposure time is of
the order of 5 seconds and depends on the color of the object.

8.6 REQUIREMENT FOR AN IDEAL DISPLAY OF HOLOGRAM

To display a hologram ideally the following requirements should be fulfilled:

(1) The light used to display the hologram should be temporally and spatially coherent.
(i) The resolution of the reconstructed image should be good enough.
(iii)) The reconstructed image must be free from aberration.
(iv) The field of view of the image should be wide enough to allow a large parallax.

(v) The film, the object and any mirror, used in producing the reference beam must be motionless with
respect to one another during exposure.

(vi) The background should be noise free because the background noise reduces the contrast of the
image.

8.7 THEORY OF HOLOGRAPHY

In a view to understand the principle of holography well, let us con- P
sider a small object O as shown in the Fig. 8.3. E
The light scattered or diffracted by the object and the reference - Q
beam impinge on the photographic plate P and interfere. The field at r
a point Q on the plate is given by E,
E=E.+E ...(8.1) OHXHR

Fig. 8.3 Hologram of a small object.
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where E, is the reference-beam field and E; is the scattered-beam field. Since the reflected wave front from
the object O is spherical with the centre at the point O, we can write

AS .
E =~ exp (ikr — r) ...(8.2)

N

where OQ = r. The field E, is that of a plane wave:

E.=A, exp [i(kx — or)] ...(8.3)
where x is the perpendicular distance of the object O from the photographic plate PR. The intensity / of light
at the point Q is given by

I=(E,+E)(E,+E)
=E E +EE +E E +E,E,

2
s

t—

.
exp [ikl(r — x)] + —— exp [ik (kx — wr)] ...(8.4)

— 1A P4 |0
or, I=1A1"+|—

The quantity marked with asterisk indicates that it is a complex conjugate. The last two terms in the
Eq. (8.4) can be combined to get

I=1AP ‘Arz C cos [k 8.5
=1A, 1"+ |+ +7cos[(r—x)+¢] ...(8.5)

The presence of the cosine term shows that as r is changed, the intensity / passes through a series of
maxima and minima. The interference of E, and E thus generates a set of circular fringes of interference on
the photographic plate. When developed it gives the hologram. The response of the plate being proportional
to the intensity /, the coefficient of power transmission of the plate 7. is given by

T’=1-al ...(8.6)
where o is a constant usually o/ << 1, so that Eq. (8.6) given us
1
T.=(1-al:?
or, T.=1 —% ol [.. ol<<l1] ...(8.7)

If the hologram gets illuminated by the reference beam, the field of the transmitted wave is given by

E=TCEC_=(1—%0¢I)E,

= 1—%a(ErEi'FEYEj+E;qu+ErEj]Er
or, E=—1—%(ErEf+EjEs+ErEj]Er
or, E=[1-2&E+EEE-SEEE-SEE
2 o 2 2
[ o 2 |Ar|2 o 2 o ) .
or. E=|1-Z|147+—|| - S 1A PE, - 3= A;A? exp[i(2kx — kr — )] ~-(8.8)
_ 2 2 2 2r

The first term on the right-hand side of Eq. (8.8) represents the incident wave with its amplitude altered by
blackening of the plate as it passes out through the photographic plate. The second term represents a diverg-
ing spherical wave emitted by the object with its amplitude changed and this wave appears to emanate from
an image located at the original position of the object. This is the virtual image. The third term also repre-
sents a spherical wave, and this a replica of the original wave except the fact that it has a reverse of conjugate
curvature. It converges to a point O” as seen in Fig. 8.4 forming a real image at this point.
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The complete theory of holography is quite complex, but the general P
features for an object of finite size can be appreciated by an extension of //
the above done analysis for a point object. Q

If the reference beam is not used in producing the hologram, then one
can have A, =0 and it is clear from Eq. (8.5) that the event of blackening
of the plate would be caused by the scattered field E only. Thus, only

o

the information about the amplitude is recorded, and the information B X e X —

about the phase is lost. The reference beam is required for the recording
of both the amplitude and the phase, so that a complete reproduction of

R
Fig. 8.4 Formation of the image.

the object can be obtained.

Because of high coherence of gas laser, these lasers are used in holography of still objects. The emitting
power of gas lasers being low, the time of exposure for gas laser is large. For the holography of moving
objects pulsed solid state lagers are used. Their time of exposure is as small as 1ms.

8.8 FEATURES OF HOLOGRAPHY

®

(i)

(iii)
(iv)

8.9

The virtual image of a hologram is three-dimensional. The observer can see the details of the object
by tilting his head. Thus, the image is more realistic.

The damage of a portion of a convertional photographic image causes a permanent loss of informa-
tion for that part of the object. But in holography such damaged part can be reconstructed easily as
every point on the hologram is illuminated from all parts of the object and so contains information
on the geometrical features of the entire image.

The capacity of a hologram to store information is very high.
The copied hologram is the reverse of the original one.

APPLICATIONS OF HOLOGRAPHY

The principle of holography finds its applications in many branches of science and technology for data stor-
age and processing. Some of its applications are noted below:

(a)

(b)

(c)

Storage of data Holographic data storage is a technique that can store information at a high density
inside the crystals. The advantage of holographic data storage is that the volume of the recording
media is used instead of just the surface of the media. If the hologram of a scene is recorded, then the
events get frozen into the hologram and hence one can focus through the depth of the reconstructed
image while studying the phenomenon later. The holographic storage has the potential to become the
next generation popular storage media.

Holographic interferometry 1t is doubly exposed holographic technique that can be used in the
study of the distribution of strain in an object subjected to stress. The recording plate is first partially
exposed to the object wave and the reference wave, then the object is stressed and the recording plate
is again exposed to the stressed object wave and reference wave. The recording plate following its
development forms the hologram. Two object waves emerged from the hologram corresponding to
the stressed and unstressed objects interfere and hence produce interference fringes. The shape and
number of the fringes give the distribution of strains in the object.

Holographic scanner These are in use in the post offices, shipping firms and automated conveyer
system to determine the three-dimensional size of the package.
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(d) Holographic stereogram For making holographic stereograms, photographs of objects rather than

the real objects are used. The two dimensional photographs are recorded in the form of a composite
hologram such that the image appears to be three dimension.

(e) Holographic studio Holographic studios exist in several countries for displaying holographs.

These holographic studios are equipped well for recording of a wide range of objects and composi-
tions including people and animals.

(f) Holographic art Holographic art is often the result of collaborations between scientists and

artists. Nowadays holography is being used in industry, communication and other engineering fields.
Another important application is use of bar code readers in shops, libraries warehouses, and so on.

Review Exercises

Part 1: Multiple Choice Questions

1.

Dennis Gabor received Nobel Prize in Physics for discovering the principles of holography in the
year of

(a) 1948 (b) 1947
(c) 1955 (d) 1971
Holography is a method in which one
(a) records the amplitude only
(b) records the phase only
(c) not only records the amplitude but also the phase of the light wave
(d) None of these

. The reconstruction process produces

(a) avirtual image (b) areal image
(c) both virtual and real image of the object (d) None of these
The virtual image is known as

(a) pseudoscopic image (b) orthoscopic image
(c) photocopy (d) None of these
. The real image is known as
(a) pseudoscopic image (b) photocopy
(c) orthoscopic image (d) None of these
. If a hologram breaks into pieces, each piece can reproduce
(a) the entire image (b) the half image
(c) one third image (d) one forth image

. In the recording of the hologram one superimposes

(a) object wave and reference wave (b) two object waves
(c) two reference waves (d) None of these
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8. The real image formed
(a) at the same distance from the hologram, the scene depth is real
(b) at the same distance from the hologram, the scene depth is inverted
(c) at the half distance from the hologram, the scene depth is real
(d) None of these
9. A cylindrical hologram provides a
(a) 180 degree view of the object (b) 270 degree view of the object.
(c) 360 degree view of the object (d) 90 degree view of the object
10. For holographic system the exposure time is of the order of
(a) 5 seconds and depends on the colour of the object
(b) nearly 2 seconds
(c) 1 second
(d) 50 seconds

Answers

1. (d) 2. (c) 3. (¢ 4. (b) 5. (a) 6. (a) 7. (a) 8. (b)
9. (¢) 10. (a)

Short Questions with Answers

1. Define holography and hologram.

Ans. Holography is a technique of recording the amplitude and phase of the light waves reflected from an
object. Thus, a three dimensional image of the object can be recorded. The recorded photograph is
called a hologram.

2. What are object wave and reference wave?

Ans. The light from a laser source is split into two components. One of the component wave is directed
towards the object is known as object wave. The other one is directed towards the photographic plate
is known as reference wave.

3. Why is laser needed for holography?

Ans. The coherence length of laser is many metres. Hence holograms of larger object can be produced by
using laser.

4. Name the principle that is used in the construction and reconstruction of a hologram.
Ans. Development or construction of a hologram is based on the principle of interference of light waves.
Reconstruction of a hologram is based on the principle of diffraction of light waves.
5. What are pseudoscopic and orthoscopic images?

Ans. After reconstruction, the real image formed by hologram is known as pseudoscopic image and virtual
image formed by hologram is known as orthoscopic image.

6. What are hologram aberrations?

Ans. Hologram suffer aberrations coursed by a change in the wavelength from construction to reconstruc-
tion and also by a mismatch in the reference and reconstruction waves.

7. What are the applications of holograms?
Ans. Refer to Article 8.6.
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Part 2: Descriptive Questions

What is holography? Explain the process of recording and reconstruction of hologram.
Explain the theory of holography.

What are the basic principle of holography? Why laser needed for holography?
Describe holography.

State some of the applications of holography.

AR

Describe the basic requirements of an ideal display hologram.



CHAPTER

Quantum Physics

9.1 INTRODUCTION

The advent of quantum mechanics caused a revolution in the world of physics in the first quarter of the
twentieth century. In fact, the formulation of quantum mechanical theory in 1925 was the culmination of
researches that had started in the last decade of nineteenth century and came to an end in the third decade
of twentieth century. At the end of nineteenth century, physicists had every reason for regarding the laws of
newtonian mechanics which governed the motion of material bodies and Maxwell’s electromagnetic theory
as the fundamental laws of physics. And at that time, there was very little or no reason to suspect the existence
of any limitation regarding validity of the aforesaid laws and theories which constitute the branch of physics
that is now known as classical mechanics.

But following the discoveries of X-rays (by Wilhelm Konrad Rontgen in 1895), radioactivity (by Antoine
Henrri Becquerel in 1896), radioactive elements such as radium and polonium (by Pierre Curie and Marie
Curie in 1898), Zeeman effect of splitting of the spectral lines in an intense external magnitic field (by Pieter
Zeeman in 1896) and electron (by Joshep John Thomson in 1897) set a motion in a series of some impor-
tant and interesting experiments yielding results which could not be explained with the help of the laws of
classical mechanics. In order to resolve the apparent paradoxes which were created by the above-mentioned
observations and some other experimental facts, it was necessary to introduce some new ideas that were quite
different from the concepts acquired by common sense regarding matter and energy around us and their inter-
action with each other which (the acquired concepts) were implicit in classical mechanics and had an essen-
tial role in its development. And introduction of the aforesaid new ideas caused a revolution in the field of
physics which ultimately led to the mathematical formulation of quantum mechanics that had a spectacular as
well as immediate success in the explanation of the experimental observation which were the consequences
of aforesaid discoveries.

In fact, the researches on discharge of electricity through gases paved the way to conduct experiments
which led to the discoveries of X-ray, radioactivity, Zeeman effect, etc. These discoveries led to the discov-
ery of electron and ultimately helped us to understand the inner structure of the atoms. And hence, we got
access to the studies of the atomic and subatomic world. And in this microscopic world, the atomic particles
were found to have very high speed comparable to that of light. The behaviors of these particles (with so
high speed) could not be explained with the help of the laws of classical mechanics. During the same period,
many experiments on blackbody radiation were also performed. Physicists like Lummer, Pringsheim and few
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others (in 1899) made precise measurements of the intensity distribution of blackbody radiation for the entire
range of frequencies (or wavelengths). Two physicists, Rayleigh and Jeans in 1900, tried to explain this inten-
sity distribution on the basis of electromagnetic theory of Maxwell but their attempt was partially successful.
It was Max Planck who finally explained the said intensity distribution of blackbody radiation with the help
of his quantum theory of radiation. It was a revolutionary concept not approved by the classical electromag-
netic theory. This quantum concept (i.e., particle nature of radiation) was used by Albert Einstein (in 1905)
to explain the photoelectric effect. Louis Victor de Broglie (in 1924) predicted the wave nature of the moving
microscopic particles of atoms. And this wave nature exhibited by moving particles was experimentally veri-
fied by C J Davision and L H Germer of USA (in 1927) and also by G P Thomson of UK independently (in
1928).

Erwin Schrodinger (in 1925) and Werner Heisenberg (in 1926) mainly built up the theoratical framework
of quantum mechanics. Subsequently the subject of relativistic quantum mechanics was developed by Paul
Adrien Maurice Dirac in 1928. Quantum mechanics was, thus, established as the fundamental theory of the
phenomena which occur in the atomic and subatomic world. Though quantum mechanics is a completely new
mathematical formulation capable of being applied in the world of microscopic domain, but it also appeared
as generalization of classical mechanics. That is the results of quantum mechanics get reduced to those of
classical mechanics in the limit when the speed of the particles is relatively small and it is not comparable to
that of light in free space.

In the phenomena of macroscopic world the speeds of the particles are comparatively small and the masses
of the particles remain practically constant and there is no ambiguity between the nature of particles and that
of wave. The spreading of waves along a stretched string or in the water of a still pond is well known to us.
While such waves propagate in a medium, energy and momentum are carried from one point to another point
along the direction of propagation of the waves. Particles and waves are separate entities in case of classical
mechanics. Mechanical waves cause vibration of the particles of medium resulting in the transfer of energy
through them. Light is an electromagnetic wave where periodic variation of electric and magnetic fields
takes place and this wave also carries energy with itself. There are certain phenomena like interference, dif-
fraction and polarization which are exhibited by waves only. The electromagnetic radiations also exhibit all
these aforesaid physical phenomena under suitable conditions. The experimental results in case of some of
the experiments involving electromagnetic radiation, which were performed during the last decade of nine-
teenth century and the first two decades of the twentieth century, could not be explained with the help of the
electromagnetic theory. The electromagnetic radiation, in case of these experiments, behaves as a stream of
particles and the wave nature of them remains concealed. The electromagnetic wave theory, which explained
well the phenomena of interference, diffraction, polarization, etc., failed to explain the phenomena of black-
body radiation, photoelectric effect, Compton effect, etc., where light behaves as a stream of particles. The
quantum theory of light was successfully used to explain them. To appreciate the part played by different
discoveries related to the development of quantum theory, it is necessary, from the very outset, to have a clear
idea of the classical concepts. For this reason, we begin our studies of quantum mechanics with a brief discus-
sion of these concepts, especially blackbody radiation and Compton effect.

9.2 BLACKBODY RADIATION

It is often seen that when some metallic bodies are heated and their temperature is raised to a certain level
they start emitting electromagnetic (e.m.) radiation. As an example, let us consider an iron rod. If it is heated
to a temperature of a few hundred degrees, it starts giving off e.m. radiation which is predominantly in the
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infra-red region. If the temperature is raised to about one thousand degree celsius it begins to glow with
reddish color that means the radiation emitted by it lies in the visible red region having wavelengths shorter
than in the previous case. And if it is heated further, it becomes white hot and the radiation emitted by it gets
shifted towards still shorter wavelengths (blue color) in the visible spectrum of em radiation. Thus, we have
seen in the above example that the nature of the radiation depends on the temperature of the emitting body.
The heated bodies not only emit radiation but also absorb a part of the radiation to which they are exposed.
In 1889 GK Kirchhoff proposed a theorem which states that the ratio of the emissive power of a body to its
absorptive power is a constant which depends only on the temperature of the body and not on the nature of it.
The emissive power of a body is the amount of radiant energy which is emitted by it per unit area of its
surface normally into a unit solid angle* per unit time for a unit range of wavelength. And the absorp-
tive power of a body is the ratio of the amount of radiant energy absorbed by it to the total radiant energy
falling on it. So, if a body is able to absorb all the radiant energy which falls on it, then the absorptive power
of the body becomes unity. Such a body which has absorptive power of unity is called a blackbody. Then
on the basis of Kirchhoff’s theorem as stated above, the emissive power of a blackbody is a function of its
temperature only since its absorptive power is unity. A perfect blackbody is one which is able to absorb all
the radiation of any wavelength completely which is incident on it. A blackbody appears black because
no reflection or transmission of light takes place in such a body. A good absorber of any radiation is also a
good emitter of that radiation when it is hot.

9.2.1 Construction of a BlackBody

In practice, one can realize (construct) an ideal blackbody by heating a double-walled hollow metallic enclo-
sure (called cavity) with a small orifice and a conical projection on the inner wall of it which is just opposite
to the orifice (Fig. 9.1). The space between the two walls is evacuated to prevent the loss of heat by means of
conduction or convection.

Aperture
Heating coil w U/
O P
ﬂ o

(a) (b)

Fig. 9.1 (a) A blackbody made of a cylindrical metallic cavity surrounded by a heating coil H. (b) The cross-
sectional view of the blackbody; O: the orifice P: the conical projection and W: the double wall.

The inner surface of the cavity is coated with lampblack which can absorb about 98% of the incident
radiant energy. The conical projection prevents those rays to get reflected which enter the cavity through the
orifice normally. The radiation which enters the cavity through the orifice is incident on its blackened surface
and gets partly absorbed and partly reflected. The component of the incident radiation which gets reflected is
incident at another point on the inner surface of the cavity and again gets partly absorbed and partly reflected.
This process of absorption and reflection goes on repeatedly since there is very little chance of any part of
the said radiation comming out through the orifice again because of its smallness in size. More than 98% of
the incident beam is absorbed at each reflection so that ultimately the entire beam of radiation, which enters

*See Appendix A
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the cavity, is completely absorbed by it. Thus, the cavity described above has unit absorptive power and it
behaves like a perfect blackbody.

The inner walls of the heated cavity also emit radiation and a part of the emitted radiation can come out
through the orifice. And this emerging radiation has the characteristics of blackbody radiation and it is inde-
pendent of the constructing material of the cavity.

9.2.2 Experimental Observation of Blackbody Radiation

By using a blackbody as described in the previous
subsection and maintaining a constant temperature of
it, if one performs an experiment to measure the emis-
sive power (or intensity) of the blackbody for different
wavelengths, one will obtain the spectra as shown in
the Fig. 9.2 for three selected temperatures 7, T, and
T;. For detection of the emitted radiation a bolometer
can be used as detector and the spectra can be analyzed
by using an infrared spectrometer. Thus the emissive
power of the blackbody against different wavelengths
can be determined.

Fig. 9.2 Experimental results of blackbody
radiation for three temperatures T}, T,
and Tj.

Having a close look at the figure, one can realize that
the spectrum is a continuous curve in which emissive
power is a function of wavelength and the wavelength
ranges from zero to inifinity. The emissive power E initially increases with respect to wavelength A, reaching
a maximum value at a certain value of the wavelength (4,,) and then it decreases at the higher values of the
wavelength. When temperature increases, the wavelength A, corresponding to the highest emissive power
is found to shift towards lower values of the wavelength. The emissive power of the blackbody radiation
increases throughout the range of wavelength (from zero to inifinity) when the temperature of the blackbody
is increased. The emissive power E, has very low values for both very short and very long wavelength. It has
a maximum value in between at a wavelength A,,. The shift in the peak of the intensity distribution curve can
be expressed with the help of an empirical mathematical relation as given below.

A,,T = constant ..(9.1)

The relation (9.1) is known as Wein’s displacement law (1883). The value of this constant is 2.898 x 1073
mK (meter-kelvin)

One can deduce from thermodynamics a law relating the total emissive power radiated per unit area of a
blackbody to its absolute temperature. This law is known as Stefan-Boltzmann law which can be expressed
mathematically as follows:

E=oT! (9.2)
where E = E(T) = fE (1) dA and 0= 5.67 x 10 Wm™ K™. And o is known as Stefan’s constant. Stefan
0

suggested this law (Eq. (9.2)) from his experimental results in 1879 and Boltzmann theoretically derived it
in 1884 from the consideration of thermodynamics. W. Wein (in 1896) from thermodynamical consideration,
proposed one empirical relation between E; and A at a constant temperature T which is given by

E,(T)d\ = % FAT) dA (9.3)
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where A is a constant. And f (AT') is a function of the product of A and T, i.e., (AT). Equation (9.3) is known as
Wein’s distribution law. Wein’s displacement law [Eq. (9.1)] and Stefan—Boltzmann law [Eq. (9.2)] follow
simply from Wien’s distribution law [Eq. (9.3)]. Using Wein’s distribution law [Eq.(9.3)], one can explain the
intensity distribution curve for low values of (AT). For higher values of (AT), E; comes out to be smaller than
the experimental values. So, Wein’s distribution law cannot be used, for complete interpretation of experi-
mental data. Wein’s distribution law is also known as Wien’s radiation law.

9.2.3 Theoretical Aspect of Oscillation of Charged Particle

An accelerating charged particle emits e.m. radiation. An oscillaiting charged particle accelerates. So it emits
e.m. radiation. Any radiating system is nothing but a collection of charged particles which execute simple
harmonic motion through oscillations of its constituent charged particles. The cavity of the blackbody as shown
in Fig. 9.1 is full of standing waves of e.m. radiation of all wavelengths. When the cavity of the blackbody is
heated, the atoms in the inner walls of it oscillate with various frequencies and they emit radiations of those
frequencies. The energy is continuously exchanged randomly between any two atoms in the cavity walls
through emission and absorption of e.m. radiation. The energy density of radiations within the cavity finally
reaches an equilibrium condition at a certain constant temperature 7. If the temperature increased, then new
modes of stationary waves are generated and also the amplitudes of the existing modes increase. The energy
density of radiation u,, at frequency v increases until a new equilibrium state is reached.

In order to calculate the density of the radiant energy u,, i.e., the amount of energy per unit volume, corre-
sponding to radiation with frequencies lying between v and v — dv (or A and A + dA) one can use the following
formula:

u,dv=n,€,dv ...(9.4)
where, n, dv is the number of oscillating atoms per unit volume which contribute to the radiations of frequen-
cies lying between v and v—dv (or A and 4 + dA) and ¢, is the average energy of an oscillating atom at an
absolute temperature 7 of the blackbody. Having calculated the number of modes of e.m. stationary waves in
a three dimensional box, one can express n, dv as follows:

n,dv = 3z Vv

v 3
c

where the velocity of light in free space ¢ = 3 x 10% m/s.

dv ..(9.5)

Having combined Eqgs. (9.4) and (9.5), one gets

u, dv =8—7:-v2 g, dv ...(9.6)
JE
Now, one can define a quantity u, dA as the energy density of radiations having wavelengths lying between
Aand A + dA. Considering the relation between A and v, one can get

c=vA
or. p=L
’ A
or, dv=—"Sdp
A‘Z

Now, by using these relations (i.e., c = vA and dv = — % dl) in Eq. (9.6), one can get
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u, dlz%ea ar (9.7)

[Since for a particular state of the system the energy density can be denoted by either u, or u; and dA = — dv
because while A increases, v decrases. The range for dA is between A and A + dA while the same range for dv
is between v and v—dv, hence u; dA = —u, dv]

According to the definition of u, dv or u; dA, dv or dA represents infinitesimal change in v or A respectively
and thus dv or dA denotes the range within which we are considering the variable u, or u;.

One measures the intensity of emitted radiation (E;) in any experiment on blackbody radiation. The rela-
tion between u, and E, is given by

C

Now, making use of Egs. (9.7) and (9.8) one can write the following equation:
2rc
El—? . ...(9.9)

This equation [i.e., Eq. (9.9)] can be used for determination of the expression of intensity.

9.2.4 Rayleigh—-Jeans Formula of Radiation

Baron Rayleigh (popularly known as Lord Rayleigh) and J.H. Jeans attempted to derive an expression to
express E, by making use of Eq. (9.9). They calculated the average energy &, of an oscillator on the basis of
the equipartition theorem of energy. According to the equipartition theorem, the average energy per degree of

freedom of an entity (e.g., molecules of gas, harmonic oscillator, etc.) is given by % kT where k is Boltzmann’s

constant and 7 is the absolute temperature of the concerned system which contains the entity. An e.m. stand-
ing wave in the cavity of the blackbody originates in an atomic oscillator in the wall of the cavity. As it is a
harmonic oscillator, it has two degrees of freedom, one for its kinetic energy and the other for its potential
energy. Thus, in thermal equilibrium at an absolute temperature 7, the mean energy of each oscillator is given
by

g, =kT ...(9.10)
where k = 1.38 x 107 Joule/K.

Now, putting the value of ¢, from Eq. (9.10), in Eq. (9.7) and Eq. (9.9), one can get the following two
equations:

8
u,ld/lzll—irde/l (9.11)
and E, =2kt 9.12)
A -_— 14 e .
The Eq. (9.11) is known as Rayleigh—Jeans formula (i.e., law) of radiation and Eq. (9.12) is a modified

form of it, expressed in terms of intensity. Equation (9.12), i.e., E; = % kT, agrees with the results obtained

from experiments in the long wavelength region of the em spectrum. But it fails completely to talley with the
experimental results at the shorter wavelength region.
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Ultraviolet Catastrophe of Raleigh—Jeans Formula or Jeans’ Paradox

Let us consider the modified form of the Rayleign— . RJL
Jeans’ formula given by Eq. (9.12). If one puts A =0 e
in Eq. (9.12), one gets E; = o<, i.e., when L — 0, E;
— o<. But experimentally one gets E; = 0 for A =0, o ‘
ie., E; — 0 when A — 0 (Fig. 9.3). T & |
This discrepancy between Rayleight—Jeans’ for-
mula and the experimental results in the shorter wave-
lengths region is called ultraviolet catastrophe or
Jeans’ paradox. The aforesaid discrepancy between )L —
experimental results and theoretical prediction is in " A
fact a failure of the equipartition theorem thatis used  Fig. 9.3 Variation of intensity of blackbody

in the derivation stated above. It is an indication of radiation against wavelength A4 at constant

the limitation of classical mechanics which is based temperature T, EC: Experimental curve

on the equipartition theorem. and RJL: the curve on the basis of Rayleigh-
Jeans’ law.

9.2.5 Planck’s Radiation Formula and his Quantum Hypothesis

Max Planck of Germany thought that the failure of Rayleigh—Jeans law may be associated with either equi-
partition theorem or classical electromagnetic theory or both of them. In 1900, he examined the entire situa-
tion critically and came forward with a bold new postulate regarding the nature of the linear harmonic oscil-
lators which remain in a state of equilibrium with the radiant energy within the cavity of the blackbody. He
stated that an oscillator having given frequency can have energies which are discrete, i.e., the energies can
be expressed as an integral multiple of a finite quantum of energy &, = hv where £ is Planck’s constant and
v is the frequency of the oscillator. Thus, the energy of the oscillator can assume such values only which is
given by,

€ =neg,=nhy € "
where n is an integer including zero. This statement is 8 hv 8
known as Planck’s quantum hypothesis. Obviously the 7 hv ¢ e ’__ Emission
energy of the lowest state (i.e., the ground state) of the 6 hv ¢ 6
oscillator will be zero. 5 hv ¢ 5
It was also assumed by Planck that the change in the 4 hv ¢ 4
amount of energy of the oscillator due to absorption or 8 hv ¢ 8
emission of radiant energy can also take place by a discre- 2hv ¢ 4 2
ate amount /v. He calculated the value of the constant / by hv L T( 1 Absroption
fitting his theory to the experimental data (Fig. 9.3). 0 0
The value of the Planck’s constant is given by Fig. 94 Energy levels of an harmonic
h =6.626 x 10_34j0ules—sec0nd. oscillator T = absorption and =

It is a universal constant and it has crucial role to play in emission of energy.

all quantum phenomena.

Since according to Max Planck, the change in the energy of an oscillator can only take place in dis-
crete form, the amount of energy emitted by the oscillator or absorbed by it in a single step of change is
called a photon and its value will be 2v which is equal to the loss of energy in case of emission and gain
of energy in case of absorption.
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No emission of energy from the oscillator will take place unless the change in energy of the oscillator
AE = - (E;— E;) = hv where hv is the energy carried by the single emitted photon.

Similarly, no absorption will take place unless the energy of the absorbed photon hv = E,— E; = AE.

According to the postulates of Planck, an oscillator can exist only in a set of states with discrete energies
given by {0, hv, 2hv, 3hv, ...., nhv} (Fig. 9.4)

Here E; and E, can represent any of the values of the set of discrete energies of the oscillators given by,

{0, hv, 2hv, 3hv, ..., nhv}

The number of oscillators in an energy level g, (= nhv) is always determined by the Maxwell-Boltzmann’s
distribution function as follows:

Nn = No exp (_ *‘%/(kT))
or, N, =N, exp (— nhv/(kT))

N, =N, for n =0, i.e., the number oscillators in the ground state is given by N,. The number of oscillators
in the nth state is N, and it decreases exponentially with increasing energy €, of the state.

Let us first derive an expression for the average energy €, of the oscillators on the basis of the new ideas as
stated above and given by Max Planck. Since the energies of the oscillators can assume only discrete values,
accordingly we have to replace integral symbols in the expression by summation symbols over all possible
oscillar states in order to determine the average energy &,.

Now, we can express €, as follows:

n=0 n=0
€, = 5 = —
N n
N Enew()
Y. nhv. exp (- nhv/(kT))
or, g, ="
Y, exp (— nhv/(kT))
n=0

c _hvx[l +2x+3x2+4x3+...+oo]
=

or, 5
[1+x+x"+..+00]

where we have replaced exp (—hv/kT) by x. The sums in both the numerator and the denominator of the above
expression can easily be evaluated. And on calculation of the sums as mentioned above, we obtain
(1-x)7 _hwx _
(I-n' 1=x 1
X

&, =hvx

Hence, we can write

g =— " (9.13)

One can easily show that if #v << kT, then the value of €, reduces to the classical limit k7. This obviously
corresponds to the case of continuous variation of the oscillator energy. Equation (9.13) along with Eq. (9.7)
gives Planck’s radiation formula as follows:
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M;Ld;{/— ad/l
or, u,ld/l—g—n- + dA
IR
hx<
or, uld/l=8—if 5 A dA [ c=vA]
c
exXp m)—l
or, uy di = BEhe. 2 A (9.14)
A exp( ¢ )
AKT

Equation (9.14) is known as Planck’s radiation formula (i.e., law) for the intensity distribution of
blackbody radiation. It agrees very well with the experimental results, both for the long and the short wave-
length ends of the energy spectrum.

Let us discuss two special cases of Planck’s radiation law wherein the wavelength assumes two extreme
values given by A=0and A =

Case1 When A — o, _he_ — 0. Equation (9.14) can be written as

AKT
wy dA = 8mhe 1 dl
x 1+£+(£)2+ -1
AkT \AkT) T
Now, we can neglect the higher powers of ( /'Lhk ) as fTC — 0. So the above equation will take the follow-
ing form:
8
or, u, = i—f kT
or., E,=Su,=%x 3z kT
’ A~ 4 A~ 4 214
. 2re
ie., E,= 7 kT

This is same as the expression obtained from Rayleigh—Jeans’ theory [vide Eq. (9.12)].

Case2 When A— 0, exp (ﬁ) >> 1.
AKT

Hence, from Eq. (9.14), we can obtain

8mhe ( he

i = e
" 25 AKT

)d/”t



9.10 Basic Engineering Physics

or £ =Sy =£x87rhc p(— hc)
’ AT AT 4T s AKT
or. E, = 2mhe’ exp (—ﬂ)
’ AT AKT

This is identical to the Eq. (9.3) which is the Wein’s empirical formula for intensity distribution of radia-
tion and f (AT) is an exponential function.

Thus, it has been seen that in the limiting cases of extremely low and high wavelengths, Planck’s radiation
law reduces well to Rayleigh—Jeans law and Wein’s distribution law (also known as Wein’s radiation law)
respectively.

9.2.6 Deductions from Planck’s Radiation Formula:

(a) Wien’s displacement law Planck’s radiation formula is given by

wy dA = 8mhc 1 d
2 ex p( hc )
AKT
_c 21whe? 1
o Bimg =70 ex (hc)
P\t
_2rhe
or, E=""7—
he
here s =4 e )1
where, z exp KT
Now, z will be minimum if d— =0
dA
. dz 4[ ( hc ) } ( hc )
L if — =5 - =0
ot ) P Tkr AKT
. hc he he
it b e (7)1} =7 ()
or,if (54) [exp KT —ex T
or, if 1 —exp (— ﬂ) - _he
AKT)  SAKT
. hc
if 1- —x) =X wh =
or, 1 exp (—x) 5 where x kT

Now, if we denote the value of A for which the value of the function z becomes minimum by A,,, then we
can arrange the condition for minimum value of z as follows:

he
kT

The function z will be minimum if {1 —exp (—x)} = % when x = N

m

The equation

1 —exp (=) =§ .(9.15)
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is a transcendental equation which cannot be solved analytically. One can solve it easily by using the graphi-
cal method.

If one puts
y=1-exp(=x) andy=§

Then the point of intersection of the two graphs corresponding to the above two equations gives the solu-
tion of Eq. (9.15). And the solution turns to be x = 4.956 (Fig. 9.5). One can easily verify correctness of this
solution by putting this value of x in Eq. (9.15).

We thus can have the value of the product (4,,7) as 20 4, y==x

5
follows: ye1-e”
he he y
Ar=Rel o |
Sk | T AT 1.0 l
o, A T=—"C_ [Putting x = 4.965] 05 -
" 4.965 k
or,  A,T=029x107m 0 e
. 1 2 3 4 5 6 7 8
(Putting values of A, ¢ and k)
Fig. 9.5 Graphical solution of the equations
or, A,, T = constant = ¢’ (say). x -
, y=Zandy=1-¢"
or, A =c ...(9.16) 5

The Eq. (9.16) is Wien’s displacement law.
(b) Stefan—Boltzmann law The total energy density u of the radiation is given by

< < 3
w=[uay=8"0] __vdv (9.17)
0 C3 Oexp(&)—l
kT

[by using Eq. (9.14) and 2= £]

If one substitutes x = Z—;, one can have dx = hdv/(kT), so that

87h (kT)4°f x dx
Uu=—-—>_=—

S Vh) yexpix)—1

Now, to evaluate the above definite integral (on the right-hand side of the above equation) having lower
limit O and upper limit e, one can note that

o

X .
{[exl)ac(x% _ £x3 {exp (=x) + exp (<2x) + exp (=3x) + ... } dx

N 31
=Z[ exp (pr)dr =3
Po Pp

B v
since Ix” exp (-px) dx = n_n
0 p
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4
Also 2% = E, so that
P p 90
one gets
44 4
= 87“3{ 3T T _ aT*
S 15
ie., u=alt ..(9.18)
5,4
where a = 13- constant.
15 ¢’

Equation (9.18) can be used to get an expression between intensity E and absolute temperature 7 as
follows:

4 4 4
E=Eu .'.E=ZE)»=ZE“/I=E“
A A
c ca
E=~al'==-T
or, 1 )
or, E=oT*! ..(9.19)
where the Stefan’s constant o'is given by
5 4
—ca_2m K 567 wm?k?

415 Al
Equation (9.19) is Stefan’s law.

9.2.7 Einstein’s Concept Regarding Blackbody Radiation

Planck’s radiation formula can be derived alternatively on the basis of a technique based on quantum statistics.
For detailed discussion of the technique, one can refer to any text book on statistical mechanics. According
to Planck’s quantum hypothesis, the oscillators emitting em radiations have energies given by the relation
e=ng,=nhv(n=0,1, 2, 3,4, ....). And according to Einstein’s assumption, the e.m. field itself is quantized
and light consists of energy packets or particles, known as photons, each of which travels with a velocity of
¢ =3 x 10% m/s in free space. The energy carried by each photon is given by

E=hy ...(9.20)
hc
B E=— ..(9.21
or, N ( )

Thus, one can consider the blackbody radiation as a photon gas in thermal equilibrium with the atoms in
the walls of the blackbody cavity. And using this idea, one can derive Planck’s radiation formula with the help
of the techniques of qunatum statistical mechanics.

9.3 RELATIVISTIC PROPERTIES OF PARTICLES WITH HIGH SPEED
COMPARABLE TO THAT OF LIGHT

If a particle with rest mass m1,is moving with a velocity v which is comparable to that of light in free space,
¢, then the mass of the particle will no longer be constant; in fact, it will vary following the formula given
below:
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.(9.22)

where m is the mass of the particle while it moves with speed v which is comparable with c.
According to Einstein’s special theory of relativity the mass of a particle can be converted into equivalent
energy which is given by the following equation:
AE = Amc® (= E=mc?) .(9.23)
This equation is known as mass-energy equivaence relation.
By using the concepts of special theory of relativity, one can derive a relation between rest mass m, of a

body and its momentum as given below:

E2=p262+m26‘4

E= \/p262 + m*c* ...(9.24)

Interested readers may refer to Appendix-C (Relativistic Concept) for the derivation of Egs. (9.22), (9.23)
and (9.24).

9.4 COMPTON EFFECT

The picture of Max Planck and Albert Einstein regarding individual energy packages (i.e., light quanta)
proves only that the exchange of energy between atoms and light beams takes place by quanta. But there
was no conclusive experimental evidence available in support of particle nature of light photons till 1921. In
the year of 1922, Arthur Holly Compton of USA discovered an effect which was later named after him and
this discovery made one experimental evidence available in support of corpuscular behavior of light
photons with only one exception that photons have restmass equal to zero. This is because light photons
never remain at rest. Compton liked to visualize the collisions between photons and electrons as similar to
those between two ivory balls on a billiard table. And for such scattering to happen, the electron should be a
free electron. But this is almost impossible in case of an experimental arrangement.

AH Compton knew the fact that the binding energy of the electrons of outermost shell of an atom is com-
parable in magnitude to the energy of photons of visible light which ranges from 400 nm to 700 nm. In order
to make the impact between the light photon and the electron overpoweringly strong (so that the electron can
be considered as almost free), he thus selected for his experiments high-frequency X-rays, which are energy-
rich photons having much more energy. He found (through his experiments with X-rays) that the scattered
X-ray emerged with a somewhat longer wavelength (or shorter frequency) than that of incident X-rays. This
change in the wavelength of the colliding photon is called Compton shift and the phenomenon of wave-
length shift of a photon during the collision of the same with a matter particle is called Compton effect.
On the basis of electromagnetic wave theory this phenomenon cannot be explained because according to this
theory a wave could only shake the electron in the atoms of the target with a frequency equal to that of the
incident wave but it cannot change its wavelength.

9.4.1 Derivation of Compton Formula

The result of the said Compton effect, however, could be explained at once if, (by taking the corpuscular point
of view into consideration), one regards the process as one elastic collision of two particles, the electron and
a X-ray photon as shown in Fig. 9.6.
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Fig. 9.6 Compton effect scattering of an electron due to collision with a photon.

The calculations are made on the basis of the laws of conservation of momentum and energy. The energy
possessed by the light photon before collision is v and the momentum possessed by it is Av/c. When the light
photon of energy hv strikes the electron at rest, it imparts kinetic energy to the electron and therefore itself
looses some energy. The scattered photon possesses less amount of energy iv’ and momentum Av’/c. For
the sake of simplicity, it was assumed that the electron is at rest. So in such a case its energy is the rest mass
energy, mocz, while its momentum is zero. If v be the velocity of the electron after collision, then its mass m
at this speed v, is given by Einstein’s formula, i.e., by the following equation:

m= 7"2 .(9.25)
1L

2

Before the collision the energy of the electron is moc2 and after the collision its energy is mc?. So its kinetic

energy (7)) after the collision is given by

2 2 o0 2
T,=mc" —myc" = 7—mc

or, T,=(m- m)c —mc

or, =(m-m )c =m, c? ...(9.26)

-1
vl—ﬁ2 )
where[i’:%

As can be seen in the Fig. 9.6, 6 is the angle of deviation of the photon, and ¢ is angle of recoil of the
electron following the collision.

By using the law of conservation of energy, we can write

hv + m002 =hv’ + mc* ..(9.27)
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Again by using the law of conservation of linear momentum and also using the fact that its component

along any given direction is conserved, we can write the following two equations:

h _ h'
= = cos 6+ mv cos ¢
hv’

and 0= c

sin 6 — mv sin ¢

These two equations can be rewritten as follows.

ﬂ—h—vlcos 9+—m0[3ccos¢
’ m
and O=h%sin 0- P sin ¢
1-B°

Now, Eq. (9.28) can be rewritten as

m, Bc o b’

%
cosp=———cos 0
1— ﬂz C C
and Eq. (9.29) can be rewritten as
m, Bc ’
P sin¢=hv sin 6

c

e
Squaring and adding Eq. (9.30) and Eq. (9.31), we get
1-5%

Equation (9.27) can be rearranged as

c

mf B (hv)2 N (hv’)z_ 20w’ cos’ 0
c 2
¢

mc* = hy — v’ + m ¢

2

m,c , )
or, =hv—hv'+myc
\1 -2
Now by squaring both sides, we can write
2 4
m; ¢
° == (hv—hv’' + mocz)2
(1-p9
2 2
or o € =(@—hv,+mc)2
’ (] _ﬁZ) c Cc o
m, ¢’ W\ (' 2RRw
or, _(7) +( - ) - +m; ¢+ 2(myh) (v—v')

1-g> ¢

...(9.28)

...(9.29)

['.'ﬁ=%$v=ﬁc]

...(9.30)

(9.31)

.(9.32)

...(9.33)
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Now subtracting Eq. (9.32) from Eq. (9.33), we obtain
2

C 2 ’
C (=B =m2 = (1 _cos )+ 2mh (v-v")
1-p9 c
2.
or, 2mh (v ="y = 22 (1 — cos 6)
c
(v=v'\_ W
or, mohc( o )—?(l—cos 0)
1 1\_ h
or, 0(7—7)—’”06(1—005 )]
h
or, &—%=moc(1—cose)
or l’—l:L(l—COSG) [-vA=c]
m,c
h ,
or, AL = G (1-cos 8), where AA=A1" -1
. A
or, AA=A, (1 -cos 0), |PuttingA = e
.20
or, AL =2 A, sin 5 ...(9.34)
where Compton wavelength,
__h _ -3
Ae =5z =242x 107" nm.

0

Equation (9.34) is known as Compton formula for the change of wavelength of the photon due to the

scattering process. The parameter A, (= ,: c) is called the Compton wavelength which is a universal
o

constant; A and A" are respectively the wavelengths of the incident and scattered photons. Equation (9.34)
expresses the wavelength shift due to Compton scattering in terms of Compton wavelength A4, and scattering
angle of the photon 6. The wavelength shift is also known as Compton shift and it is independent of the

wavelength of incident radiation. It is also independent of the scattering material. For a scattering angle
of 71/2,

AL =24, sin® g =,

The above results were verified experimentally by Compton himself by using X-rays of different wave-
lengths. Gamma radiations (- rays) also exhibit Compton effect.

9.4.2 Derivation of the Angle of Recoil of the Electron

The kinetic energy of the recoiled electron 7, can easily be calculated.
Now, dividing Eq. (9.31) by Eq. (9.30), we get
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V'sin® _ sin6 (9.35)

tan ¢ = =
v—v'cos O Y _.os0
7
v

In Eq. (9.34), AL is expressed as

AA =2, sin’ g

or, AN —A=24, sinzg
c ¢ 2h .20

or, 7—;—%5111 5
Or. 1.1 2h sing
’ VoV &2 2

11 _2a;,6
STV ET sin >
L - l + E 02 Q
or, kv sin >
or, L,=l(1+2asin2—)
vV
or, L — ...(9.36)
.20
1+ 2asin” =
2
Now, substituting the value of v’ from Eq. (9.36) in the Eq. (9.35), we get
tan ¢ = Sin 99
1+ 2asin2§—cos 0
2 sin L cos 4
_ 2 2
of, tan ¢ = 5
(1 - cos 6) + 20 sin’ >
2 sin 9 cos 9
2 2
or, tan ¢ =
2sin’ L4 +2 o sin’ L4
2 2
cos 9
Or’ tan ¢ = 2

sing(l + Q)
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or, cotp=(1+ ) tang

..(9.37)

9.4.3 Derivation of Kinetic Energy of the Electron

Equation (9.37) gives the relationship between the angle of scattering of the photon (8) and the angle of recoil
of the electron (¢). So by detecting the angle of scattering of the photon, one can calculate the angle of recoil

of the electron.

The kinetic energy of the recoiled electron can be calculated as follows.

T, = mc* —m,c* = hv— hv’

or, T,=h|v- ld
1+ 2asin® 2
sin >
1
or, T,=hv 1——9
1+ 20sin® 2
2
o(l —cos 0
or, T =hv ( )

e

"1+ a(l —cos 8)

, using Eq. (9.36)

.(9.38)

So, if one knows the frequency of the incident photon and angle of deviation of scattered photon, then one
can use Eq. (9.38) to calculate the kinetic energy of the recoiled electron.

9.4.4 Experimental Set-up for Study of Compton Effect

In Fig. 9.7, a typical experimental set up for the study of
Compton effect is shown.

In the X-ray generating tube 7 is a molybdenum target. The
monochromatic k, radiation from the target 7 is incident on the
carbon scatterer S. The beam of X-ray is scattered through an
angle 6 and then passes through the collimator C. Ultimately
the scattered beam falls on a crystal C, or in a Bragg spectrome-
ter. The X-rays are diffracted by C, and then enter the detector D
which is basically an ionization chamber. The detector D mea-
sures the intensity of the diffracted beam. The X-rays interact
with the loosely bound electrons of the carbon scatterer S and
get deviated through an angle 6 (see Fig. 9.6) and the electrons

X-ray tube

Fig. 9.7 Experimental set-up for the study
of Compton effect.

get recoiled through angle ¢ (not shown in Fig. 9.7). At the Bragg spectrometer C,, the X-rays get diffracted
through various angles depending on the order of diffraction. The angle & is one such diffraction angle. By
measuring the angles of diffraction at which the maxima of intensity are observed, one can determine the
wavelength of the X-rays scattered by S at a given angle of diffracton 6 from Bragg’s law given by

nA=2dsin 8

..(9.39)

For the derivation of Eq. (9.39), the reader is referred to Chapter 10. The intensity of diffracted X-rays
were measured as a function of wavelength at different angle of deviation 0 (see Fig. 9.6). For each angle of
deviation 6 (other than 6 = 0°) two peaks appear corresponding to the deviated X-ray photons with two dif-
ferent wavelengths. The intensity I versus wavelength A curves are shown for different angles of deviation in

Fig. 9.8.
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The first peak represents the wavelength of the
incident beam and the second one represents a wave-
length which is greater than the incident wavelength. T
The difference in the two wavelengths is greater for
a greater angle 6.

At 6 = 90° one of the peaks was found to
have wavelength of molybdenum £k, X-rays
(i.e., 7.08 x 107> nm) while the other had the wave-
length of 7.316 x 10> nm. The wavelength differ-
ence 0.236 x 107> nm between the two wavelengths )
agrees very well with the value of AA as expected 0.7316 A 6=135°
from the Compton equation (i.e., Eq. (9.34)) for 6= ] 16 =90°
90° (AA=0.236 x 10> nm). |

The wavelength difference was calculated by
him having used monochromatic X-rays of different
wavelengths. And A4 was found to possess the same
value in all cases.

0.024 A

AL =

Results of observation at other angles of devia-
tion had also confirmed the Compton’s theoretical Fig. 9.8 Compton shift (AA) at four angles of
predictions. scattering.

One can note here that the presence of the peak at
longer wavelength (7.316 x 107 nm for 6= 90°) is due to Compton scattering from the electron that may be
considered free as its energy of binding with the atom is small enough as compared to that of the X-ray photon
which is Av. On the other hand, the presence of the other peak at the wavelength of the incident X-ray is due
to scattering from one bound electron in which case the recoiled momentum is taken up by the entire atomic
mass. As the mass of the atom is much heavier as compared to that of the electron, a negligible wavelength

shift is produced in this case | because AA = (2h/(m, c*)) sin’ g and m) is the rest mass of the atom). We
get conclusive evidence in support of the particle character of electromagnetic radiation from the Compton
effect. On analysis of Eq. (9.34), i.e.,
cot ¢ = (1+ a)tang
We see that as the angle of scattering (deviation) of the photon 0 varies between 0 and 7, the angle of recoil

of the electron ¢ varies from g to 0, i.e., the electrons are ejected at angles less than r T, is maximum for

¢ =0 and minimum for ¢ = g, i.e., for 8= mwand 0= 0 respectively. As discussed above (earlier), the Compton
(wavelength) shift is given by
h
A/l:m—oc(l —cos 0)

or, AAl =2, (1 -cos 6)

h
m

where A, =

oC
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So, the Compton shift is the difference between the wavelengths of the incident photon and the scattered
photon.

From the expression of Compton wavelength (/lc = %) one can write the following equation:

> _hc
m,c” = Z =hy,
where v, = h/2, is the Compton frequency. From the above equation, one can write
E.=hv,=m,c"
Thus, the Compton wavelength A, is the wavelength of radiation whose photon has energy equal to
the rest (mass) energy of an electron. It was already noted that Compton shift AA is independent of the
wavelength of incident radiation and nature of the target. It depends only on the angle of scattering. In the

forward direction (i.e., the direction of the incident photon where 8= 0), the Compton shift is zero as (1 — cos

0) =0 for 8=0. In the direction which is normal to that of the incident photon where 6= g the Compton shift

h

m,c

A=

= A, and in the backward direction (for 6 = ) the Compton shift is the maximum and it is equal to

24,
When photons of incident radiation collide with tightly bound electrons of the target atom, the energy and
momentum of the colliding photon are exchanged with the atom as a whole. Since the mass of the target atom
is much greater than that of a free electron (or lightly bound electron of metal atom), the Compton shift in this
case is neglected, and A’ practically coincides with A. This explains the presence of the unmodified radiation

at all angles of scattering of the incident radiation (vide Fig. 9.8).

9.4.5 Failure of Classical Theory in Case of Compton Effect

According to classical wave theory X-rays are electromagnetic waves. If v be the frequency of the incident
X-ray radiation which falls on the material, then they cause electrons in the material to oscillate at the same
frequency v. The oscillating electrons then radiate X-rays of equal frequency v. Hence the scattered X-rays
should consist of single frequency v. Also, the electrons should radiate X-ray waves uniformly in all possible
directions. Thus, the wavelength of the scattered X-ray radiation should not vary with the angle of scattering
6. But this is contrary to the experimental fact which was revealed by Compton. So, classical theory fails to
explain Compton effect.

9.5 WAVE PARTICLE DUALITY

It was earlier observed that radiations very well exhibit the well-known classical phenomena of interference,
diffraction, polarization, etc., which are basically the results of interaction of radiation with another radiation.
In the aforesaid phenomena, the radiations behave as waves. Again in case of some other phenomena, e.g.,
blackbody radiation, photoelectric effect, Compton effect, etc., the radiations behave as a set of corpuscles
(or particles), i.e., discrete entities called photons or light quanta.

These phenomena are the results of interactions of matter with energy (or radiation). So, one can observe
that radiations can act as both particles and waves at different instants of time but not simultaneously. As
nature exhibits examples of symmetry in its behavior which is called the principle of symmetry, one can
accordingly expect that particles also should exhit dual nature like radiations. That the matter also should
possess the properties to behave as particle and wave under suitable conditions.
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The wave particle duality of matter was first predicted by the French theoretical physicist Pierre Louis
de Broglie in the year of 1924. This theoretical concept of de Broglie was later experimentally verified by
C.J. Davison and L.H. Germer of USA in 1927 and also by G.P. Thomson of UK in the same year. The wave
properties of matter can be reconciled with the particle properties of it by superposition of waves of various
wavelengths to form a group of waves known as wave packet. A wave packet is able to represent a particle
in motion since any moving particle remains confined to a small region in space at any instant of time.
The manifestation of wave-particle duality of radiations becomes transparent to any one if one consid-
ers the entire e.m. spectrum. The radio waves (wavelength A ~ a few hundred meters) are there at lower
frequency region and spreads over a large volume in the space (Fig. 9.9].
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Fig. 9.9 Electromagnetic spectrum-wave nature is prominent in the low frequency region whereas particle
nature is prominent in the high frequency region of the spectrum.

So the available energy at any point is insignificantly small and for this reason, the particle nature cannot
be observed. This is because the particles remain confined in a very small area unlike the radio waves. Again
at higher frequency end of the e.m. spectrum there are ultraviolet, X-rays and y-rays (wavelength A ~ a few
angstroms) where the waves are located in a very small region of space due to their very short wavelength and
hence the energy at a particular point assumes a large value. As a result of this fact, the wave property is less
noticeable as compared to the particle properly. Thus, at low frequency (or large wavelength) region the wave,
nature is prominent whereas at high frequency (or small wavelength) region the particle nature is dominant.
The visible region is the transition region where both, the wave and particle aspects are observed depending
on some suitable conditions.

9.5.1 Bohr’s Quantum Condition and Broglie Hypothesis

As we have just visualized the em spectrum from higher wavelengths to lower wavelengths, one can similarly
visualize the matter starting from extremely large celestial bodies to extremely small subatomic particles.
In this case the particle nature is prominent for big celestial

bodies whereas the wave nature becomes prominent in case

of subatomic particles like electrons. Louis de Broglie in

1925 proposed the dual character for electrons having been

guided by the aforesaid logic. He was also trying to discover

the underlying significance of Bohr’s quantum condition

for atomic structure. His idea was to fit an exact number of

standing waves (or half waves) into the Bohr orbit in analogy

with the integral number of waves (or halfwaves) in a string

stretched between two rigidly fixed ends. (Fig. 9.10)

Thus if r, is the radius of the nth Bohr orbit, then one has to
write 27r,, = nA where n is an integer so that an integral num-
ber of waves (with wavelength 1) may be fitted into the orbit. ~ Fig. 9.10 An allowed orbit of an atom
Comparing this with Bohr’s quantum condition (i.e., mor, = accommodates integral number
nh), one can obtain of electron waves.
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mv(n—l =nh [ 271'r:c:>r:i=M
2 2 2w
2rh
or, A=
_h _h
or, A= mo = [_7 (939)

where p = mv is the momentum of the electron. |Bohr’s quantum condition (or postulate) states that the

angular momentum of an orbiting electron of an atom is equal to the integral multiple of 7 where 7 = %r

Thus, de Broglie put forward a proposal known as de Broglie’s hypothesis which states that a mate-
rial particle with energy E and momentum p may exhibit characteristics of a wave of wavelength A.
And this wavelength A is called de Broglie wavelength. Frequency v of the particle is determined by
Planck’s formula

E=hv ...(9.40)
Equation (9.39) may be written as

p=hk ..(9.41)
And Eq. (9.40) may be written as

E=hw .(9.42)

['.'E:hv:ix 2rv) =hw]
2
Here, k = 27” and w=2mv. And k is known as wave number or propagation vector and w is called cir-

cular frequency. The wave and particle characters of an entity (such as an electron or a photon) are mutually
exclusive. A wave of definite wavelength (and frequency) classically is of infinite extent in space and also is
of infinite span of time (or duration). On the other hand, a particle is localized at a definite point in space at
a fixed (given) instant of time and has a definite momentum p and energy E. Hence, the basic characteristics
of a wave and a particle are incompatible.

As stated earlier, the two sets of incompatible characters can have reconciliation through the concept of
wave packet. In order to do so, one has to localize the wave in a finite region in space. And this goal can be
achieved by the superposition of waves of various wavelengths with each other by the well-known method of
Fourier transform. To state otherwise, one complex real wave can be expressed as superposition of a number
of simple harmonic waves, each with slightly different velocity and wavelength. In order to grasp this idea
pictorially, let us consider one pair of sinusoidal waves with slightly different velocity and wavelength and
superpose them as shown in the Fig. 9.11.

As can be seen in the figure, following superposition of two waves a resultant wave (curve c) is produced
which shows regularly recurring humps which repeat themselves. And due to this event, the energy in the
space gets redistributed and confined in the humps. By increasing the number of participating waves one can
show that the energy practically can be confined in a single hump. Such a hump is termed as wave pocket.
And the wave pocket then represents the corresponding particle in space.
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Fig. 9.11 Superposition of two sinusoidal waves of slightly different frequencies [(a) and (b)]. Curve
(c) represents the resultant motion. x = a sin (@1).

9.5.2 Phase and Group Velocities

The phase velocity of a monochromatic wave is that velocity with which any crest or any trough of the wave
propagates in a given medium. Let us denote the phase velocity by u. In a dispersive medium, the phase
velocity u is different for different wavelengths. One cannot measure the phase velocity by any experimental
method. For a completely monochromatic wave it is not possible to distinguish between the successive crests
or troughs. They all look exactly alike. It is well known that during the propagation of radio waves, signals
are transmitted after modulation, either through the process of amplitude or that of frequency modulation.
The production of amplitude-modulated signals involves the superposition of a number of plane waves with
different frequencies, centering about a mean frequency. The energy carried by such modulated signals gets
transmitted with a velocity called group velocity which is different from the phase velocity of any compo-
nent wave and let us denote this velocity by U, The production of such modulated signals essentially consti-
tutes affixing a distinguishing mark on the wave train. And this distinguishing mark helps one to follow the
progress of the wave with time easily and to make measurements with parameters of the wave.

The simplest way of signaling a wave train is the well-known method of producing beats by superposition
of two waves of slightly different wavelengths (or frequencies). When it is done, the two waves reinforce
each other to produce humps at certain points in space at regular intervals of time with relatively weaker
disturbances in between two humps (Fig. 9.11). As has been stated above, if the number of superposed waves
increases, the regions with prominent humps will be narrower but the intervening regions of weaker distur-
bances will become broader. In the limit, the superposition of an infinite number of waves with continuously
varying frequncies extending over a finite range produces only one hump within a very narrow region of
space with practically no disturbance at any other point in the space. One so produced hump is called a
wave packet. This method of producing a wave packet is called the method of Fourier integral, Figure 9.12
shows one such wave packet.

By suitably distributing the amplitudes of the various component waves, any arbitrary non-periodic wave
form may be reproduced by the method of Fourier integral. It deserves to be noted here that if in this case
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the frequencies of the waves used extend over an infinite A
range, the wave packet formed so, will be confined to a

single point in space.
The prominent hump can be considered as a mark on mwm
any wave which is concerned and it (the hump) propagates : 7%
through the medium with the group velocity (v,). There X
exists a definite relation of the group velocity v, with the W

phase velocity u. In order to determine this relationship
between v, and u, let us consider the superposition of two
waves having slight difference in their frequencies v and v’
with the same amplitude a (Fig. 9.11). Let A and A’ be the Fig. 9.12 One-dimensional wave packet.
wavelengths of them. Then one can represent the waves by

the following two equations:

32 =asin{2n(%—vt)]

Amplitude y

<« AX ——>

or, ¥, = a sin (kx — t) ...(9.43)
d =asin | 27(Z - 7]

an Y2 asm{ 7'[3(% % )

or, Y, =asin (kK’x - @’t) ...(9.44)

2r 2r

where @ = 27v and ®” = 27v’ are the circular frequencies while k = 0 and k’ = == are the wave numbers

’

of the two waves.
The resultant wave on superposition of the two waves can be obtained as follows:
Y=y, +y,=asin (kx— ot) + a sin (k'x— @’1)
4

or, y=2acos(k_2k x—w_zw t) sin(k';k x_a)-gw t) ...(9.45)

’

and circular fre-

The superposed resultant wave of equation (9.45) has a wave number

4

+ 0

quency @ . As can be seen from the said superposed equation, the amplitude of it is not constant.

Its amplitude varies according to the cosine term which shows that it varies slowly with the circular fre-

w—o) (wo-w")

quency (T The propagation velocity of the maxima in the amplitudes is given by ———— On the other

(k=)
, . . (w+ o) . ,
hand, the phase velocity of propagation of the superposed wave is W Since the circular frequencies @
+

and @’ of the participating waves are almost equal. One can write this phase velocity as
) 0+ o’
u= lim 0+ @) _o =vA

T oo k+k" Tk
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or, u =%: VA ...(9.46)

On the other hand, the group velocity v, can be expressed as follows:

(0-0") do

= 1i = 4o
YT N —k)  dk
or, U, = i—f ...(9.47)

This equation (i.e., Eq. (9.47)) is also valid, in general for an infinite number of monochromatic waves of
continuously varying frequencies.

Differentiating Eq. (9.46) with respect to k, one gets

du _ldo o

dk  k dk 2
Or. ﬂ:l-y _l.u
’ dk k¢ k

du
or, k%=0g—u
or, vg=u+k%

du

: —u-1—= ...(9.48
or. U, =U 7 ( )

sincek:% and kA=2nr=kdA+ Adk=0. Hence%:—d—l

A

For light waves in the free space there is no dispersion. Hence, % =0, so one gets v, = u = ¢ where

c=3x 10" ms is the velocity of light in free space.

The group velocity v, is equal to the phase velocity u (i.e., v, = u) in any homogeneous elastic medium in
general.

Group and Particle Velocities
The mathematical expression of the de Broglie hypothesis is given by,
A =% [vide Eqn. (9.39)]
h_hWQm 2
p = —= = — X —
A AMQ2m) 2 A
or, p =hk [vide Eqn. (9.41)]

or,

where k = 277[, the definition of the wave number.

p
k=2
h

According to Einstein’s mass—energy conversion relation, we get

E = mc?
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or, mc2=E=hv=ix27rv=ha)
2r
or oo
’ n

Now, the phase velocity of the de Broglie wave representing the particle is given by
u =% [Eqn. (9.46)]

_ mc?/h _ mc? _ mc?

plh P mu

or,

or. u=<
K 7

Since the particle velocity v is less than the speed of the light in free space (c), the phase velocity u is
greater than the speed of light in free space. Thus, the particle and the phase of the wave will not accompany
each other. Although, the phase velocity is greater than the speed of light, it does not contradict the special
theory of relativity because the phase waves do not carry energy.

The velocity of the particle is given by
_p_pe _pe
m- 2 E
Now making use of the relations p =ik and E =% ®, one can getdp =hidk and dE=h dw

Hence, one can get the rate of change of p with respect to E as follows:

0

d _dk - do_dE
dE do dk dp
dE [ dw ]
2 v,=— | v,=—, Eqn. (9.47
or, <= dp f =K qn. ( )
The relativistic energy of a particle is given by
E=\p2cz+mic4
or, E=p* c2+mi ¢t
Now differentiating both sides with respect to p, we may get
2E dE _ 2¢7 )4
dp
o dE _pe
’ dp E
or. v, = pe ["v _dE
’ ¢ (mcz) ¢ dp
_p _mv
or, Ug =m or, 'Ug =
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That is, the group velocity related to a particle wave is equal to the particle velocity itself. Thus, logically
one can represent a particle by the wave-packet, i.e., the wave-packet represents the concerned moving
particle.

9.5.3 Matter Wave: de Broglie Wave

It is well known that in a real case, no wave can be extended infinitely in space. Even light waves are of finite
spatial extent since the light emission process of an excited atom lasts for a time of the order of 10~ seconds.
During this short interval, the emitted wave train extends over a distance of approximately 300 cm. Thus,
light signals propagate with the group velocity instead of the phase velocity. The energy, which is associated
with the wave and carried by it, is transported with the group velocity. And hence, all the quantities, which
are physically measurable and associated with the wave packet, propagate with the group velocity. On the
other hand, the phase velocity is the velocity of propagation of the phase of the disturbance. In case of a
light wave, the phase velocity may exceed that of light in free space, i.e., ¢. But the group velocity v, always
remains less than the light velocity c¢. And this should be the case for any physically measurable quantity
because according to the special theory of relativity no real body can have a velocity which exceeds that of
light in free space.

Having taken this clue from the facts stated above, de Broglie proposed that the particle velocity v should
be taken equal to the group velocity v, of the concerned wave:

v =0, ...(9.49)
Now, using the relation E = 7iw, the energy of the particle of rest mass m, can be written as

2
m, ¢
E=md=—"—=hv=ho [Hereﬂ=%]
1-B°
m, c*
or, 0=—2— ...(9.50)
nA1-pB?
The phase velocity of the wave is given by
2
m, ¢
u=vA=8-__"°0° ...(951)
© onk(V1-p)
Now, differentiating with respect to k, we get
du _ M, ¢ m,c*B 4B 9.52)

k=R nk(- Y dk

Then from equations (9.48) and (9.49), one can write

du
Vo=u+k pT
Now, with the help of equations (9.51) and (9.52), the above equation can be written as
m, ¢ m, ¢ m,c* B dp
0= — + «-—
nk(l=BH nk(1-pH"” n(-pyHP” dk
m,c* B dp
O gy dk
m, c* dp
Hence, dk =

I '(1 _ By
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Now, integrating one gets
m

¢ B
———+ C
ho(-pyn
where C is a constant of integration. If one assumes that the number k = 0 when particle velocity v = 0
(or B=0), then C = 0.

So, one gets
k=m;;c B +0
(1-p%
m
or, k= ° (ﬁ_c)
1_[32 /)
: k= _P
or. Pt
or, pzhkz%rx%
h
_n ...(9.53
1 (9.53)

As was seen earlier, the relation (9.53) between the momentum p of a particle and the wavelength A of its
de Broglie wave is consistent with Bohr’s quantum condition (i.e., mvr, = nh). Equation (9.53) which is the
same as Eq. (9.39) is the famous de Broglie equation. This gives the mathematical relationship between the
momentum of the particle p (which is a quantity characteristic of the particle nature) and the wavelength A
(which is a quantity characteristic of the wave nature).

9.5.4 Relation between Phase and Group Velocities
The phase velocity of de Broglie waves is given by

u =w1=% ...(9.54)

Now by using ideas of special theory of relatively, electronic energy and momentum are given by

2
m, ¢

E=mc’ = =ho ...(9.55)
Ji 2
62
m,v
and p=mv= = hk ...(9.56)
2
1.2
C2

2
E_c_o ...(9.57)
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where v is the velocity of the electrons and c is the velocity of light in the free space.
According to de Broglie hypothesis, v = v, the group velocity of de Broglie waves. Hence one has

u=%
Y

o

or, wo, =c’ ...(9.58)

Equation (9.58) gives the relationship between the phase velocity of the de Broglie wave, the group
velocity and velocity of light in free space.

9.5.5 Relation between Phase Velocity v and de Broglie Wavelength 1
For a de Broglie wave, the phase velocity of a particle of mass m and momentum p is given by
E PMZQ_EQ_E

“=p kK hk P

The total energy of the particle in relativistic form is given by,

E=\pzc2+m02c4

where m,, is the rest mass of the particle.

\/p2 c2+m(2) & Ip2+m2 c?
u= ? =C\J 5
p
m? c?
or, u=citll+ "2
p
B mfc2 )
or, u=cill+ A ...(9.59)
h2

h
h =—
where A4 >

Equation (9.59) shows that u > ¢ and in free space, this is consistent with the relation v, = % since

v, = v, the velocity of the concerned particle v is always less than c. In addition to this, u is a function of
the de Broglie wavelength A even in the free space or vacuum. But for a light wave, u does not depend on
wavelength A. Because the rest mass of light photon is zero and hence for light u = ¢. This is the difference
between de Broglie wave and light wave.

9.5.6 Calculation of de Broglie Wavelength of a Particle of Mass m and
Kinetic Energy E,

Let E; be the kinetic energy of a particle of rest mass m,, then its total energy is given by
E=E +m, ¢

or, \jp2 A+ mo2 = E,+m, ¢
Squaring both sides of the equation, we get

1)202+n102c4=E,(2+muzc4+2mDEkc2

or, prct= Ek2 +2m, E, c2
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or, p=\E, (E,+2m, %) /c

.. de Broglie wavelength,

A= h — _ he
P E (B, +2m, D)
or, A= h ...(9.60)

Ey
2m, E, [ 1+
2m, c?

So, the de Broglie wavelength A can be calculated for any particle (e.g., electron, proton, neutron, etc.) if
its kinetic energy E, and rest mass m,, are given.

9.5.7 Characteristics of de Broglie Waves

The de Broglie waves have the following characteristics:
(a) The lighter is the particle, the greater is the de Broglie wavelength, i.e., A =< %

(b) The smaller the velocity of the particle, the greater the de Broglie wavelength of the particle.

(c) The de Broglie wavelength A = e, when the particle velocity v = 0, i.e., the waves are produced due
to the motion of the particle only.

(d) The velocity of the matter wave is not constant but depends on the velocity of the particle while the
velocity of the electromagnetic wave is constant.

(e) Both the wave and particle behaviors of a moving body cannot be exhibited by it simultaneously
in the same experiment. One can say that the waves have particle-like properties and particles have
wave-like properties and the concepts are inseparably linked.

(f) The wave nature of matter is associated with the uncertainty in position of the particle.

9.5.8 Experimental Proof of de Broglie Hypothesis

There was no experimental evidence in support of de Broglie hypothesis till 1926. In the year of 1927, two US
physicists, namely, CJ Davision and LH Germer first performed an experiment successfully which conclu-
sively demonstrated the wave character of electrons. On
the other hand, in the same year, one UK physicist, GP

Thomson, also confirmed the wave nature of electrons U
having performed an independent experiment. We are

giving below the details of the Davision and Germer’s H
experiment.

Davision and Germer’s Experiment

The arrangement of performing Davision and Germer
experiment is shown in the Fig. 9.13.

The beam of electrons used to perform the experi-
ment is produced by heating a tungsten filament F. The T
beam is then collimated by a slit system and is acceler-

ated by the anode A having small axial hole H in it. The Fig. 9.13 Set'“P for Davision and Germer
experiment.
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accelerated electron beam while emerging through this hole is incident on a single crystal of nickel 7 which
is used as the target. The electron beam generating gun, the target crystal 7 and the detector are kept in a
highly evacuted chamber. The electron beam hits the target normally. The scattered electrons coming out of
the target 7T in different directions are collected by a Faraday cup C. And the intensity of the beam of scattered
electrons is measured with the help of a sensitive galvanometer G. The collector (Faraday cup C) is such that
all the electrons which are having the same energy in the incident beam can enter it. The ejected electrons
from the nickel crystal T due to the impact of the incident electrons being of low energy cannot enter the col-
lector (i.e., the Faraday cup C). The intensity of the scattered beam of electrons can be estimated by rotating
C about an axis passing through the crystal target 7.

Results of the Experiment

The results of measurements have been shown in the Fig. 9.14. This figure consists of four parts (a), (b), (c)
and (d). Each part is, in fact, a special type of plot of intensity of the scattered beam of electrons versus angle
of scattering. This graphical representation is called polar graph. The line of the incident beam is taken as
ordinate and a line normal to it is taken as abscissa. The radius vector (7) of this graph is proportional to
the intensity of the scattered beam of electrons. And the angle 6 is measured from the ordinate (i.e., y-axis)
instead of the abscissa (or x-axis). @ is the angle between the ordinate and the radius vector 7.

54V 68V
& | s0v 5 44v 5 &
3 2 o 3
= £ < =
he) ke 3 3
£ s 2 e N\ 2]50° . 2|40
~ 4 N P >
\ 2 v v
o o) o o
(a) (b) (c) (d)

Fig. 9.14 Results of Davision and Germer experiment.

The electron beam is accelerated to various energies by applying various accelerating potentials between
the filament F and the anode A. As can be seen, the graph is fairly smooth at the low values of accelerating
potential but at 44 V a hump (or spur) appears on the curve at a scattering angle of 8= 60°. When the acceler-
ating potential gradually increases, the value of the radius vector at the spur also increases. The spur becomes
maximum (hence maximizes the length of 7) at the accelerating potential of 54 V and angle of 8= 50°, when
the accelerating potential increases further, the spur decreases and ultimately disappears at 68 V at a scatter-
ing angle of 8 =40°. On further increase of the accelerating voltage, the graph again becomes fairly smooth.
The plot of the intensity of scattered beam of electrons at 54 V against the angle of scattering has also been
shown in a cartesian graph in Fig. 9.15(a) and similar plot of intensity of the beam of scattered electrons
versus kinetic energy of the electrons (in eV) at angle of scattering 8 = 50° has been shown in Fig. 9.15(b).

Observations of the Experiment
From Figs. 9.14 and 9.15, it is clear that a strong scattered beam is obtained for a potential difference of 54
volts at an angle of 50°.
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V = 54 volts

Relatative intensity
—

Relatative intensity
—

6=>50°

0 10° 20° 30° 40° 50° 60° 70° 35 45

55 65 75

—> 6 (deg.) —> Kinetic energy (eV)

(a) (b)

Fig. 9.15 (a) Plot of relative intensity versus angle of scattering @ at ¥ = 54 volt. (b) Plot of relative

intensity versus kinetic energy of electrons at 8 = 50°.

By the time, when Davission and Germer’s experiment was performed it was very wellknown that X-ray
beam is diffracted from the parallel atomic planes of a crystal. And the scattered rays, in case of such diffrac-
tion, take part in constructive interference by obeying Bragg’s law which is given by

nA =2dsin ¢ ...(9.61)
where ¢ is the angle of glancing which is made by the incident and
scattered beams with a family of parallel planes (Fig. 9.16). The dis-
tance between two consecutive planes is d, A is the wavelength of the
X-ray. From the diagram, we can write

180° -0

= ...(9.62
o 3 (9.62)

Putting value of ¢ from Eq. (9.62) in Eq. (9.61), we get
nA =2d sin (%9) ...(9.63)

W

Fig.9.16 Diffraction of waves from
planes of a crystal.

Now, the experimental results of Figs. 9.14 and 9.15, can be explained if one considers them to have arisen
due to the constructive interference of waves scattered by the periodic arrangement of atoms in the crystal. It
is possible to infer like this if one assumes that electrons are able to exhibit wave behavior. It is to be noted
that this interference takes place among the various parts of the wave associated with a single electron, scat-
tered from different regions of the crystal. One can make the intensity of the electron beam so small that only
one electron passes through the apparatus at a time. And under such condition, the pattern of the scattered
electron remains the same. It very clearly establishes the fact that various parts of the de Broglie wave associ-
ated with a single electron interfere with each other. The equation (9.63) can be used to find the wavelength
of the de Broglie wave linked with an electron. The interplanar distance (d) of the crystal in this case is given
by d=0.91 A =0.091 nm. The constructive interference takes place at 8= 50° [ one gets maximum intensity

of the scattered ray at this angle]. Taking n = 1, we can now get

A =2x0.091 x sin (M) nm

or, A=1.65x 10" nm
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This is the theoretical value of the de Broglie wavelength for one electron. If p be the momentum of an
incident electron, then using its relation with the kinetic energy E;, we can write

D =\2mE, =\2meV

By using this expression, the de Broglie wavelength is obtained as

h h
- _ ...(9.64)
P \2mev

Now, putting the values of all the parameters in the right side of Eq. (9.64), we get
A=167x10""m=1.67x 10" nm

where V = 54 volts, m = 9.11 x 107 kg, e = 1.6 x 107"? coul and & = 6.626 x 10>* Joule-s.

This is the experimental value of the de Broglie wavelength. This experimental value of de Broglie wave-
length (A = 1.67 A) is very close to the theoretical value of the same (1 = 1.65 A). This excellent agreement
between the theoretical and experimental values of de Broglie wavelength confirms the correctness of his
hypothesis.

9.6 UNCERTAINTY PRINCIPLE OF HEISENBERG

The uncertainty principle (i.e., the principle of indeterminacy) was proposed by Werner Heisenberg of
Germany in the year of 1927. This wonderful principle is a direct impact of the dual nature of matter.

According to the concepts of classical mechanics, a moving particle posseses a definite position as well as
a definite momentum in space. Both of these two physical quantities of a particle can be definitely measured.
But with the advent of the concepts of quantum mechanics in the first quarter of twentieth century, the classi-
cal view has been found to be a special case of the quantum view and it is inadequate to describe the dynami-
cal behavior of the microscopic objects. Though it can still describe the dynamical behavior of macroscopic
objects well.

In quantum mechanics, a particle is described by a wave packet which surrounds the position of the clas-
sical particle and moves with a group velocity. According to Max Born’s interpretation of probability, the
particle may be found anywhere within the wave packet. This means that the exact position of the particle is
not certain within the limit (range) of the wave packet. And hence, one may say that the particle may be found
to exist anywhere within the range of the wave-packet. Again, as we know, a wave packet is formed by the
superposition of a large number of waves having different wavelengths. The wavelength of the wave packet
cannot be said definitely. What one can say is that the wavelength of the wave packet lies within a certain
range between A and A + AA. As the momentum of a particle is related to its de Broglie wavelength given
by,

h h
=— Ap=——AAL
p=7 Or A=

The momentum of the particle lies in the range between p and p + Ap. So, one cannot definitely predict
what is the value of the momentum of the particle. Hence, because of the wave nature of particle there exists
an uncertainty (A7) in position of it and uncertainty in the corresponding momentum of it (Ap).

If the number of superposed waves as well as their range of wavelength (AA) be increased, then the
spread (As) of the wave packet decreases. But simultaneously the uncertainty (Ap) in momentum increases
as Ap o< AAL. When AL = o, Ap = oo and As = 0, i.e., the wave packet, in such a case, reduces to a point. In this
position, there does not exist any uncertainty in the position of the particle.
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Again, for a definite A, AL =0, this implies Ap = 0 (. Ap o< AA). In such a situation, there is no uncertainty
in the momentum of the particle, but in this case As = o<, i.e., the uncertainty in position is infinite since the
associated wave with the particle may now extend up to infinity.

9.6.1 Statement of the Uncertainty Principle

The uncertainty principle can be stated as follows:

It is fundamentally impossible to determine simultaneously the position as well as momentum of a
particle to an accuracy which is better than one quantum of action A.

The mathematical expression for the uncertainty principle can be written as
AsAp 2T ...(9.65)

where 7 = h/2m = 1.054 x 107! Js, h being the Planck’s constant (h = 6.62 x 107* Js). Here As is the error
(i.e., uncertainty) in the determination of position of the particle and Ap is the error (i.e., uncertainty) in the
determination of momentum. If the position of the particle is determined accurately, then As becomes smaller
and consequently Ap becomes larger and vice versa. It is to be noted here that the uncertainties do not exist in
apparatus used for measurement of position or momentum but they exist in the nature itself.

We have so far considered the uncertainty in one-dimensional space but it can be extended in three-dimen-
sions also which is given by the following three equations:

AxAp, 2
Ay Ap, = ...(9.66)
AzAp. > h
It should be noted that the uncertainty relations do not exist for any arbitrary pair of position and momentum.
The uncertainty relation exists for the following pairs:
(x, p), (v, py) and (z, p,)
but it does not exist for the following pairs:
(x, py)s (6, p), 0, P2, 0, Py (2, Py, (2, py)
The position and momentum pairs for which uncertainty relation exists are known as canonically
conjugate pairs.

9.6.2 Uncertainty Relation for Time and Energy

The time—energy uncertainty principle can be stated as follows:

In any simultaneous measurement of time and energy of a moving particle, the product of the uncertainty
in the two physical quantities is equal to 7 (= h/27) or greater than it.
ie., AEAt>h ...(9.67)
where AE is the uncertainty in the measurement of energy and At is the uncertainty in the measurement of
time.

9.6.3 Exact Uncertainty Product

So far, we have observed that the product of uncertainties of a conjugate pair of variables is of the order of or
greater than 7 (i.e., Planck’s constant divided by 2). But rigorous mathematical calculations show that the
minimum value of the product of uncertainties in a conjugate pair of variables is actually 7/2. So, one can
write

As Ap > hI2 ..(9.68)
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And when the above one-dimensional case is extended to three-dimensions, we get

Ax Ap, =12
Ay Ap, 2 1/2 ...(9.69)
Az Ap, =2 h/2
And for the conjugate pair of time and energy, the exact relation becomes
AE At > h/2 ...(9.70)

The mathematical proof of these relations (9.69) and (9.70) is beyond the scope of this book.

9.6.4 Physical Significance of the Uncertainty Principle

The position-momentum uncertainty relation (Ax Ap,2 g) leads us to draw the following inferences:

(a) If one can measure the position of a particle accurately (i.e., Ax = 0), then the uncertainty in the mea-
surement of its momentum becomes infinity (i.e., Ap, = =) at the same moment of time.

(b) If one can measure the momentum of a particle accurately (i.e., Ap, = 0), then the uncertainty in the
measurement of its position becomes infinity (i.e., Ax = o) at the same moment of time.

(c) For a particle of mass m moving with a velocity v, the position momentum uncertainty relation
becomes

(Ax) (m Av) >

N | S

or, Ax Av, > (971

N
2m
Hence, for a heavily massive body

h
m = 0.
So, from the relation (9.70), we can write
AxAv, =0
For such a particle both position and momentum can be measured accurately. This is true for mac-
roscopic bodies whose motions are the matter of discussion in classical mechanics. Thus the uncer-
tainty relation does not play any role in classical mechanics. On the other hand, for the microscopic
objects, such as electron, proton, neutron, atom, etc., the quantum mechanics is applicable. In this
case, the uncertainty relation is a reality in describing the dynamical behavior of the microscopic
objects.
(d) From the relation (9.70), we can write
N
"~ 2AE
If the uncertainty in the measurement of energy of a system (AE) becomes maximum in a particular
state, then from the above relation, A becomes minimum, i.e., the system remains for a minimum
time in the state.

At

Again, AE =—
gain AT
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The above relation shows that if a system remains in a particular state for a maximum interval of
time, then the uncertainty in the measurement of the energy of the system becomes minimum.

Applications of the Uncertainty Principle

Calculation of the binding energy of an electron in an atom by using the uncertainty
principles When an electron revolves round the nucleus of an atom in an orbit of radius r, the
uncertainty in the position of the electron Ax is given by

Ax =r [. the position is measured from the center of the nucleus]
Now, one can write the position momentum uncertainty relation as

h
AxAp, ==
px 2
h
Ap, 22—
or, Py 25
or, Ap,. 2> R [ Ax=7]
t@n
Hence, the minimum value of the momentum of the particle is
h
= A = —

Now, taking r = 10710 m,
po b
4% 10710
The kinetic energy corresponding to this non-relativistic momentum for an electron is given by
_p7 (0527 x 107
T2m, 2%9.1x 107
o, E=15x10"T=1eV

Again, the potential energy of an electron in the field of the nucleus with atomic number Z is given
by

~0.527 x 10** kg ms™!

£y

_ Ze*
AmE,r
Z(1.6 x 107'%) |
4x3.14x885x 1072 x 107"
or, V=-1447ZeV
So, the total energy of the electron in its orbit is given by
E=E+V=(1-1442Z)eV
ie., E=(1-1442)eV
So, for hydrogen atom, [ Z = 1]
E=1-1442=-134¢eV

or, V=



(b)

(c)
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And for helium atom Z=2, E = (1 — 28.8) eV =—27.8 eV. These two binding energy values cal-
culated from uncertainty principle agree with the binding energy of the outer most electron (s) in
hydrogen atom (— 13.6 eV) and helium atom (- 24.6 eV) respectively.

No electron (with separate entity) exists in the nucleus of an atom The radius (r) of the
nucleus of an atom is in the order of 10™* m.

So, if one electron (with separate entity) exists inside the nucleus of the atom, then the uncertainty in
the position of this electron is given by

As = diameter of the nucleus

or, As=2r=2x10"m
From, the principle of uncertainty, the uncertainty in momentum of the said electron is given by
h
Ap 2—
P As
h
, Ap 2
o P =2rnAs
34
or, Ap > 6.63 x 10 kg ms™!

T 2x3.14x(2x 107
or, Ap 25.27 x 1072 kg ms™!

It means that if the elementary particle (i.e., electron) has to be inside the nucleus of the atom, the
minimum momentum of it must be given by

Puin = 5.27 x 1072 kg ms™!

The minimum energy of an electron (with separate entity) of mass m is obtained from the relativistic
formula (of energy) as

E=Np202+mfc4

or, E=7\(5.27x102)x 3 x 102+ (9.1 x 10°")2 x (3 x 10%* kg ms™"

or, E =10 MeV

So, if one electron (with separate entity) remains in the nucleus of the atom, its energy must be of
the order of 10 MeV. But it is known from the experimental data that the electrons get emitted from
radioactive nuclei during S-decay with energy of about 4 MeV.

Therefore, electrons cannot exist within the nucleus of an atom rather they get generated instanta-
neously just before their emission.

Protons and neutrons can exist in the nucleus of an atom with their separate entity 1f
one nucleon (proton or neutron) has to be inside the nucleus of an atom its minimum momentum
must be

Poin =527 x 1072 kg ms™
[It can be calculated as was done in the case of one electron in (a)].
For the nucleon, rest mass
m,=1.67x 1072 kg
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(d)

(e)

Basic Engineering Physics

So, the corresponding value of energy (kinectic energy) is given by
P (527x 107

C2m, 2x1.67x 107

or, E, =52KeV

As this energy E, is smaller than the energy carried by a nucleon emitted from a nucleus, a nucleon
can exist inside the nucleus.

k

Proof of the finite width of the spectral lines by using the uncertainty principle The
Heisenberg’s energy-time uncertainty relation gives us

AE At 2 7/2
Since, the lifetime of an electron in an excited state is not infinite and it is in the order of 1078 S,

Ar=10"s
Hence AE > i
T 2A¢
34

o, AE > 6.63 x 10

2x2x3.14x%x 107
or, AE >0.53 % 107777

This implies that the excited (energy) levels of an atom given by AE = % must have a finite width

(i.e., finite energy spread) instead of a sharp line.

Calculation of the uncertainty in frequency of a radiation emitted by an atom 1If the
life-time of an excited state of an atom be At and AE be the uncertainty in energy of the state, then
according to the uncertainty relation, we get

h h
AE At >1 AE> -
2 & 2A1

>_h
A At

But the energy E = hv. So, AE = hAv, where Av is the uncertainty in the frequency of the emitted
photon.

or, AE

Ay ZBE_ ho1_ 1
h 4nAt h 4rwAt

Now, the average life-time of the excited state of an atom is given by
Ar=10"s.

Av = 1

4rx 107
Thus, the radiation emitted by an atom cannot have a definite frequency (v), instead it will have a
variable frequency lying within the range of frequency between v — Av and v + Av. In other words,
the radiation emitted will have a band of frequency.

=0.8 x 10’ Hz.
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9.7 OLD QUANTUM THEORY

Classical mechanics not only failed to explain the phenomena like blackbody radiation, photoelectric effect
and Compton effect but also failed to explain the phenomenon of stability of atoms. According to Rutherford,
an atom consists of a positively charged heavy nucleus surrounded by a set of negatively charged electrons
which revolve around the nucleus in circular orbits. These electrons experience strong attraction towards the
positively charged heavy nucleus. As a result of the action of this strong attractive force, they should come
closer to the nucleus with time. Secondly, the energy of these negatively charged revolving electrons should
decrease continuously since an accelerating charged particle always radiates energy in the form of e.m. radia-
tions. And due to this continuous loss of energy through radiation, the orbital electrons should come closer
and closer to the nucleus until they collide with the nucleus and the atom collapses. This is an indication of
instability of the atoms. But it is contrary to the fact of stability of the atoms. So, the classical mechanics fails
to explain the stability of the atoms.

9.7.1 Bohr’s Theory of the Hydrogen Atom

The hydrogen atom is the simplest of all atoms. It consists of a proton as its nucleus and a single electron
orbiting around the nucleus. The nucleic proton is very heavy as compared to the orbiting electron and practi-
cally remains at rest. The force of attraction between the two, being electrostatic, obeys the inverse square

law and the possible orbits are circular or elliptical. If the electron orbits in a circular orbit of radius r with
2

a constant speed v, then the force of attraction is given by ﬁe_z and it is balanced by the centrifugal
o T
mo*
force - where e is the electronic charge.
This fact gives us the relation,
2
2 1 e
v = = ...(9.72
" dre, T ( )
which can be used to eliminate v from the expression of the energy E:
E=E.+E,
where Ej is the kinetic energy, E, is the potential energy and E is the total energy of the electron.
1, 1 &
So, E=—mv"+|- -
© 2" ( e, T )

[The minus sign here indicates that the potential energy is of attractive nature]

: E=-—_.% - &
o 2 4ne, T 4me, T
1 1 ¢
E=—= = N -8
or, Y dme T 9.73)

Thus, the total energy is one-half of the potential energy.

Classically, the orbital radius » can assume any positive value, and accordingly E can occupy any value
from — oo to + 0. However, according to Bohr’s first postulate, the electron can occupy only any one of the
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special set of orbits among all the possible ones. He proposed that these special orbits which characterize the
stationary states are those in which the angular momentum L of the electron about the centre of the orbit (i.e.,
the nucleus of the atom) is an integral multiple of 7 (= h/27). As the angular momentum in a circular orbit is
given by the product of the linear momentum (mv) and the orbital radius (7), so the Bohr’s quantum condition
can be written as

mor = nh ...(9.74)
[In other form, @qu) = nh, where, L = mor]
where n =1, 2, 3, ..., N and the value of n identifies the stationary states. The integer n is known as quan-

tum number. The radii of the permitted orbits are now obtained by eliminating v from the Eq. (9.72) and
Eq. (9.74).
For the nth orbit, we get
E, n*h*
r. =

n
me®

where r,, is the radius of the nth orbit. Substituting this value of r,, in Eq. (9.73), one gets the quantized energy
levels of the hydrogen atom as follows:

..(9.75)

4
me 1
E, =- SEUZ 2 (;) ...(9.76)
where n =1, 2, 3, ..., N and E,, is the nth energy state (or energy level). The state of the lowest energy (i.e.,

the ground state) corresponds to n = 1. The energies of the other (‘excited’) states increase with n, tending to
Oasn— oo

Having known the energy levels, one can immediately obtain the wavelengths (or frequencies) of the
hydrogen spectrum when the electron jumps from the initial state n; to the final state n; (where n, < n;) as
follows:

E,-E
hv=E,—E; or v= W
or c__me (1 1
’ A 8E* R nﬁ n?
by using Eq. (9.76) and v =%
o 1_ome (11
’ A 8E02 ch? nf2 nl-2
1 1 1
or, —=R|l——-— ...(9.77
A o
4
where R = —2¢ 3= 1.097 x 10" m™! and known as Rydberg number (or constant).

8E? ch

According to the classical theory, an excited hydrogen atom can radiate energy of all wavelengths con-
tinuously. But experimentally it was observed that the excited hydrogen atom emits em radiations of certain
definite wavelengths due to transition of the electron from higher energy state to lower energy states cor-
responding to Lyman (n, = 1), Balmer (n, = 2), Paschen (n, = 3), Bracket (n,= 4) and Pfund (n, = 5) series.
These discrete set of lines are represented by Eq. (9.77). So, it can be concluded that the classical theory fails
to explain the atomic spectra.
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The Bohr’s quantum condition of Eq. (9.74) is a special case of the general quantum condition given by
ggprdqr=nrh; r=1,2,3,...,N ...(9.78)
where the integration in case of each pair of conjugate variables (i.e., generalized conjugate coordinates) is to
be taken over one period of that particular pair. The quantum number 7, takes integral values. Bohr’s general
postulates along with the quantum rule of Eq. (9.78) constitute what is known as the old quantum theory.

Worked-out Examples

Blackbody Radiation

Example 9.1] (a) Calculate the energy in eV of a photon of wavelength 1 A
(b) What is the momentum of this photon?
Sol. (a) If Abe the wavelength of the photon, % be the Planck’s constant and c is the velocity of light then

energy of the photon E = h—/f

Here h=662x10"*J-s, ¢=3x108m/s, A=1A=10"m.
34 3
E=6.62X]0 x3x10 =19.86X10_16J
_19.86 x 1071

6% 109 eV=12412KeV
1.6 x 10™

(b) Momentum of the photon p = %

_6.62x 107
T

Example 9.2 | Calculate the average energy of Planck’s oscillator for (7{—?) =0.01,

Sol. The average energy of Planck’s oscillator in terms of angular frequency (o) is

or, =6.62 x 107 kg m/s

E = ho ___ holkT < kT
“ ho ho
exp T -1 exp T -1

Putting the values of % given in the problem, we find

E,=0.0045 kT
Example 93| Calculate the number of modes in a cube of 2 cm side in the wavelength range 4995 A and
5008 A.
Sol. Number of modes within the volume (V) having wavelength between A and 4 + dA is given by

dn =32 4,

14
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Here Vv=L'=2x%x102m)’
dA=10A=10%10""m.
8x3.14x (2x107%)°
dn = 104
(5000 x 10719
or, dn =3.21x 10"

Example 9.4 | Calculate the number of photons emitted per second by a 100 watt sodium lamp [Assume

A =15893 A of Sodium lamp]
Sol. Energy of a photon,

x10x 1071°

hc
E = h = —
"T 2
34 8
= 863X 10 X3 X107 3375 x 10" joule.
5893 x 10~
Now, the rate of energy emission from a 100 watt lamp is 100 J/s. Since the energy of a photon is
3.375 x 107" J, the number of photons emitted per second is Ll =2.96 x 10%
3.375% 107"

Example 9.5 | Radiation from the moon gives, A, of 4700 A and 14 x 10° m. What conclusion can you

draw from this? [h=6.6 x 107*Js, k=137 x 102 J/K, ¢ = 10 m/s]

Sol. We know that Wien’s displacement law is
A, T=0.289 x 10 mk

when A, =4700 A = 4700 x 107"%m

)
or, 7=0289x10 " _ 106

4700 x 1071

and when A, =14%x10°m

2

7. 0289x102
14x10°°

As the sun’s radiation is reflected from the moon, 7, = 6166 K represents the temperature of the sun.
T =207 K represents the temperature of the moon.

Compton Effect

Example 9.6 | An X-ray photon is found to have its wavelength doubled on being scattered through 90°.
Find the wavelength and energy of the incident photon.

Sol. We know that Compton shift

N oA(=AR) =Tt

m,c

Here 0=90°and I’ =24 .. AA=21-A=1

(1 —cos 6)
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34
and wavelength A= mLc - 6.62 ><l 10
9.1x107'x3x 10%
=0.0245 A

The energy of the incident photon

£ oy he _6:62x10% x3 x 10°

A 0.0245 x 10710
=8.1 x 107 joule.

Example 9.7] (a) At which angle will the Compton shift be maximum?

(b) Calculate the Compton wavelength in A for an electron.

Sol. (a) We know Compton shift
h
A}y=m—oc(l—COS 9)

If 6= 180°; then A A will be maximum. In that case,

2h s
AL = PG = 2x0.0245 A
=0.049 A
h 6.62 x 10734
(b) Compton wavelength A, = =
M€ 91x103 x3x 10}
=0.0245 A.

Example 9.8 | X_rays of wavelength 10.0 pm are scattered from a target.

(a) Find the wavelength of two X-rays scattered through 45°.
(b) Find the maximum wavelength present in the scattered X-rays.
(c) Find the maximum kinetic energy of the recoil electrons.

Sol. (a) We know Compton shift

h

m,c

AN-A=

(1 —cos 0)

,_ h
or, /”L—/l+m—oc(l—cose)

=10+ (0.293) % =10.7pm [. 0=45°]

(b) A’ — Ais maximum when (1 — cos 6) = 2 in which case
2h
m,c
=10+4.9=14.9 pm.
1 1

(c¢) Kinetic energy of electron = A(v —v”) = hc (z - T)

A=A+

9.43

[WBUT 2005]
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:6.62><10‘34x3x108(1 1 )

10712 10 149
=6.54x 1077
=408 KeV.

Example 9.9 An X-ray photon of frequency 3 x 10" Hz collides with a free electron at rest and is scat-

tered at 60°. Find the direction in which the electron will move. |given % =0.024 A|.
o

Sol.  Herev=3x10"Hz, 6=60°, 7 =6.62x 10°*Js
Now, the angle of scattering 0 and the angle of recoil of the electron ¢ are given by

cot¢=(1+0c)tang

where o= :( h )K
m, 2 \myc)c
19
—0.024 x 10710 x 3210 _ 540
3% 10°
1 1.242
t¢=(1 .0243) t °=1242 — =—27%
cot ¢ = (1 +0.0243) tan 30 NRRE
1.73
) t == 139
o o=
¢ =54.34°
Example 9-1 Show that a free electron at rest cannot absorb a photon.
Sol. If py, and p, be the momentum of a photon and that of a free electron respectively, then

hy
Dph =Pec OT, i = Pec

If E;, and E, be the energies of a photon and a free electron respectively,

then Ep=E. or, hv=\(pe o+ (m, c?)?
hv _ 2 22
or, < = VPec T M > Pec

Thus the conservation law of momentum breaks down. Hence the result.
So we may conclude that Compton scattering must occur with free electron.

de Broglie Hypothesis

Example 9.11] Calculate the wavelength associated with an electron accelerated to a potential difference

of 1.25 KeV.

Sol. If E is the kinetic energy of the electron, the de Broglie wavelength of the wave associated with the
electron is
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__h _ 6.62x 107
V2mE 2% 9.1x 103" x 1.25x 10° x 1.6 x 107"
A=346x10""m

Example 9.12] What is the de Broglie wavelength of an electron moving with velocity, v = %?

Sol. The de Broglie wavelength of a particle of mass m moving with velocity v is A = %

[-E=¢eV]

v _3 . . . .
Here, = 5 so the electron mass undergoes relativistic variation according to the relation,

m
m=——72 m, is the rest mass of the electron.

\1 = o%/c?
34
Ao gy~ 6:63x10 9

0
o 901x10% x3¢c ! B
5
34
6.63 X 10 X 4 — 0'33 x 10711 m

T 91x1073 x3x3x10°
A=0.032 A

Example 9.13] What is the de Broglie wavelength of an electron which has been accelerated from rest

through a potential difference of 100 V.

12.25

Sol.  We know A=—=2A
\V
Here V=100V
12.28
A=—===1225A

V100
Example 9.14]  An electron and a proton have the same de Broglie wavelength. Prove that the energy of the
electron is greater than that of the proton. [WBUT 2008]
Sol. For the electron de Broglie wavelength is given by,

A, = mhv where m, and v, are the mass and velocity of the electron.

e e

And for the proton, we get

lp =D where m,, and v, are mass and velocity of the proton
PYp
But A, =2,
h _ h _
or, o = os oL mu,=myu,
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Now, the energy of the electron is given by

1 2
Ee = E m,o,
_1 1
=5 (m,v,)” x i,
=1 om0, % -
) myOp m
L™
) "m0y m,
mp
or, E,=E,x ™, where E, is the energy of the proton
Ee ml’
or, —_—=—
E, M,

E,>E, [ m,>m,]
So, the energy of the electron is greater than that of the proton.

Example 9.15]  Show that the de Broglie wavelength for a material particle of rest mass m, and charge ¢

accelerated from rest through a potential difference of V volts relativistically is given by

A= h
qV
2m,qV |1+ 5
2m, e
Sol. Since v is relativistic so E, # % mv* and so, we cannot find momentum directly from E,. Now using
relativistic formula
E’= p202 + mi ¢
Again E=F + moc2 =qV+ moc2
Pt =E - mZ ¢
or, pzc2 =(@gV+m, 62)2 - m3 ¢t
= q2V2 +2qV muc2
212
V 1%
=2 Vm0=2m0qV(l 1 )
2 2
c 2m,c
p=42m,qV |1+
\j ’ ( 2m0c2
. . h h
.. de Broglie wavelength A = P

qV
2myqV |1+ >
2m,c
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Example 9.16] Find out the glancing angle at which electrons of 100 eV should fall on the lattice planes of

a crystal to obtain a strong Bragg reflection in the first order [lattice spacing, d = 2.15 Al.
Sol. The de Broglie wavelength of an electron accelerated through a potential difference V is

_1225 1225 | 5he g

W 100
Again for the nth order Bragg diffraction maximum,
2d sin 6 =ni
where 6 is the glancing angle of incidence.
For 1stordern =1

2dsin@=A or, sin§=2 = 1225

2" Tx215 " 028

0=16.5°

Example 9.17| A crystalline material has a set of Bragg planes separated by 1.1 A. For 2 eV neutrons what

is the highest order Bragg reflection? [Given glancing angle 6 = 22°]

Sol. The de Broglie wavelength of the neutron is given by
h h he
A = mo = = >
o/ \2m,E \2(m,c?) E,
12400 eV A

2 x (940 x 10° v) x (0.083 eV)

[Here hic = 12400 eV A and m,c* = 940 x 10° eV]
=0.993 A
For the first-order peak,

et 0.993 A
2sin @ 2 xsin?22°

Example 9.18] Calculate the de Broglie wavelength of a baseball of mass 1 kg, moving at a speed 10 m/s.

Discuss the reason why we can’t observe its wave nature.

=133 A

Sol. The de Broglie wavelength is given by

h h
/1 =5=W
Here m=1kg, v=10m/s, h = 6.62 x 107* Js.
34
So A=802x 1007 _ (or 10 m
1x10
or, A=662x 107 A

To observe the diffraction effect, the dimension of the apparatus through which light passes must be
comparable with the wavelength. The de Broglie wavelength of the baseball is so small that we can
not expect to construct an apparatus which is capable of detecting wave nature by causing the diffrac-
tion of its de Broglie wave.
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Uncertainty Principle

Example 9.19] The maximum uncertainty in the position of an electron in a nucleus is 2 x 10~"* m. Find

the minimum uncertainly in its momentum, given & = 6.63 x 104 Js. [WBUT 2002]
Sol. We have from uncertainly principle
h
Ax Ap =—
e
Now if position uncertainty is maximum, then momentum uncertainly will be minimum i.e.,
h
Axmax Apmin = E
h 6.62x 107*
or, Ap min — =

ATX A 4mrx2x 1074
=2.6x 102" kgms™!

Example 9.20] What is the minimum uncertainty in the energy state of an atom if an electron remains in

this state for 107 s?
Sol. Since the time available for energy measurement is 10~ s, the uncertainty in time Ar s. Now from the

relation AE At = %‘c’ we get
__h __he _ 12400 eV A
4mAr 4Amc At 4xrx3x 108 x 1078 x 10'°

=0.329x 107 eV.
So the natural width (minimum uncertainty) of the energy state = 0.329 x 10~ eV.

Example 9.21| Assume that an electron is inside a nucleus of radius 107> m. Calculate from the uncer-

AE [1A=10""m]

tainty principle the minimum kinetic energy of the electron. [WBUT 2007]
Sol. Using uncertainty relation
h
Ap . =—no—>"
pmm 47[ A.x

max

Here Ax, . is the diameter of the nucleus = 2 x 107" m.

6.62 x 10734 N
g ms
4%x3.14%x2+107°

=0.263 x 10"’ kg ms™

Apmin =

Now E]2m»n = p%nin A+ mf o
=(0.263 x 107 x 3 x 10852 + (9.1 x 10°1)? x (3 x 10%)*
or, E2. =62x107%
- E_ . =7.9x10"%joule
—12
19X v - 49 MeV

1.6 x 107"
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Example 9.22| An electron has a speed 4 x 10° m/s within the accuracy of 0.01 per cent. Calculate the

uncertainty in position of the electron. Given & = 6.62 x 1074 Js.

Sol. Uncertainty in velocity = 0.01 x 4 x 10° = 40 m/s

100
h
Ap =—
Ax Ap ar
h
Ax =
47 (Ap)
34
= 6.62x 10 m [here Ap = m Av]
4%x3.14%x9.1x107" x40
=1.447 x 10 m.

Example 9.23| 1f a component of angular momentum of the electron in a hydrogen atom is known to be

2 h within 5% error, show that its angular position in the plane perpendicular to the component can not be
specified at all.
Sol. According to uncertainty relation
ALAB = 1
Here AL = uncertainty in angular momentum
A = Corresponding uncertainty in angular position

_5%x2n

~ 100
A _ hx100

Ag=" =
So 0=l Sx2n

The angle in a plane perpendicular to the component of angular momentum cannot be greater than
27. So, the orbital angular position of the electron in the plane perpendicular to the given component
of angular momentum can not be specified at all.

Example 9.24| magine an electron to be somewhere in the nucleus whose dimension is 10~ m. What is

the uncertainty in momentum? Is this consistent with the binding energy of nuclear constituents?

=10 radians > 27

Sol. For uncertainty relation

AxAp=h=%[
__h 6.62 x 1074
2rAx 2 x3.14x 107

Ap =1.054 x 107" kg m/s
The least value of momentum equal to 1.054 x 102’ kg m/s
The corresponding kinetic energy of electron is
E =pc [Here rest mass energy of electron is very small]
=1.054x 107 x 3 x 10°J
=3.162x 107'%1.6 x 1077 eV
=20 MeV
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Experiments shows that energy of electrons in nuclear disintegration (f3 — decay) is very much less
than 20 MeV. Hence the uncertainty principle rules out the possibility of electrons being a nuclear
constituent.

Review Exercises

Part 1: Multiple Choice Questions

1. Total energy emission per unit area per unit time from the surface of a blackbody at an absolute tem-
perature 7 is proportional to
(a) T b)) T4 © T (d) 7"
2. Quantum nature of light emerged in an attempt to explain

(a) radioactivity (b) pair production

(c) black-body radiation (d) interference of light
3. The absorptive power of a blackbody is

(a) 2 () 0 (© 1 (d 3
4. Blackbody radiation is

(a) an elastic wave (b) mechanical wave

(c) electromagnetic wave (d) None of these

5. Wien’s displacement law could explain the distribution of thermal radiation in the spectrum of
blacbody radiation in the region of

(a) higher wavelength (b) lower wavelength
(c) middle wavelength (d) None of these
6. All the radiation laws can be shown to be special cases of
(a) Wien’s law (b) Stefan — Boltzmann’s law
(c) Rayleigh — Jeans law (d) Planck’s law

7. Rayleigh — Jeans law could explain the energy distribution in the spectrum of blackbody radiation
in the region of

(a) higher wavelength (b) lower wavelength
(c) middle wavelength (d) X-rays

8. Average energy of an oscillator of frequency v in a cavity at an absolute temperature 7 is,

kT hy hv

@) m (b) kT © VT 1 @ VKT +1

9. The emissive power of a blackbody kept at an absolute temperature [WBUT 2006]
@ T* (b) T° (© T° (7'

10. Planck’s oscillator has

(a) continuous energy (b) discrete energy

(c¢) a mixture of continuous and discrete (d) None of these
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The wavelength of which the spectral energy density of emitted radiation at temperature 7 from a

blackbody attains maximum value, is proportional to, [WBUT 2005]

@ o T () T* @ 77"
Number of oscillation modes for the electromagnetic standing waves of frequency v and v + dv or the
cavity radiation is proportional to [WBUT 2008]

2 4 hv
(@) v (b) v (©) v d) —o—
e -1
The Compton wavelength is [WBUT 2004]
h h h h
(@) m,c (b) 2 (© ) d m,c
m,c m,c

The Compton shift depends on

(a) angle of scattering (b) material of the target

(c) wavelength of the incident X-rays (d) None of these

The Compton shift is maximum when the scattering angle is
(a) 45° (b) 90° (c) 180° (d) 60°
Compton effect is observed if the target electron is
(a) free
(b) bound to the nucleous
(c) binding energy is very small compared to the energy of the incident photon
(d) None of these
In unmodified Compton line, the wavelength of the scattered photon
(a) equals the wavelength of the incident photon
(b) greater than the wavelength of the incident photon
(c) less then the wavelength of the incident photon
(d) None of these
The kinetic energy of the recoil electron in Compton effect is desired from the

(a) lattice energy of the metarial (b) energy of the incident photon
(c) thermal energy of the free electrons (d) rest mess of the electron

De Broglie proposed the hypothesis of matter wave by examining the parallelism of
(a) light and sound (b) heat and motion
(c) mechanics and optics (d) electricity and magnetism

The de Broglie wavelength of a particle with momentum p is
2

h p h p
@ 3 ®) © 5 @3

The de Broglie wavelength is associated with moving
(a) charged particles (b) macroscopic particles
(c) substomic particles (d) electrically neutral particles
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A proton and an electron are accelerated by the same potential difference. Let 4, and 4, denote the
de Broglie wavelengths of the electron and the proton respectively, then

(@ 4,=4, (b) 4, <4, (©) 4,>4, (d) None of these
A stone is dropped from the top of a building? What happens to the de Broglie wavelength of the
stone as it falls? [WBUT 2008]
(a) It increases (b) It decreases
(¢) Remains constant (d) de Broglie wavelength can’t be defined

Phase velocity and group velocity are equal when the medium is

(a) dispersive (b) non-dispersive (c) isotropic (d) None of these
Which statement is correct?

(a) group velocity (vg) = phase velocity (vp)

1
(®) v,>0, (©) v,>7, (d) v,= o
8

The de Broglie wavelength of a moving electron subjected to a potential V is

1.26 ¢ 12.26 12.26
(a) —A (b) ——A (c) ——A (d) None of these
\V \V 14
The de Broglie wavelength of a body of mass m and kinetic energy E is [WBUT 2005]
\2mE 2mh h N2mh
@ ~—- (b) == ©) — (d)
A VE 2mE E

If visible light is used to study Compton scattering then the Compton shift will be ~ [WBUT 2007]
(a) negative (wavelength of the scattered light will be lesser)
(b) move positive than what is observed with X-ray
(c) zero
(d) positive but not detectable in the visible window
An ¢-particle is 4 times heavier than a proton. If a proton and an ¢- particle are moving with the

same velocity, how do their de Broglie wavelengths compare? [WBUT 2006]
}1’06 2’0!
(@ 4,=4, (b) A,=42, (©) 4,= > @ A,= T
The product of group velocity (v,) and phase velocity (v,) of de Broglie waves is
(a) ¢ (b) c? (c) less than ¢ (d) None of these
If A, and A, be the relativistic and non-relativistic wavelengths of the electron, then
@ A4,>2, (0) A, =4, ©) Apy> 2, @ A==
Uncertainty principle is the consequence of "
(a) wave nature of particle (b) wave-particle duality
(c) particle nature of wave (d) particle-particle interaction

Heisenberg energy-time uncertainty relation is given by

h

(@) AEAt<h (b) AE At 2> 5 (c) AE At 2 (d) None of these

BN
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34. For very heavy particle
(a) AxAvx=% (b) Ax Av, =0 (c) AxAv, =« (d) AxAvx=g
35. Uncertainty principle has significance only in
(a) macroscopic world (b) microscopic world
(c) both macroscopic and microscopic world (d) None of these
36. In the measurement of a physical entity, and experiment can exhibit only
(a) particle aspect (b) wave aspect
(c) cannot exhibit wave and particle aspect simultaneously (d) All of the above
37. Uncertainty principle tells that [WBUT]
(a) a particle can have only position but no momentum
(b) aparticle can have only momentum but no position
(c) one can determine simultaneously the position and momentum of a particle
(d) one cannot determine simultaneously the position and momentum of a particle
Answers
1. (b) 2. () 3. (o) 4. (¢) 5. (b) 6. (d) 7. (a) 8. (¢)
9. (a) 10. (b) 11. (a) 12. (b) 13. (d) 14. (a) 15. (¢) 16. (¢)
17. (a) 18. (b) 19. (¢) 20. (c) 21. (c¢) 22. (¢) 23. (b) 24. (a)
25. (¢) 26. (b) 27. (c) 28. (¢) 29. (b) 30. (b) 31. (¢) 32. (b)
33. (b) 34. (b) 35. (b) 36. (d) 37. (d)

Short Questions with Answers

1

. What is the difference between Compton effect and photoelectric effect?
In Compton effect, the incident photon collides with loosely bound electron and gives some part
of its energy to the electron. The incident photon then is scattered with its reduced energy of the
scatterer.
In photoelectric effect, the incident photon is completely absorbed by the bound electron and elec-
tron is emitted from metal surface with its maximum kinetic energy which is equal to the difference
of energy between the incident photon and the work function of the metal.

2. Why is Compton effect not observed with visible light?

The wavelength of visible light is A = 6000 A

he _ 6.62x107x 10°

A 6000x 1070 % 1.6 x 107"
But the binding energy of an electron in the atom = 10 eV, so when visible light falls on a target, it
cannot liberate electrons. So we cannot observe Compton effect with visible light.

eV=07eV

So, energy of the visible light =

3. Show that it is impossible for a photon to give all of its energy to the electron.

We know that kinetic energy of recoil electron is

20 cos’
Ex=hv > ¢ > .Hereotzh—v2
(1+ 0)*— o cos’ ¢ me
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and ¢ is the angle of recoil electron with incident photon.
For maximum kinetic energy cos ¢ =1

200
1+2cx

So maximum value of Ey = hv

Since 1 20 < 1, the maximum kinetic energy of the electron is less than Av. So we can say that

photon does not transfer its entire energy to the electron.

. Explain modified and unmodified lines in Compton effect.

The presence of the modified line is due to the collision of X-ray photon with free electrons. But we
know that electrons are bound to the atom. So, when the collision occurs between the X-ray photon
and the atom as a whole, the rest mass m of electron must be replaced by mass (M) of the atom and
the equation for Compton shift (equation) must be replaced by

g
A/I—MC (1-cos 6)

For large value of M, AA is nearly zero this condition gives unmodified line, i.e., there is no shifting
in wavelength. So wavelength of the scattered photon remains same as that of the primary.

For heavier element, the intensity of unmodified line is greater than modified line and the intensity
of unmodified line is smaller than modified line.

. Show that Compton shift is independent of the nature of the scatterers.

h

m,c

The Compton shift AL = (1 -cos 0)

where 0 is the scattering angle.

From expression of Compton we see that AA depends only on the rest mass of the electron (im,) and
the scattering angle 6. So we can say that Compton shift is totally independent of the nature of the
scatterer.

. Does the principle of uncertainty apply to macroscopic as well as microscopic bodies?

h h . . .
—, so Ax Av, = ——. For macroscopic object, m is
21 Y 2mrm p J "

very large compared to /. So uncertainty is very small. Hence macroscopic object possesses definite
position and momentum. But for microscopic object, m is very small, hence uncertainty principle is
applicable.

According to uncertainty principle Ap Ax =

. What is the difference between phase velocity and group velocity?

The velocity with which an individual wave of a wavepacket travels is called phase velocity. The
velocity with which the slowly varying envelope of the modulated pattern due to a group of waves
travels in a medium is called group velocity.

The phase velocity may be greator than the velocity of light. But particle (or group) velocity is
always less then the velocity of light.

. Calculate the de Broglie wavelength of a ball of mass 250 g moving at a speed of 20 m/s. What

conclusion you can draw from it?
The de Broglie wavelength of the ball is given by

_h_ h
;{,—[7—%
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Here mass of the ball m =250 g = i kg, velocity of the ball v = 20 m/s,

Planck’s constant / = 6.62 x 10* J/s

6.62 x 10734

1
—x20
ie

So, A= =123x1%m

=132x 1024 A

We know that to observe diffraction effects, the dimension of the apparatus through which light
passes must be comparable with the dimension of the wavelength. The de Broglie wavelength of the
ball is so small that we cannot construct an apparatus which is capable of detecting its de Broglie
wavelength.

Show that spectral lines have a finite width.

We know from Heisenberg’s energy-time uncertainty principle

iooh
AEAt = —=—
2 4rm
h
b E=—
of ATTAL

The lifetime of an electron in an excited state is of the order of 1078 s, 1.e., At = 1078 s. This implies
that the excited energy levels of an atom must have a finite width rather than sharp line. So, we can
say that the spectral lines have a finite width.

Prove that the rest mass of a photon is zero.

. 0_ho_E
We k that ph locity v, =—=—== (1
e know that phase velocity v, Tk P )
where E and P are total relativistic energy and momentum of a paticle.
Again, for relativistic particle total energy E follow the relation,

E’ =[72c‘2 +m3 ¢
22 2 412
_E_|Pc+myc
So from Eq. (1), v, = = T]
m2ct 2
=c|l+ ”2 o)
P

Since the velocity of the photon is ¢, so v, = ¢
we have from Eq. (2),

mZ 2\1/2 mZ C2 12 172
c=c|l+ 02 =C(1+0—2)
p h

[According to de Broglie hypothesis 4 :g
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which gives
m?2 c* A2
i
The equation is valid only when m, =0
So the rest mass of the photon is zero.

Part 2: Descriptive Questions

1.

10.

(a) State the characteristics of blackbody radiation.

(b) Deduce Planck’s law for the spectral distribution of energy in blackbody radiation.

(c) Show graphically, how the energy density versus frequency (or the wavelength) plot of a
blackbody radiation is changed if the temperature is increased. [WBUT 2007]

State clearly, explaining all the terms, the Planck’s law, Rayleigh — Jeans law and Wien’s displace-

ment law for radiation. Find out the two limits at which the Planck’s formula reduces to the other

two. [WBUT 2006]
(a) State Planck’s hypothesis and hence derive Planck’s radiation law. [WBUT 2005]
(b) Show that the temperature dependence in Stephan’s law can be derived from Planck’s radiation

law. [WBUT 2008]
(a) Derive an expression for Compton shift in wavelength for a photon scattered from a free electron

at an angle 6. [WBUT 2002, 2005]
(b) At which angle will the shift be maximum? [WBUT 2005]

. A photon of energy E is incident on a stationary electron target and the angle of Compton scattering

of the photon is 6. Show, using non-relativistic kinetic energy that the KE of recoil of the electron
is

E*(1 - cos 6)
mc* + E(1 - cos 6)

(a) Why cannot Compton effect be observed with visible light?

where m is the mass of the electron.

(b) Derive the expression for Compton shift when a photon interacts with an electron. Show that it
is impossible to transfer all the energy of the photon to the electron. [WBUT 2008]

. Discuss how classical approaches failed to account for the spectral distribution of energy density in

a blackbody radiation. How did Planck overcome this difficulty? Discuss Wien’s displacement law
from Planck’s law.

(a) What is Compton effect?
(b) Why unmodified line appears in Compton scattering?
(c) Prove that Compton shift is independent of the nature of the scatterer.
(a) What do you mean by matter wave? [WBUT 2002]
(b) What is the experimental evidence in favor of de Broglie hypothesis of matter waves?

[WBUT 2005]
(a) Describe the experiment which justifies de Broglie’s hypothesis about the wave nature of

particles.
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(b) Show that the product of group velocity and phase velocity of the de Broglie wave are con-
stant. [WBUT 2008]

(a) What is wave-particle duality?

(b) Show that the de Broglie wavelength A associated with an electron of mass m and kinetic energy
E, is given by

h

V2mE,

(c) Describe the Davision and Germer experiment giving emphasis on the interpretation of the result
of the experiment.

A=

(a) Show that the de Broglie wavelength of a particle of mass m and kinetic energy E, is given by
hc

\VE, (E, + 2m,c?)
(b) Why is quantum mechanics used in case of moving electrons while for a moving car we use

newtonian mechanics? Explain. [WBUT 2005]

(a) Starting from de Broglie’s hypothesis show that the group velocity associated with a particle is
the same as the particle velocity. [WBUT 2007]

(b) Show that the de Broglie wavelength A of electrons of charge e and energy E (in eV) is given
by,

A=

h
2meV
(a) State and explain Heisenberg uncertainty principle. [WBUT 2003, 2005]

(b) Show that there cannot be any existance of free electrons inside the nucleus of an atom.
[WBUT 2005]

(a) Starting from de Broglie wave concept obtain Heisenbergs uncertainty principle.
AxAp,2h
(b) Give one illustration of this principle.

A=

[WBUT 2005]

(c) Discuss the significance and importance of uncertainty principle.

Part 3: Numerical Problems

1.

Calculate the number of photons emitted by a 10 watt source of monochromatic light having wave-
length of 100 nm. [5.03 x 18]

. X-rays of wavelength A = 0.124 A is scattered from a block of graphite. What is the wavelength of

the X-rays scattered in the backward direction?

. Calculate the maximum energy in eV, that can be transferred to an electron in a Compton experiment

when the incident quanta are X-rays of wavelength 0.50 A. [4.7 eV]

. X-rays of wavelength 10" m are scattered by loosely bound electrons. Find the maximum wave-

length present in the scattered rays and maximum kinetic energy of the recoil electron.
[1.485 x 107! m, 40.576 KeV]

. A y-ray beam of wavelength 1.8 x 1072 A is scattered by free electrons at an angle of 90° with the

incident beam. Calculate the Compton wavelength shift. [0.0242 A]
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. Calculate the Compton wavelength (in A) of an electron. [WBUT 2005] [0.0242 A]
. X-ray of wavelength 4, = 2.00 A are scattered from a block of carbon. The scattered X-ray are

observed at an angle of 45° to the incident beam.
(a) Calculate the Compton shift and the wavelength of the scattered X-ray at ¢ = 45°.

(b) Find the fraction of energy lost by the photon in this collision. [2.007 A, 0.354%|
. Calculate the wavelength associated with an electron accelerated to a potential difference of
1.25KeV. [3.46 x 107" m]
. What is the de Broglie wavelength of an electron moving with a velocity, v = % c? [0.0323 A]

You have 10 eV photon and 10 eV electron. Which one has shorter wavelength? Explain.
[electron]

Find out the de Broglie wavelength of a neutron of kinetic energy 10 MeV?

Davision and Germer studied electron diffraction with nickel crystal and found a first-order peak at
65° with electron beam of 54 eV. If instead, a 216 eV beam were used, find the angle at which the
corresponding peak will be seen. [WBUT 2007] [26.9°]

What is the de Broglie wavelengths of any electron which has been accelerated from rest through a
potential difference of 100 V? [1.225 A]

Calculate the minimum uncertainty in position of an electron moving with a velocity of
3% 10" ms™. [0.019 A]

The average time interval that elapses between the excitation of an atom and the time it radiates
energy is 107 sec. Calculate the uncertainty in the energy of emitted photons and the limit of accu-
racy with which the frequency of the emitted radiation may be determined.

[4.14 x 1077 eV, 10® cycle/sec]

Calculate the minimum energy of a photon for its existence within the nucleus of diameter 107 m.
[4.9 MeV]

On an average, an excited state of a system exists in that state for 107" s. What is the minimum
uncertainty in the energy of an excited state? [Question Bank, WBUT] [1.054 x 10°3] ]
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Crystallography

10.1  INTRODUCTION

The study of the geometrical form and other physical properties of crystalline solids by using X-rays, neutron
beams and electron beams constitutes the science of crystallography. Based on the nature of arrangement of
microparticles, solid can be classified as crystalline solids and amorphous solids. Crystalline solids are those
in which the atoms or molecules are arranged in a very regular and orderly fashion in a three-dimensional pat-
tern. The atoms or molecules are strongly bound and arranged in a regular manner inside the crystal. Further,
when a crystal breaks, the broken pieces are all having regular shape. The crystalline solids have directional
properties, i.e., the physical properties like thermal conductivity, electrical conductivity have different values
in different directions and therefore they are called anisotropic substances. Crystalline solids may be made
up of metallic crystals or non-metallic crystals. Examples of metallic crystals are copper, aluminum, silver
tungsten and examples of non-metallic crystals are crystalline carbon, crystalline polymers. Amorphous sol-
ids have no regular structure. The amorphous solids are those in which atoms or molecules are arranged in an
irregular manner and does not have any external geometrical shape, even though the atoms or molecules are
strongly bound to one another. Amorphous solids have no directional properties and therefore they are known
as isotropic substances. The most important amorphous materials are glasses, plastics and rubbers. The
structure of the crystalline solids are mainly determined by X-ray diffraction, electron diffraction and neutron
diffraction, knowing the structural properties of a crystal one can determine thermal, electrical mechanical
and optical properties of it.

10.2 CRYSTAL LATTICE AND LATTICE STRUCTURE

A crystal is constructed by the infinite repetation in space of identical structural units. One can replace each
unit by a geometrical point. The result is a pattern of points having the same geometrical properties as the
crystal. This geometrical pattern is the crystal lattice or simply lattice.

Lattice points Lattice points denote the position of atoms or molecules in the crystals.

Space lattice An arrangement of an infinite array of points in the form of a two-dimensional or a
three-dimensional network in a crystal is known as space lattice. In the lattice array (or space lattice),
every point has surroundings environments identical to that of every other point in the array.



10.2 Basic Engineering Physics

10.2.1 Unit Cell

The unit cell is the smallest block or geometric figure from which the entire crystal is built up by repetition in
three dimensions. If we divide the whole crystal into very small entities, we get a group of atoms in the form
of a definite structure. That group of atoms of definite shape and size is known as unit cell. It is also known as
fundamental elementary pattern of a crystal because it is repeated again and again to form the lattice structure
of a crystal. In general an unit cell may be defined as that minimum volume of a solid from which the
entire crystal can be constructed by translational repetition in three dimensions.

In order to understand the basic characteristics of a crystal structure, we show a two-dimensional arrange-
ment of the lattice points in Fig. 10.1.

) . . . . . . . . .
el
{
N M
. 0 . . K
K L .
Y Ge------- TF ° . . ° . ST +
De--——-- #C— ——;E ° . . . . + ,b‘
— i } ’//Q
b : |
. . ° . . ° Pt .

Fig. 10.1 Array of points in two dimensions.

Here we consider the case of a two-dimensional (say in x-y plane) array of atoms in Fig. 10.1. Suppose a
and b are two fundamental translational vectors along x and y axes. If the parallelogram ABCD is first
translated through @ and then through b, the parallelogram CEFG is produced. The arrangement of the lattice
points in the parallelogram produced by the translations is identical with the arrangement in the intial posi-
tion. It is called translational symmetry which is responsible for periodic structure of the lattice. The angle
between directions of translation among a and » may be or may not be equal to 90°.

The parallelogram ABCD is called the unit cell. The unit cell in a crystal lattice may be chosen in different
manners. For examples in Fig. 10.1, instead of ABCD, we could have chosen the parallelogram PQRS and
KLMN as unit cell.

Primitive Cell

The primitive cell is defined as a unit cell which has only one atom at each corner of it and no where else in
Fig. 10.1, the unit cell ABCD has lattice points at each of the four corners only and is called the primitive cell.
So, all primitive cells are unit cells but all unit cells may or may not be primitive cells.

Non-primitive Cell
If the cell contains additional one or more atoms with an atom at each corner of the unit cell, these cells are
called non-primitive cells. In Fig. 10.1, unit cell PORS is a non-primitive cell.

In two dimensions, choosing any point as origin, the position of any lattice point in space lattice denoted
by 7 can be expressed in terms of translational vectors a and b as

7 =ma +nb .(10.1)
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In Fig. 10.1 m=2 and n=2

e
In three dimensions if @, b and ¢ are three transnational vec- z
tors, then we can write lattice vector 7 as

— — 't —

r=ma+nb+oc c
...(10.2)
where m, n and o are integers.

The parallelepiped with the sides a, b and ¢ along these three I
vectors constitute the unit cell (Fig. 10.2). By repeated transla- A
tions of this unit cell through integral multiples of the vector a, b r
and c, we get the entire crystal structure.

10.2.2 Basis or Motif

A crystal is formed by placing an atom or a group of atoms at

each lattice point in a regular manner. Such an atom or a group

of atoms serves as the basic building unit for the entire crystal

structure and it is termed as basis or motif. The basis may be

a single atom, two atoms or more. For a single atom, basis is +0 =
Basis

called monoatomic, for two atoms, basis is called diatomicand o o o o o
so on. In case of Al, basis is monoatomic, in KCl it is diatomic, o o o o o o

in SnO, it is triatomic. The crystal structure is formed when a Lattice Crystal structure
lattice is combined with a basis (Fig. 10.3)

X

Fig. 10.2 A three-dimensional unit cell.

o]
o]
o]
o]
o]
o]

o]

The logical relation is Fig. 10.3 Basis at every lattice point.

Space lattice + Basis = Crystal structure

10.2.3 Bravais Lattices

In 1845, the French crystallographer Bravais first introduced the concept of the three-dimensional lattice
while explaining the structure of crystal. He showed that only 14 types of space lattices are possible in the
seven systems of crystals. It has been proved mathematically that there are only 14 independent ways of
arranging points in three-dimensional space such that each arrangement confarms to the defination of a space
lattice. Thus the fourteen possible space lattices of the seven crystal systems are: one triclinic, two mono-
clinic, four orthorhombic, two tetragonal, one hexagonal, one rhombohedral and three cubic. The shapes of
these units are shown in Table 10.1.

10.3 SYMMETRY ELEMENTS OF A CRYSTALLINE SOLID

The seven crystal system are characterized by three symmetry elements: (a) the centre of symmetry, (b) the
planes of symmetry, and (c) the axes of symmetry.

A symmetry operation is an operation performed on an object or pattern which brings it to a position
which is absolutely indistinguishable from the old position.

A symmetry element is an operator which performs the symmetry operation.

(a) Center of symmetry 1t is a point in a crystal such that any line passing through it meets the

surface of the crystal at equal distances in both directions. It is also known as the center of inversion.
Each cubic crystal has one center of symmetry.
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Table 10.1 Fourteen Bravais lattices in three dimensions.

Lattice parameters
SI. Name of the Relation between Interfacial Shape of the Bravais No. of possible Examples
No. system primitives angles Lattice with Lattice ~ Bravais lattices
symbol* in the system
1. Cubic a=b=c o=Lp=y=90° bl Ao [eloae 3 NaCl, Cu, Al, Cr etc
Y b T O
“ b ! F
17
2. Tetragonal a=b#c a=p=y=90° i’ 2 SnO,, TiO, NiSO,
/Y

P 1

3. Trigonal a=b=c a=B=y#90° ¢ ' 1 Sb, CaSQO,, As etc.
e A
4. Monoclinic a#b#c oa=p=90°=y ’ﬂ’ 2 Na,SO,, FeSO, etc.
Eaty e

P c

v
5. Triclinic azb#c o# B#y#90° E’ 1 [CuSO,, 5H,0],

P K,S0,, K,Cr,0,
6. Ortho- a#b+#c a=pf=y=90° - 4 KNO,, MgSO,,

rhombic ‘ PbCO;
P I
F c
7. Hexagonal a=b#c o=[=90° 1 AgCl, Mg, Zn etc.
y=120°

*p — primitve unit cell, C — base centered, / — Innenzentrierte, a German word meaning body centered F — face centered

(b) Plane of symmetry An imaginary plane passing through a crystal such that portions on the two
sides of the plane are exactly alike is known as a plane of symmetry. This is also known as bilateral
symmetry.
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(c) Axis of symmetry Axis of symmetry is a line passing through the crystal such that if the crystal
is rotated about this line as axis, it will present the same appearance more than one time during one
complete revolution. If a cube is rotated about a vertical axis then in one complete revolution of 360°
there are found to be four positions of the cube which are coincident with its original position. This
rotation axis is known as an axis of symmetry.

10.4 ATOMIC RADIUS, COORDINATION NUMBER AND ATOMIC PACKING
FACTOR (APF) OF CUBIC CRYSTAL SYSTEM

(a) Atomic radius 1t is defined as half the distance between nearest neighbors in a crystal of a pure
element. It is denoted by the symbol r. It must be remembered that any two nearest neighboring atoms touch
each other.

(b) Coordination number (N) The number of equidistant nearest f

neighboring atoms with respect to a particular atom in a given crystal is

known as coordination number.
The coordination number for the three types of cubic crystal systems 3 ol 3

can be calculated as follows. 1 4 >y
(i) Simple cubic crystal 1In simple cubic crystal each corner x 16

atom is surrounded by 6 atoms at a distance a. There are 12 atoms at

distances V2 a and so on. In Fig. 10.4a, there are 4 nearest neighbours Y

(shown as 1, 2, 3 and 4) of a particular atom O in its own plane and there
are 2 more atoms, one directly above and the other one directly below
(shown as 5 and 6).

Hence the coordination number in this case is 6.

Fig. 104 (a) Simple cubic crystal.

»
»-

(ii) Face centered cubic crystal 1In a face centered
cubic crystal any corner atom O (Fig. 10.4b) is surrounded by o)

4 atoms at a distances % each. One can draw three mutually . .

perpendicular planes through the corner atom O. In each

plane, it will have 4 nearest neighbors at a distance %. So,

in three dimensions, the immediate neighboring atoms at a X

distance -% is 12. Fig. 104 (b) Face centered cubic structure.

V2

Thus, the coordination number in this case is 12.

(iiii) Body centered cubic crystal Inabodycenteredcubiccrystal,

each body centered atom is surrounded by eight atoms at a distances%g

(Fig. 10.4c). The other atoms are present at a greater distances.

Hence, the coordination number of an atom in a body centered cubic

crystal is 8. Fig. 104 (c) Body -centered
cubic structure.
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(c) Atomic packing factor (APF) 1t is the ratio of the volume occupied by the atoms in a unit cell (v)
to the total volume of the unit cell (V) is termed as atomic packing factor (APF). Greater the coordination
number, higher is the volume of APF and more closely packed will be the crystal structure. The atomic
packing factor for SC, BCC and FCC crystals are 0.52, 0.68 and 0.74 respectively.

10.5 CUBIC CRYSTAL SYSTEM

We shall now discuss briefly the crystal structures of many materials which are relatively simple. The sim-
plest form of seven crystal systems is cubic crystal system. The cubic structure is the simplest known type
of array in which the atoms take positions at the corners of the cube. There are three types of cubic crystals.
These are given below:

(a) Simple Cubic (SC) crystal

(b) Body-Centered cubic (BCC) crystal

(c) Face Centered cubic (FCC) crystal

(a) Simple cubes (SC) crystal This is the simplest and easiest structure of the crystal system. In an
SC crystal, there is one atom, at each of the eight corners of the cube [Fig. 10.5(a, b)]. In an SC crystal the
coordination number is six. In this case, each corner atom has four neighbors in the same plane, one vertically
above and one immediately below, giving a total of six nearest neighboring atoms.

The atom at a corner of the unit cell is shared by the eight different unit cells having the common corner
point. There is no atom inside the unit cell.

Therefore, the effective number of atom per unit cell = 8 x é

=1 atom
Thus, SC cells are primitive cells.

From Fig. [10.5(c)], AB represent the atomic radius and if a is the lattice constant, then r = %.

Considering an atom as a hard sphere of radius r, the volume of an atom is % . So, volume of all the
atoms in the unit cell is

v=1x % 7 and volume of the unit cells V = @°.

40P
_4nr_3

. . v
atomic packing factor (APF) = —
V-3d @
T

===0.520r52%

(@)}

Thus the packing fraction is about 52% and hence this structure is a loosely packed one. Polonium exhibits
this structure.
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Fig. 10.5 Simple cubic crystal.

(b) Body centered cubic (BCC) crystal The crystal structure of BCC is shown in Fig. (10.6a) which
contains an atom at the center of the cube apart from eight atoms at the corners. Each atom in this structure
has eight neighbors [Fig. 10.6(a, b)]. For BCC, the coordination number is eight. Since, there are eight
surrounding unit cells for any corner atom, their eight body centred atoms form the nearest neighbors for any

corner atom. The number of atoms in each unit cell of this type are as follows: one center atom and 8 x é =1

corner atoms. Hence the number of atoms per unit cells = 1 + 1 = 2. Therefore, BCC cells are not primitive
cells. From Fig. 10.6(c) AD = 4r, so we can write
AC* =AB*+BC* =& + a* = 2d°
In the triangle ACD, AD* = AC* + CD?
=2d> +a* =3d’
or, AD =3 a.

or, 4r=v3a or, a=ir

V3

The volume of an atom is % . So, the volume of all atoms in the unit cells is

v=2x%7rr3=§7rr3

3
. . 4r\3 647
Volume of all the unit cellis V=a°= (—) =
V3] 33
atomic packing factor, APF = ‘%
8 3 33
=—7r X——
3 6417
= ﬁ =0.68
8
= 68%

It means that 68% space of the unit cell is occupied by the atom and the rest 32% space is void space.
Elements like Fe, Na, K, Cr, Li exhibit this structure.
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O

X

>
l«— a—»\‘/
(@) (b) ©
Fig. 10.6 Body centered cubic (BCC) crystal.

(c) Face centered cubic (FCC) crystal The crystal structure of FCC is shown in Fig. 10.7 (a, b),
which contains six atoms at the centers of each of the six faces of the cube, in addition to eight atoms at
the eight corners. In an FCC crystal the coordination number is twelve. In this case, each corner atom has
four neighbors atoms as has been shown in Fig. 10.7(b). One can draw three mutually perpendicular planes
passing through a corner atom. So the total number of nearest neighbors is 12.

Each of the six face-centered atoms is shared by the two adjoining cubes. Hence, a total of 6_ 3 such
atoms belong to the unit cell. Therefore, the effective number of atoms per unit cell of FCCis3 +1=4

Thus FCC unit cells are not primitive cells.
From Fig. 10.7(c), in the triangle ABC

AC* =AB*+BC*=d* + d* = 2d°
But AC =4r

Therefore, (4;’)2 =2d* o, a=~N8r

The volume of an atom is § . So, volume of all atoms in the unit cell is

U=4><%7rr3=13—67rr3
Volume of the unit cell is V=a’=(8 r)?
. . v 16 xr T
*. atomic packing factor, APF=—-=— =
P £ Vi 3 (\8r) 3\2
=0.74 or 74%

Thus, the packing fraction is about 74% and the rest 26% space is void space. Hence, this structure is a
loosely packed one. Elements like Cu, Ag, Pb, Ca, Al, etc., exhibit this structure.
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Fig. 10.7 Face centered cubic (FCC) crystal.

Table 10.2 Properties of some crystal structures.

SI. No Properties Simple Cube (SC) Body Centered Face Centered Cube (FCC)
Cube (BCC)
Unit cell volume & a a
No. of atoms per unit cell 1 2 4
3. Coordination number 6 8 12
4. Nearest neighbouring a % %
distance (2r)
5. Density of packing 52% 68% 74%
(APF)
6. Example Polonium Iron, Barium, Chromium, Aluminium, Copper Lead
Sodium, Tungsten Gold

10.6 RELATION BETWEEN THE DENSITY (p) OF CRYSTALLINE
MATERIAL AND LATTICE CONSTANT (a) OF A CUBIC LATTICE

Let us consider a cubic crystal with lattice constant a and density of the material p. The volume of the unit cell
is equal to a’. If n be the number of atoms (or no. of lattice points) per unit cell and M, be the atomic weight

M
then mass of a unit cell = n WA’ where N is the Avogadro’s number. Again mass of each unit cell is pa’

So pa3 =

or, a :( ...(10.3)

This is the relation between lattice constant and density of the material of a cubic lattice.
For Simple Cubic lattice (SC), n = 1.
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M, \13
So, a= (N_p) ..(10.4)
For body centered cubic lattice (BCC) n =2

2 M\
So, = ...(10.5

: =[5 103

For face centered cubic lattice (FCC) n =4

4 M, \13

=|—= ...(10.

So, a ( Np ) (10.6)

10.7 NOMENCLATURE OF CRYSTAL DIRECTIONS

One basic necessity in crystal analysis is to have a system of notation for directions in a crystal. Let us indi-
cate the direction OP in Fig. 10.8(a). The distance from O to P can be obtained by going along the x-axis
a distance u times the unit distance a, then along the y-axis a distance v times the unit distance b and then
in @) z-direction distance w times the unit distance c. If u#, v and w are the smallest integers the direction
of OP is written [uvw] with square brackets. Fig. 10.8(b) gives the notation for some important direction in a
cubic crystal. The square brackets are used to specify a direction with commas. The digits in square brackets
indicate the indices of the direction.

z
A
001
oo} [111]
! v
& :
o 1
2N
R —>y
el [010]
X (a) X N (b) 7

Fig. 10.8 Crystal directions in 3D: (a) Direction of OP. (b) Some important directions in cubic lattice.

A negative index is indicated by a bar over the digit. For example, positive x-axis has indices of [100] (read
one zero zero not one hundred) whereas negative x-axis has indices of [100].

10.8 MILLER INDICES

It is often necessary to identify planes passing through a space lattice. Orientation of planes in crystal may
be described in terms of their intercepts on the three axes. For example, plane. ABC [Fig. 10.9(a)] has inter-
cepts of 4 axial units on x-axis and 4 axial unit on y-axis and 2 axial unit on z-axis. Thus, the coordinates of
intercepts are (4, 4,2). However, as suggested by Miller, it is more useful to describe the orientation of a plane
by the reciprocal of its numerical perimeters rather than by its linear parameters. These reciprocals when
converted to whole numbers are called Miller indices. Hence, Miller indices of the crystal plane ABC of Fig.

1.1.1
10. —i—=
09(a)are(4 17

)or(l 12).



V4 V4
Now, consider plane A” B’ C’ [Fig. 10.9(b)] whose 0 ZE ﬁ
intercepts expressed in axial units are % b 3c It III I|’ W mm
numerical parameters are %, % and % Hence, its Miller

indices which are nothing but reciprocal of its numeri- /#/////7 / j

( 1
cal parameters 1

(332).
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(a) (b)

Fig. 10.9 Lattice plane intercepting the three crystallographic axes.

> 27 4' S X
(100) (110) (111)

X y
: % : %) or (2, 2, %) or (6 6 4) or /x (002) (100)
2 2 4 Fig. 10.10  Shows some important planes in a

In a cubic crystal (100) is equal to the set of its cubic erystal system.

six faces (100), (010), (001), (100), (010) and (001). The symbols for a family of parallel planes is <hkl>. So
we can define Miller indices of a crystal plane as the reciprocals of the intercepts of a plane on the crystal-
lographic axes when it is reduced in form of smallest numbers.

10.8.1

()
(ii)
(iii)
(iv)
v)

(vi)

Procedure for Finding Miller Indices
Find the intercepts of the plane on the three coordinate axes prefererably crystallographic axes. Let
these are x,, y;, z; along x, y, and z axes respectively.
Then express them in terms of the axial units. Let these be x; = ua, y, =vb and z; = wc
Next take the numerical parameters of the plane, i.e., u : v : w. The numerical parameters must be in
whole numbers.

Find the ratio of their reciprocals (% % : %)

Convert these reciprocals into whole numbers by multiplying each with their LCM to get the smallest
whole number.

Denote the results in the form of (kkl) which called Miller indices of the plane.
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10.9 PERPENDICULAR DISTANCE BETWEEN SUCCESSIVE PLANES IN

A CRYSTAL LATTICE
Suppose that the plane shown in Fig. 10.11 belongs to a family of
planes whose Miller indices are (hkl). Let us consider any lattice i
point O as origin. Let ON = d perpendicular distance from the origin
to the plane, which is known as interplaner distance of the family of TC
c
the planes. The intercepts of the plane on the three axes are OA = %, Y = B
o > >y
OB = b and OC = <. Q bk
k l A
Let the direction cosines of ON be cos ¢, cos f§ and cos ywhere an X
oS o = d _d Fig. 10.11  Interplaner distance of
To0Aa the family of the planes.
h
d _d
cos B = 0B b
k
cos Y= 4 _d
"=oc” ¢
l
Since cos” ot + cos® B+ cos® y=1 ..(10.7)
& & &
or, (a)2+ b 2+(£)2=1
GG
2 2
or, & h—2 + Ez + 1—2 =1
a b ¢
o d=—0 1 (10.8)
i »ok P\ e
(? TR ?)
This equation gives the distance between successive plane in a crystal lattice.
For cubic latticea=b=c
d= a ..(10.9)
R+ i+ I

10.10 IMPORTANT FEATURES OF MILLER INDICES

(1) All equally spaced parallel planes have the same index number (hk[)

(i) A crystal plane parallel to one of the crystallographic axis has intercepts at infinity and index of zero
for that axis.
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(ii1) Miller indices do not define a particular plane but a set of parallel planes.
(iv) A plane passing through the origin is defined in terms of parallel plane having non-zero intercepts.

(v) Itis only the ratio of the indices which is of importance, i.e., the (6 2 2) planes are the same as (3 1
1) planes.

10.11 X-RAYS

In 1895, W Roentgen found that a highly penetrating radiation of unknown nature is produced when fast
electrons impinge on matter. These rays are em waves of very short wavelength and known as X-rays. The
faster the original electrons, the more penetrating the resulting X-rays and the greater the numbers of electrons,
the greater the intensity of the X-ray beam.

10.12 ORIGIN OF X-RAYS

When high-speed (about 10% of the velocity of light) electrons from the cathode of an X-ray tube strike
the target, the electrons penetrate the atoms of the target and remove an electron from the inner shells by
collision. This is illustrated in Fig. 10.12(a), where an electron is knocked out of the K shell. We know that
K, L, M .... electron shells correspond to n = 1, 2, 3 .... When a tightly bound electron is missing in the inner-
most K shell, the vacant position of that electron is occupied by an electron from next higher level and emits a
photon of energy hv. Such X-rays produce K lines [Fig. 10.12(b)]. Now an electron from M shell jumps into L
shell vacancy and as a consequence, there is emission of X-rays of another frequency known as L lines. This
process continues until the uppermost shell is reached where an electron jumping gives rise to visible light.
So, it is possible for a single atom to emit X-rays of different wavelengths. The continuous X-ray spectrum
is obtained due to slowing down of high speed electrons as they pass close to the nuclei of the atoms within
the target of the X-ray tube. As the electron passes through the atom, it is attracted by the positive charge of
the nucleus and is deflected in its path. The process is shown in the Fig. 10.13. The electron is deaccelerated
during its deflection in the strong field of the nucleus. The kinetic energy lost during this retardation is
transformed into electromagnetic radiation in the form of X-rays of continuously varying wavelengths. These
X-rays form continuous spectrum when analyzed by Bragg spectrometer. Let the electron is slowed down to
a velocity v’ from the initial velocity v. Considering the conservation of energy, we get

%mv2—%mv'2 = hy .(10.10)

(a) (b)

Fig. 10.12 Transition of an electron from L-shell to K-shell at the time of radiation.
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The highest frequency is possible when the electron is com-
pletely stopped by the atom. In this case, we have

% mo* = AV ax

(10.11)

Minimum limiting wavelength A, is obtained when the
entire kinetic energy of the bombarding electron is converted

to X-ray energy.

If V be the accelerating potential, then

hc
— =€V Fig. 10.13  Origin of continuous spectrum.
)“min
he
ey .(10.12)

This is known as Duane Hunt law

10.13 X-RAY SPECTRUM

There are two types of X-ray spectrum

(a) Continuous X-ray spectrum (b) Characteristic (or line) X-ray spectrum

10.13.1 Continuous X-ray Spectrum

»
>

The X-ray spectrum which consists of all possible wave-
lengths between a maximum and minimum values and
depending solely on the applied voltage across the X-ray
tube called as continuous X-ray spectrum.

Some of the important features of the continuous
X-rays:

Intensity of X-ray(l) —

(i) The continuous spectrum produced because the de-
acceleration of high velocity electrons while pass-
ing near the positively charged nucleus of an atom
of the target material.

Y

(i) The shortest wavelength limit can be given by, 0

1= 12400 A
min Ty Fig. 10.14 Intensity (I) vs. wavelength of
X-rays emitted from a target

element at different voltages.

min

(iil) Ay, is independent of the target material.

(iv) The intensity of X-rays increases at all wavelengths
as the accelerating voltage is increased (Fig. 10.14)

10.13.2 Characteristic X-ray Spectrum

The X-ray spectrum which has a line spectrum consisting of definite wavelengths depending on the charac-
teristics of the target material and superimposed on the continuous spectrum is called the characteristic X-ray
spectrum (Fig. 10.15)
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K.,
Continuous :
Characteristic | — spectrum Energy in eV
spectrum < S
2 o]
T Ll my
= 20 N
g B M
o 200 M
] L,
Z 2000 Y vy L
2
~d_> Ka Kﬁ
£
20,000 3 4 K
0 . .
Aemin Mnm) N Fig. 10.16 Formation of K-series, L-series and
M-series of characteristic =~ X-rays
Fig. 10.15 X-ray spectrum of Mo at different voltage. spectrum in energy level diagram

Some important features of the characteristic X-rays spectrum are as follows:

(i) Itis produced when innermost electrons are removed from the atom of the target and the position of
the electron is taken by the electron of outer orbits.

(i) In this case discrete spectral lines constitute K-series; L-series and M-series, etc. (Fig. 10.16).

(iii) K-series constitute hard X-rays (X-ray with high penetrating power) and L, M series form soft X-rays
(X-ray with low penetrating power)

(iv) There is a regular shift towards shorter wavelength in the K-spectrum as atomic number of the target
is increased.

10.14 MOSELEY’S LAW

Moseley carried out study of characteristic X-rays spectra of various N K, K
metallic elements and observed that if the square root of the fre- ’
quency v of the most intense spectral line, i.e., K series line is plotted T

against the atomic number Z, then a straight line graph is obtained

(Fig. 10.17) for each and every element. The graph is known as
Moseley diagram. The relationship between frequency and atomic

number Z as

Vo< (Z - b)*
or W=a(Z-b) ..(10.13) “b— zZ—>
where a and b are constant for a particular series but varies from one  Fig. 10.17 Variation of v with
series to another. atomic number (Z).

An exact form of Moseley’s law is

I (11
Lorz-w2(L-L) 019
v

where n, and n, are principal quantum numbers and R is the Rydberg constant.
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10.14.1 Importance of Moseley’s Law

Moseley’s law gives the guideline that the elements in periodic table must be arranged according to their
atomic number. The physical and chemical properties of an element is decided by the atomic number and
not the atomic weight. Moseley’s law predicted the existence of new elements like hafnium (72), technetium
(43), promethium (61), etc. by the indication of gaps in Moseley diagram. This law also help to determine the
atomic number of rare earth elements and predicted proper position of these elements.

10.15 ABSORPTION OF X-RAY BY A MATERIAL

When a narrow beam of monochromatic X-rays passes through matter, some part of it is absorbed while the
rest is transmitted. If a sheet of any substance is interposed in the path of a homogeneous beam of X-rays, its
intensity decreases. Let I, and I be the intensity of X-rays before and after it passes through the sheet of thick-

ness x. We know that the rate of decrease of intensity with thickness (i.e., - %) is proportional to /, then
X

dl dl
——o] or, —=-ul ...(10.15
dx dx K ( )
where ( is called linear absorption coefficient of the absorber.
dl s
or, T =—dx 7
Integrating both sides, we have ;
¢ £
)
.[ 7 TH .[ dx 8
I 0 E
I/
log =" Ux.
0 —>  Thickness x
[=1e* ..(10.16)
. . . . . Fig. 10.18 Variation of intensity
which shows that the intensity of X-rays decreases exponentially with with thickness of the
thickness of the material (Fig. 10.18) material.

10.16 BRAGG’S LAW

When a monochromatic X-ray impinges upon the atoms in a crystal lattice, the crystal acts as a series of
parallel reflecting planes and each atom acts as a source of scattering radiation of the same wavelength. The
intensity of the reflected beam at certain angles will be maximum when the path difference between two
reflected wave’s from two different planes is an integral multiple of A.

10.16.1 Derivation of Bragg’s Law

Consider a set of parallel planes of atom at a spacing d between two successive planes (Fig. 10.19). Let a
beam of monochrometic X-ray of wavelength A be incident on the first plane at a glancing angle 6. Let us
consider two parallel rays PQR and P’Q’R’ in the beam reflected by two atoms Q and Q. The ray P'Q 'R’
has a longer path then the ray POR. To get the path difference, perpendicular QT and QS on P’Q” and Q'R’
respectively. Then the path difference between the two rays is
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6=TQ' +Q’S
=dsin O+ dsin 6
=2d sin 0 ...(10.17)
The two rays will reinforce each other and produce maximum
intensity if
2d sin 6 = ni ...(10.18)

where n =1, 2, 3, .... For n = 1 we get first order and for n =2 we
get second order maximum respectively. The equation 2d sin 0 =
nA is known as Bragg’s equation and represents Bragg’s law.

10.16.2 Determination of Lattice Constant:
(Bragg Spectrometer Method)

10.17

Fig. 10.19 Bragg’s reflection of X-rays

from the atomic plane.

There are various methods of determining the lattice constants, such as law spot, powdered crystal, Bragg
X-ray spectrometer, rotating crystal, etc. Here we describe the Bragg spectrometer method.

The schematic arrangement of Bragg’s spectrometer is shown in
Fig. 10.20. X-ray from X-ray tube are narrowed to obtain a fine pencil
of beam by passing through slits S, and S,. The beam is now allowed to
fall on a crystal C mounted on a circular turn table of the spectrometer
and it position can be recorded by the vernier V capable of moving
along the circular scale S. The reflected beam then passes through slits
S5 and enters ionization chamber through a narrow window w made of
aluminium. The ionization chamber is simply a container for gas or
vapour with two electrodes. One of the electrodes is connected to the
positive terminal of H.T. battery and the negative terminal connected
to quadrant electrometer. The turn table and ionization chamber are
linked together in such a way that when the turn table rotates through
an angle 0, the ionization chamber turns through 26. The X-rays enter-

S
Rays from
X-ray
tube
H.T.
I 2
% E '
Fig. 10.20 Bragg’s spectrometer.

ing the ionization chamber ionize the gas which deflect the electrometer and gives the intensity of the reflected

X-ray.

The ionization current is measured for different values of glancing angle 6. A plot is then obtained between

6 and the ionization current [Fig. 10.21]. For certain values of 6,

the intensity of ionization current increases abruptly. 4
Again from Bragg’s law =
2d sin 0 = ni ..(10.19) £
The Bragg’s angles at which reflection has a maximum are §
determined with the help of this apparatus. Let us consider the '§
first order reflection from three different planes of the crystal are S |
6,, 6, and 6;. From Eqn. (10.19), we get - :
A =2d, sin 0, =2d, sin 6, = 2d, sin 6; P
A A A 6, @6 0, "
or, dy:dy:dy= S0 6, Sn, sn 6, ...(10.20) v . 30
Fig. 10.21  Variation of ionization

current

angle 0.

with  glancing
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In the case of KCI crystal, Bragg obtained the maxima of reflected X-rays (A = 0.71A) at glancing angles
0, (5.22°), 6,(7.3°) and 6, (9.05°) respectively using three different reflecting planes.

So, from Eq. (10.20)
11
V3
This result shows that KCI is simple cubic crystal. In this way, Bragg’s law can be utilized to analyze
different types of crystal structure.

dl’ dz, d3 = 1 ...(10.21)

Worked-out Examples

Crystallography

Example 10.1 ] Draw the planes (0 1 2), (1 12), (02 2) in a FCC structure.

V4 z V4
" gl A e
B :
X Y X = Yy X < Y
(a) (b) (c)
Plane (012) Plane (112) Plane (022)

Fig. 10.22 Plane (0 1 2), Plane (1 1 2) and plane (0 2 2) in a cubic crystal system.

(a) Plane (012) Here h=0,k=1,[=2thereciprocals are %, % and %, i.e., o<, 1 and 0.5. Drawing

the plane with intercepts o<, 1 and 0.5 along x, y and z-axis respectively, we obtain the plane
(0 1 2) as shown in Fig. 10.21(a).

(b) Plane (1 12) Here h =1, k=1, and [ = 2. The reciprocals of &, k and [ are %, % and %;

ie., 1, 1, 0.5. Now we can draw the plane with intercepts 1, 1 and 0.5 along x, y and z axes
respectively [Fig. 10.22(b)]

c) Plane (022) Here h=0, k=2 and [ = 2. The reciprocals of &, k and [ are l 1 and l ie.,
02 2

o<, 0.5 and 0.5. Drawing the plane with intercepts o<, 1 and 0.5 along x, y, z axes respectively, we
obtain the plane (0 2 2) as shown in Fig. 10.22(c)

Example 10.2 | Calculate the interplaner spacing d of a planes (1 1 1) in a simple cubic lattice of

side a. [WBUT 2003, 2004, 2007]

. 1
Sol. Interplaner spacing  dj, = m

@& b3
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Hereh=k=I=1anda=b=c

1 a

dyy = Gld)" NG

Example 10.3| The distance between (100) planes in a body centered cubic structure is 0.232 nm. What is

the size of the unit cell? What is the radius of the atom? [WBUT 2006]

Sol.

or,

and

If the radius of the atom is r of a BCC crystal then r = %, where a is lattice constant

ForBCC  dyy=2

2
a=2dy,=2x0.232
=0.464 nm
radius r= % = g x 0.464 = 0.20 nm.

Example 10.4 | Copper has FCC structure and the atomic radius is 0.1278 nm. Calculate its density and the

interplanar spacing for (3 2 1) planes. Taking the atomic weight of copper as 63.5. [WBUT 2005]

Sol.

For a cubic crystal, the lattice constant
n M, \13
a=
( pN )

For FCC n =4 (number of atom per unit cell)

M =635
N =6.023 x 10%/g mole
p = density
. 4
Again for FCC a=—r
¢ 2

r = atomic radius = 0.1278 nm
=0.1278 x 10" cm

So, density p= nM
Na®
4 x63.5 .
) 3 gm cm
6.023 x 107 x (4201278 x 1077
. \2
= 8.926 g/em’
The interplaner spacing for (3 2 1)
% x 0.1278 x 1077
= > =2 =0.0966 nm

@R B R
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Example 10.5 | In a crystal, a lattice plane cuts intercepts of 2a, 3b and 6¢ along the axes, where a, b and

c are primitive vectors of the unit cell. Determine the Miller indices of the plane.
Sol.  We know that if the given plane cut intercepts pa, gb and rc along the three axes, we have
pa:qgb:rc=2a:3b:6¢
piq;r=2:3:6
1.1.1_1.1.1
ﬁ:a:7=§:§:g=3:2:l
So Miller indices of the plane are (32 1)

Example 10.6] Find the interplanar distance of (1 1 0) plane and (1 1 1) plane of Nickel crystal. The radius

of Nickel atom is 1.245 A.
Sol. Nickel has FCC structure. So lattice constant

4 . ) )
a =——r ris the radius of Nickel
\2

4 x 1.245 2
=———=352A
2
Therefore, the interplanar distance of (1 1 0) plane is
g =—22 2494
P+17+0
The interplanar distance of (1 1 1) plane is
dy = 3.52 _3.52_ 203 A

ViZ+12+12 3
Example 10.7] If the potential difference applied across an X-ray tube is 12.4 kV and the current through

it is 2 mA. Calculate (i) the number of electrons striking the target per second, and (ii) the speed with which
they strike it.

Sol. (i) Current I=2mA=2x10"A
=ne where n is the number of electrons striking the target per second
-3
50 n=do 2X10_ 155510
1.6 x 107

(i1) If vis the speed with which electrons strike the target

1 2
— =
> mo” = Ve

o2V _,2x16x10" x 124 % 10’

m 9.1 x 107!
=6.6 x 10" m/s
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Example 10.8 | [f the energy levels of K, L, M state of Pt are 78 KeV, 12 KeV and 3 KeV respectively, then

calculate the wavelengths of &, and kﬁ lines emitted from Pt. (h = 6.626 x 10734 JS; C=3x% 10% m/s).
[WBUT 2008]

Sol.  Energy of K level,  E,=78KeV =78000x1.6x107"7J
L level E; =12KeV = 12000 x 1.6 x 107 J
Mlevel  E, =3KeV=3000x1.6x10""J
So, wavelength of k, line

—34 8
la= he _ 6.63x 107" x3 x 10 9=0.188/°%
Ex—E;, (78000 — 12000) x 1.6 x 107"
—34 3
Wavelength of kgline Ag= he __ 663x107 x3x10
Ex—Ey (78000 — 3000) x 1.6 x 107"
=0.165 A

Example 10.9 ] The first order reflection from the plane of NaCl is obtained at an angle 26 = 20° with

incident beam. If d = 2.82 A, calculate the wavelength of X-ray used.

Sol. From Bragg’s equation
2d sin 6 = ni
Forn=1 2dsin 6= A
Here 20=20°, 6=10° and d=2.82x10""m

A=2x282x10"sin 10°
=9.791 x 10" ' m=0.979 A

Example 10.10] A beam of X-rays of wavelengths 0.842 A is incident on a crystal at a glancing angle of

8°35’, when first order Bragg’s reflection occurs. Calculate the glancing angle for the third order reflection.
[WBUT 2002, 2007]

Sol. From Bragg’s equation 2d sin 6, = nA (1)
For 1st order reflection, n = 1, 6, = 8°35’, 1 =0.842 x 10%m
So, the interplaner distance
g=_ 1A _0842x107°_, o
2sin 6, 2 xsin 8°35
For third order n = 3, from Eq. (1)
2x28x 107" x sin 6 =3 x0.842 x 107'°
or, 0; =26.8° =26° 48’

Example 10.11] Can X-rays be diffracted from a single slit of width 0.1 mm? Explain. ~ [WBUT 2005]

Sol. The wavelength of X-ray is in between 1 A to 100 A, i.e., 10~ mm to 10~ mm respectively. So, the
wavelength of X-rays is not comparable to the width of the single slit. Hence X-rays can’t be dif-
fracted by a single slit of width 0.1 mm.
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Example 10.12]| The energy gap in Ge is 0.72 eV. Find the maximum wavelength of a radiation which can

cause transition from the valance band to conduction band. [WBUT 2007]
Sol. We know that band gap energy

he
E =tc
& Amax
34 8
or, A =he _6.62x107X3X 107 17976 % 107 m=0.017 A

" E, 072x1.6% 10 m

Example 10.13] The spacing of a planes in a crystal is 1.2 A and the angle for the first-order Bragg’s

reflection is 30°. Determine the energy of the X-rays beam in eV. [WBUT 2005]
Sol. From Bragg’s equation 2d sin 6= nA

Heren=1 and 6,=30° d=12A

So, the wavelength of the incident beam,

2dsin @ 2 x 1.2 x sin 30°
no 1

),: :121&

The energy of the incident X-ray beam

_he_ 6.62x107x3x10°
A 12x10"%1.6x 107"

=10.35x 10* eV = 10.35 KeV.

Example 10.14] Electrons are accelerated by 344 volts and are reflected from a crystal. The first-order

reflection maximum occurs when glancing angle is 30°. Determine the spacing of the crystal.

E

h h
Sol. Wavelength A = — =
g mv  \DmVe
Herem=9.1x 107" kg, V=344V, e=16x10"C
So . 6.62 x 107
V2% 9.1 x 107 x 344 x 1.6 x 107°
=0.66x10"""m
According to Bragg’s law
2d sin 0 = nA
Heren=1, 6=30° and A1=0.66x%10""m
—10
So, a=906x10 "~ e 107 m = 0.66 A
2 sin 30°

Example 10.15] K radiation if molybdenum (z = 42) has a wavelength of 0.72 A. Find the wavelength of

the corresponding radiation of copper (z = 29).
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From Moseley’s law v =a (z — b)?

or, %=a(z—b)2
%oc (z—1)* [From k, line b = 1]
A Zuo= D’ _(42-17 @1y
Ao (Z,,— 1 (29-17 (28)°
_ 4V oy
or, Z,CM—O.72><(28) =154 A

10.23

Example 10.16] The linear absorption coefficient for Al for X-rays having A = 0.32 A is 1.62 cm™'. Find

the thickness of the absorber needed to cut down the intensity of the beam to 1/20 of the initial value.
Sol.

or,
or,

If I, be the initial intensity of the X-ray beam is reduced to I in traversing a distance x in absorber

then

I=1,¢ " where uis the linear absorption coefficient.
Now I _ e

Iy

I _ 1 1 - —1.62x
Here —=—, s0 —=¢*=

I, - 20 20 ¢ ~°

e1.62)€ - 20

1.62 x = 2.3026 log 20

_2.3026 x 1.301

62 =1.85cm.

Example 10.17| The X-ray analysis of crystal is made with monochromatic X-rays of wavelength 0.58 A.

Bragg’s reflections are obtained at an angles of (i) 6.45° (ii) 9.15° (iii) 13°. Calculate the interplanar spacing
of the crystal.

Sol.

From Bragg’s law,

d_ A

n 2sin O
@) %=%=2.568A
(ii) %:%:1.8171&
(iii) %:%:1.2881&

(1)

(2

..(3)

It is clear from Egs. (1) and (3) that the value of d/n in Eq. (1) is almost twice to that of Eq. (3). This
shows that angles 6.45° and 13° represent the first- and second-order reflection maxima from one set
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of parallel planes. The spacing may be obtained either by putting n = 1 in Eq. (1) or n =2 in Eq. (3).
Hence % =2.568 A which is equal to the interplanar spacing of the crystal.
Now the glancing angle (9.15°) used in Eq. (2) refers to some other set of reflecting planes. Their

interplanar spacing is given by % =1.817A.

Review Exercises

Part 1: Multiple Choice Questions

1.

10.

11.

The fundamental building block whose repetition in space generates a crystal is termed as

(a) primitive cell (b) unit cell (c) non-primitive cell (d) None of these
. Primitive cell is equal to a
(a) unit cell (b) unit cell in the case of simple cubic lattice
(c) unit cell in the case of BCC lattice (d) unit cell in the case of FCC
. Lattice plus basis form the
(a) lattice structure  (b) crystal structure  (c) unit cell (d) None of these
In case of simple cubic structure, coordination number is
(a 5 (b) 6 (c) 2 @1
Which of the following element shows simple cubic structure?
(a) Na (b) Ca (c) Polonium (d) None of these
FCC lattice unit cell which consists of atoms has
(a) 2 atoms (b) 1 atom (d) 4 atoms (d) 5 atoms
. A crystal is equivalent to
(a) n-dimensional grating (b) three-dimensional grating
(c) one-dimensional grating (d) two-dimensional grating
In case of FCC structure, coordination number is
(a) 8 (b) 12 (©) 5 (d 6
Among the cubic lattices, which has the closest packing?
(a) FCC (b) SC (c) BCC (d) DC
The nearest neighbor distance in the case of BCC structure is [WBUT 2008]
W 3 0 22 (© 24 @ 2
3 2
Assuming that the atoms in a crystal are spheres of equal size and touching each other, it can be
shown that the atomic radius of BCC is equal to [WBUT 2007]
a a a a
(2) 6 (b) \EZ (© \65 d ﬁ
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The primitives of crystal are 1.2 A, 1.8 A, 2A along the three axes where a plane with Miller indices
(23 1) cut intercept 1.2 A along X-axis. What will be the lengths of intercept along ¥ and Z axis?

[WBUT 2008]
(@ 1.5Aand5A  (b) 1.9Aand2.5A  (c) 1.2 A and 4A (d 1.5Aand4 A
The number of bravais lattices are
(a) 12 (b) 14 (c) 13 (d) 10
The interplanar spacing of (111) planes in a simple cubic lattice of side a is
@ 3 ®) = © 5 @ a
The atomic packing factor for SC structure is
(a) 52 % ®) 75 % (c) 74 % (d) 68 %
The coordination number in case of NaCl structure is
(a) 8 (b) 6 (c) 4 (d 2
The atomic packing factor for FCC structure is
(@) 74 % (b) 68 % (c) 52% (d) None of these
The Miller indices are used for
(a) identifying crystal direction (b) notation of crystal planes
(c) notation of different crystals (d) identifying the density of packing
In NaCl crystal, the unit cell contains
(a) 4 molecules (b) 6 molecules (c) 8 molecules (d) None of these
Miller indices of a plane which cut intercepts of 2, 3 and 4 units along the three axes are
[WBUT 2006]
(a) (6,4,3) (b) 2,3,4) (© (3.2, 1 d (2,3,2)
The planes (111) and (222) are
(a) parallel to each other (b) perpendicular to each other
(c) antiparallel to each other (d) None of these
(111) planes of cubic crystal is [WBUT 2005]
(a) perpendicular to the X-axis (b) perpendicular to the Y-axis
(c) perpendicular to the Z- axis (d) None of these
The atomic packing factor for BCC structure is
(@) 74 % (b) 68 % (c) 52 % (d) None of these
Origin of continuous X-ray is due to the process of [WBUT 2007]
(a) ionization (b) inner orbital transition
(c) bremsstrahlung (d) None of these
Which of the following wavelengths falls in the X-ray range? [WBUT 2006]
(a) 1nm (b) 100 nm (c) 0.001 nm (d) 1000 nm

The production of characteristic X-rays can be considered as
(a) inverse of photoelectric effect (b) inverse of pair production
(c) Compton effect (d) None of these
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27. If A; and Ay are wave length of L and K X-rays respectively, then [WBUT 2005]
(a) A <Ag (b) A, > Ak (© A =A¢ (d) Ay =44,
28. When two parallel rays of X-rays of wavelength A, are incident at an angle 6 on a crystal with lattice
separation d, constructive interference would be observed when (n is an integer) [WBUT 2006]
(a) nA=2dsin 0 (b) nA=dsin 6 (¢c) nA=dsin 26 (d) nA=2dsin 26
29. The line spectra are
(a) superimposed on the continuous spectra (b) not superimposed on the continuous spectra
(c) lies under the continuous spectra (d) None of these
Answers
1. (b) 2. (b) 3. (b) 4. (b) 5. (¢) 6. (c) 7. (b) 8. (b)
9. (a) 10. (a) 11. (b) 12. (¢) 13. (b) 14. (b) 15. (a) 16. (b)
17. (a) 18. (b) 19. (a) 20. (a) 21. (a) 22. (d) 23. (b) 24. (c)

25. (a) 26. (a) 27. (b) 28. (a) 29. (a)

Short Questions with Answers

1.

What are crystallographic directions?
The crystallographic direction is a line joining any two points of the space lattice related to the crystal
structure.
Define (i) lattice points, (ii) space lattice, (iii) unit cell, (iv) primitive cell, and (v) non-primitive
cell.
Refer to Section (10.2) and (10.2.1).
What are Bravais lattices?
It has been proved mathematically that there are only fourteen independent ways of arranging points
in three dimensional space such that each arrangement confirms to the definition of a space lattice.
Thus the fourteen possible space lattices of the seven crystal systems are called Bravais lattices.
What are 2D and 3D space lattices?
2D space lattice is defined as an infinite array of points in two-dimensional space in which every
point has the same environment with respect to all other points. In two dimensions, choosing any
point as origin, the position of any lattice point in space lattice denoted by 7 can be expressed in
terms of translational vectors a and b as

7 =md +nb
where m and n are arbitrary integers. In Fig. 10.1, m =2, n = 2. 3D space lattice is defined as infi-
nite array of points in three-dimensional space in which every point has the same environment with
respect to all other points.
In three dimensions, if @, Z and ¢ are three transnational vectors along x, y and z axes, respectively
then we can write lattice vector 7 as

7 =md +nb +o¢

where m, n, and o are integers.
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Why production X-ray is called inverse of photoelectric effect?

In case of production of continuous X-ray, kinetic energy of an electron is converted into the energy
of the emitted photon. Similarly, in photoelectric effect, the energy of incident photon is absorbed
by an electron through inelastic collision and emission of electron takes place from the surface of a
metal. So, some energy of incident photon is converted into the kinetic energy of the electron. Hence
we can say that production of X-ray as the inverse process of photoelectric effect.

What is white X-rays?

We know that there are two types of X-rays. One has a line spectrum and is called characteristic X-ray.
The other has a continuous spectrum and is known as white or continuous X-rays. White X-rays are
produced by the slowing down of the high-speed electrons in their motion through a substance. This
process is also known as bremsstrahlung.

Why are X-ray used in crystal diffraction?

The crystal constitutes a three-dimensional grating of periodic array of atoms. The inter-atomic spac-
ing in a crystals is of the order of 1A. So, to observe diffraction in crystal, wavelength of radiation
used should be of the same order of interatomic spacing.

Since, the wavelength of X-rays (= 0.1 A to 100 A) are comparable with interatomic spacing, so
X-rays are used for diffraction in crystals.

Part 2: Descriptive Questions

1.

N e W

10.

(a) Define the terms unit cell, space lattice, and basis.
(b) What are the differences between crystalline and amorphous solid?
(a) Define primitive unit cell. Are all unit cells are primitive?

(b) What do you mean by Bravais lattice? How many Bravais lattices are there in three
dimensions?

Describe simple crystal system with necessary diagrams.

Define atomic packing factor. Calculate it for BCC and FCC structure.

What are Miller indices and what is their importance?

Find the distance between adjacent planes in crystal lattice.

Show that in cubic crystal of side a, the interplaner spacing between consecutive parallel planes of
Miller indices (hkl) is [WBUT 2005, 2007]
a

dyy = ——=
P+ i+ P

. Find out the packing fraction for FCC structure. Find out the expression for the separation between

the planes with Miller indices A, k, [ and lattice constant a for a simple cubic structure.
[WBUT 2008]

(a) Find the Miller indices of a plane which intercepts at a, /2, 3¢ in a simple cubic unit cell.
[WBUT 2004]
(b) Draw the planes and directions denoted by (100) (110) and (102) of a cubic structure.

Calculate the atomic packing fraction and atoms per unit cell in crystals having (i) SC (ii) BCC (iii)
FCC structure considering the atoms as hard sphere. [WBUT 2004]
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11. Write a short note on Bravais lattice and Miller indices. [WBUT 2002]
12. Write a short note on X-ray diffraction and Bragg’s law. [WBUT 2003]
13. (a) Distinguish between continuous and characteristic X-ray spectra.
(b) Explain and derive Bragg’s law of X-ray diffractions from a crystal. [WBUT 2005]
14. Describe the origin of characteristic X-rays.
15. If wis the linear absorption coefficient of X-rays, prove that u = % where x,, is the half value of
thickness of the substance. [WBUT 2004]
16. Draw continuous X-ray spectra for two different applied voltages. What will happen when the applied
voltage is sufficiently high?
Part 3: Numerical Problems
1. Sodium chloride crystallizes in FCC structure. The density of NaCl is 2180 kg/m’. If the atomic
weight of sodium and chlorine are 23 and 35.5 respectively. Calculate the distance between two
adjacent atoms. [2.815A]
2. A crystal of NaCl mounted on a Bragg spectrometer reflects the K, line of X-rays at an angle of 60°
in the first order. Given the following data, calculate the wavelength of the X-ray K, line.
[Density (p) = 2.17 g/cc, mol. wt. of NaCl (M) = 58.63]
[Hints: d = (%)1/3’ Glancing angle = 90° — angle of reflection = 90 — 60 = 30°] [2.821&]
3. A powder pattern is obtained for lead with radiations of A = 1.54 A. The (220) reflection is observed
at Bragg angle 0= 32°. What is the lattice parameter of the lead? Assume that given reflection is the
first order reflection? [4.1x10" 10 m]j
4. Determine the spacing between (i) (100) pluanes, (1) (110) planes, and (iii) (111)°p1anes iun a Nagfl
crystal having the lattice constant a = 5.64 A. [5.64 A, 3.39 A, 3.26A]
5. The potential difference across in X-ray tube is 10° volt. What is the maximum frequency emitted
X-rays? [2.4 x 10" Hz]
6. In an X-ray diffraction experiment, the second-order glancing angle was 30°. Calculate the glancing
angle for the first order and third order. [6,=14°29, 0; =48° 33 ]
7. A X-ray tube operates at 20 kV. Find

(a) the maximum speed of the electrons striking the anticathode, and
(b) the shortest wavelength of X-ray produced.
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Angular Concept

What is an Angle?

The answer of this easy question is not that easy. Let us try to understand what does it mean. The concept
of an angle does not exist in one-dimensional case. In two dimensional case, by angle we mean separation
of two intersecting lines. To be more specific — an angle is one sense of separation between two intersecting
lines which remains same if even the lines are extended up to infinity (Fig. Al.1).

(a) (b)

Fig. A1.1 Separation of two intersecting lines: (a) In terms of angle (0). (b) In terms of the distance between
two equidistant points on two lines from the point of intersection.

If one wants to express the separation in terms of distance one can follow the method given below:

Let us select two pairs of equidistant points which are equidistant from the point of intersection O. For one
pair of points E and F the distance is d,; and for the other pair of points G and H it is d,, where d, # d, but the
angular separation 6 between the two lines remains the same throughout.

The unit of measurement of angle is radian (symbol is € or rad) in all systems of measurement like second
which is the unit for time in all systems of measurement. If the angle between two intersecting lines is 90° or
1008 (g stands for grade), then in radian one can express it as n or *

) rad. Radian is called a pseudounit as it

does not have any representation in dimensional analysis.
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Solid Angle As has been stated above the counter part of two-dimensional angle (planar angle or simply
angle) is the solid angle in three dimension. It is usually denoted by the Greek letter Q. It is the cone that
an object subtends at a point in space. It is a measure of how big an object appears to an observer looking
from the said point in space. For example, a small object, which is nearer to the observer could subtend the
same solid angle as a large object which is far away from the observer. The solid angle is proportional to
the surface area S, of a projection of that object onto a sphere centered at the point where the observer lies,
divided by the square of the radius, R, of the said sphere or it is exactly equal to the surface area, S, of the
aforesaid projection of an object on to a sphere of unit radius centered at the point where the obsever lies.

Symbolically, one can represent it by the following equation:

Q=K %
where K is a constant of proportionality. A solid angle is related to the surface of a sphere in the same way as
an ordinary angle or planar angle is related to the circumference of a circle. If the proportionality constant is
chosen to be unity, then the unit of solid angle in the SI system is steradian (denoted by s7). Thus, the solid
angle of a sphere measured from a point in its interior is 47 sr, and the solid angle subtended at the center of

a cube by one of its six surfaces is one-sixth of that (i.e., 47/6 sr) or 27/3 sr.
In general, one can define a solid angle as follows (Fig. A1.2):

dA”  dA cos 6
dQ="—="""
2P
dA’  F-dA
or, dQ = =
PR

where dQ is the solid angle subtended by any sur-
face area dA at the point O in space. Here dA” is the
projection of dA on the plane which is normal to OR
and passes through the poin O’

ie., dA’ = dA cos 6.
For a spherical surface whose radius of curva- Fig. A1.2 A solid angle dQ at the point O
tuae is 00" =r subtended by the surface d4” which
, _ is normal to the bisector OR of angle
dA’ =4m? and 60=0, 2P00.

so the solid angle subtended by the surface of the
sphere having radius r is given by

Q= JCMC_OSG =47 sr.
s

2
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Coherence of Light

Coherence is the predictable correlated motion of two waves when there is a fixed amplitude and phase
relationship between them. If two light waves, which are coming from two different sources are coherent,
then these two sources are also said to be coherent. In other words, coherence is related to definite phase
relationship between two waves (or sources) at different points of space and time. For a source to be coherent,
it must be able to emit radiations of single frequency or the frequency spread must be very small. And also
the wave-front spreading from the source must be able to maintain a constant shape. Thus we can categorize
coherence into two types—temporal coherence and spatial coherence.

(@) Temporal Coherence

The temporal coherence implies the possibility of predicting the phase and the amplitude at a certain space
point at different time instants. An ideal monochromatic wave represented by a simple harmonic function
extends between —o< and + o< in time at a fixed point in spce. The amplitude remains constant while the phase
varies linearly with respect to time. So, one can predict its amplitude and phase at any time. Such a wave is
claimed to be completely temporally coherent. But a real light source emits light in short pulses called
wavetrains. When an excited atom goes to a lower state or to the ground state, it emits a pulse during a time
of the order of A7 = 107 s. There will be no phase relationship between the pulses coming out of different
atoms because various atoms of a source emit radiations in a random manner. Yet, at a given point of space
one can predict the phase and amplitude at two different points of time if the same wavepulse still passes
through that point. Thus, At is the longest time span over which one can make such prediction. For the time
span At, the light is said to be coherent and the time Az = 7, is known as coherence time.

In order to understand coherence time, let us consider Young’s double slit experiment as shown in
Fig. B1.1.

The pattern of interference observed around the point P at time ¢ is due to the superposition of the two
waves emanating from S, and S, at points of time ¢ — r|/c and ¢ — r,/c respectively, where the variables r; and
r, are the distances S; P and S, P respectively.

Now, if

n-n
c

<< T, (1)
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° ‘ pals o

S, SS, =SS,

Q

Fig. B1.1 Young’s double slit experiment. The interference pattern at point P and around at time ¢ is due to
light waves emanating from S, and S, at time ¢ - r;/c and ¢ - ry/c.

then the two waves which are arriving at P from S, and S, will have a definite phase relationship. As a result
an interference pattern of good contrast will be obtained. And on the contrary, if the path difference (r, — r)
is sufficiently large as compared to 7., then
=r
c

>> T, -(2)

and the waves arriving at P from the slits S, and S, will not have any fixed phase relationship and any inter-
ference pattern will not be seen. But the central fringe will have a good contrast if | = r,. The length of the
wavepulse or the coherence length L, is defined as
L. =1.xC [where cis speed of light] ...(3)
The temporal coherence can be related to the line width. By Fourier analysis of the wavetrains of finite
duration, one can show that a wavetrain is equivalent to a large number of harmonic waves having their fre-
quencies within a certain interval of frequency Av about a central frequency v. The frequency spead or line
bandwidth Av is related to the coherence time 7. by the following equation:

1
Av = 7 ..(4)
Thus, narrow bandwidth indicates that the coherence time is long. For a wave to be perfectly monochro-
matic Av = 0 and 7, = e. Thus, a monochromatic wave is completely temporally coherent.

(b) Spatial Coherence

The spatial coherence refers to the phase relationship between two

light waves present at two space points at the same point of time. If P
there is a point source S then two equidistant points P and Q (which

are not along the same line with S) will always have a definite phase

relationship [Fig. B1.2].

But if one gradually increases the size of the source S then after
sometime the points P and Q will fail to maintain definite phase
relationship. The lateral dimension of the source upto which the
radiations from the source remain coherent determines the spa-

ol ol ot o the oot o oo o PO Fig. BL2 Points P and Q which are
ial coherence. That is, the spatial coherence depends on the size o equidistant from the source

the source. S can maintain definite
phase relationship.

Q
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In order to understand the concept of spatial coherence let us consider the Young’s double slit experiment
again with two independent point-sources S and S” which do not have any phase relationship [Fig. B1.3].
Let S, and S, be two slits separated by a distance 2d from one another. Each of the sources produces its own
interference pattern on screen S7 S5. Let SS; be equal to SS, and hence S,0 is equal to S,0. So, the source S
produces a maximum around the point O on the screen S’;S”,. But the intensity at O due to the other source
S” depends on the optical path difference S’S, — S’S,. From the figure, we can write

1
o 12 207 l(d+l)2]
§’S, = [D* + (d + )] D[1+2 =
1
o 12 2 - l(d—l)2]
and §’S, = [D*+ d—-1)] D[1+2 5
dl
S, -8, =2—=
S’S,-S7%, D ()
e o , A
Now, 1fSSz—SS1=5
2dl A
then, F—Z
Hence [ = % X )E—D ...(6)
s,
(0]

L2=D%+(d-1)
1%,=D*+d+1)? | S,

Fig. B1.3  Young’s double slit experiment with two independent point sources S and S’ at a distance .

The source S’ produces a minimum at 0 whereas the source S produces a maximum. Eventually no inter-
ference pattern can be observed for the separation / of the sources S and S” given by the Eq. (6).
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Now, if we get an extended source having linear dimension 2—/13 instead of % X % (= 1), then for every
1 _AD

point on the source we may get an independent point at a distane / (: 5 X Z_d) The above analysis indicates

that no interference pattern can be obtained. Good interference fringes can be obtained so long as the linear
dimension / of the source is such that

AD
l<<— (7
2d (7N
Equivalently, for a source of width [ definite phase relationship can exist between S, and S, if the separa-
tion between them is given by

2d << ’ITD ()
Since the angle subtended by the source SS” at 0 is é = 0, the above condition (Eq. (8)) can be expressed

as

A
2d << r ...(9)

Thus, if the distance between the slits S; and S, is increased from zero the interference fringes vanish
when

A
2d -7 ..(10)

The distance % =1, gives the lateral distance upto which the beam may be assumed to be spatially coher-

ent. The quantity /,, = % is called lateral coherence width.

For a circular source [, is given by

1.221
| = (11
w==2 (1)
We can conclude from the above analysis that by using ordinary non-coherent source such as electric bulb
or the sun, it is possible to make almost spatially coherent beam by passing the light through a small hole of

size much less than [, the lateral coherence width.
Though, theoretically the output of one laser is expected to be perfectly coherent, but in reality, it does

not show perfect coherence because all photons are not instigated by the original stimulating photon which
initiates the stimulated emission.
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Relativistic Concept

(Special Theory of Relativity)

Introduction

Einstein put forward the special theory of relativity in 1905. This theory had revolutionized physical concepts
during the twentieth century. Let us present a brief discussion of the special theory of relativity here as the
concepts of dependence of mass on velocity, mass energy equivalence and energy-momentum relation are
included in the syllabus of quantum physics. Physics is the ‘science of measurements’ of various physical
quantities. The special theory of relativity reveals that the measurements depend on the state of motion of
both the observer and the objects that are being observed. When the idea of relativity is incorporated into
mechanics, one gets a new subject called relativistic mechanics. And in relativistic mechanics we come
across some peculiar phenomena when the constituent particles move with a high velocity comparable to that
of light. The theory of relativity enables one to understand the high energy phenomenon in microscopic as
well as macroscopic world.

Frame of Reference

Any physical phenomenon takes place in space and time. It is not possible to investigate any physical
phenomenon without introducing a reference frame relative to which all observations will be made. A
reference frame may be defined as the system of coordinate axes which is considered to be fixed with respect
to which the position of a particle is measured.

There are two types of reference frames—(a) inertial frame of reference, and (b) non-inertial frame of
reference.

(a) Inertial frame of reference 1t is such a frame which is either at rest or in motion with uniform
velocity. Newton’s laws of motion hold good in the inertial frame of reference.

(b) Non-inertial frame of reference 1t is such a reference frame which moves with acceleration in a
straight line or rotates.
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Space and Time Frame

To determine the exact location and the exact time of occurence of an event, we need time () as a coordinate
along with three space coordinates (x, y, z).

A frame of reference which has four coordinates x, y, z and ¢ in called a space-time reference frame. The
space coordinates (x, y, z) represent a ‘point’ in space and the space coordinates (x, y, z) along with time
coordinate (f) represent an event in space and time, i.e., the coordinates (x, y, z, f) represent an event.

Inertial Reference System
If we consider a reference system at rest, then this system as well as all other reference systems moving with
respect to it with uniform velocities are called inertial reference systems.

Galilean Transformation

It is a method of transformation of an event from one inertial frame to another one. Let us consider two iner-
tial frames of reference represented by S and S”. Let the frame S be at rest and the frame S’ be moving with
a constant velocity ‘v’ along the positive x-direction (Fig. 1).

Y A Y'A
§ -V
«—— vt —> + P
N
o ‘ } >
- i X X
7 7k

Fig. C1.1 Two inertial reference frames.

Let an event occur at the point P. The coordinates of P with respect to the frames S and S” are (x, y, z, 1)
and (x’, y’, z’, t”) respectively. At the time ¢ = O the origins of S and S’ are coincident at O. As the frame S’
is moving with the constant velocity V with respect to S, the origin O” of S” gets shifted from O of S by a
distance vt during time z. As there is no motion along Y -and Z-axes, we can write the follow transformation
equations (Fig. C1.1):

x'=x-ut (D
y' =y -(2)
7'=z ..(3)
t'=t (@)

These four equations are called galilean transformation equations.
The coordinates (x, y, z, f) when expressed in terms of the coordinates (x’, y’, t’, t") give us the following
four equations:
x=x"+ot ..(5)
y=y'
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These four equations are known as inverse galilean transformation equations.
Now, differentiating Egs. (1), (2), (3) and (4) with respect to time, we get

4 : ’
X' =x-v v, =0,V
. ,
).’ —X = vy =0y ...(6)
2=z v, =0,
. dx ., dx
where x=— and x'=—F
dt dt

Equation (6) implies that the veloity of a particle is different in two different systems of reference.
The set of Egs. (6) may be used to transform velocity from one reference frame to another one.
Differentiating Egs. (6), one gets

., .

V. =0,

z); = Uy (7
and vl =0,
ie., X=X

5 =¥ ...(8)
and =z

. . dx

where i=v=

dr’
So, from Egs. (7) or (8), it is observed that the acceleration of a particle is invariant under the galileon
transformation.
Let m be the mass of the particle at the point P and F be the force acting on it in the inertial frame S.
F =mXx
Similarly in the inertial frame S’, we get
F' =mi’
F=F’ [ X=X"]
So, Newton’s laws of motion remain unchanged (or invariant) under the Galilean transformation. So, in
general, the laws of mechanics remain same in all inertial frames of reference.

Michelson—Morley Experiment

Michelson and Morley assumed that light waves propagate through a hypothetical medium (called ether)
with a speed of ¢ = 3 x 10® ms™! which is supposed to be present every where. The earth moves through the
ether with a linear speed of v = 3 x 10* ms™" approximately. As the earth moves around the sun, we also move
through ether with the same speed. If two beams of light are sent out such that one travels in the direction
of motion of the earth and the other moves at right angles to that of the earth, Then these two beams would
require different times for round-trip journeys through the same distance. If this time—difference could be
measured, one could determine the velocity of earth with respect to ether that is one can detect the motion of
the earth through ether by performing one optical experiment on the surface of earth it self.

To perform the experiment, a Michelson inter ferometes was used (Fig. C1.2).
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Telescope Telescope

Fig. C1.2 The Michelson-Morley experiment.

A beam of light from the source S is made incident on a semi-silvered glass plate P kept inclined at an
angle of 45° with the incident beam. Each incident beam is split up into two beams. One of the two beams
is reflected by glass plate P and the other one is transmitted through the glass plate P. The reflected light
beam travels towards mirror M, and is reflected back by M, towards the glass plate P. A part of this beam is
then transmitted through glass plate P and enters the telescope 7. The other part of the incident beam (which
is transmitted) travels towards the mirror M, which reflects the beam back towards the glass plate P. A part
of this beam is then partially reflected into the telescope 7. In the actual arrangement of the interferometer,
another glass plate (not shown) is introduced in the path of the transmitted beam in order to make the paths
of the two light beams equal in glass. The two beams enter the telescope along a coincident path and interfere
with each other. A pattern of interference having bright and dark fringes is obtained.

Let both of the mirrors (M, and M,) be at the same distance D from the glass plate P. If the apparatus
remains stationary in ether, there the two beams take the same time to return back to glass plate P and accord-
ingly meet in the same phase at the glass plate as well as telescope. But, the earth along with the apparatus is
moving with a velocity V. As can be seen, the incident beam and the apparatus move in the same direction,
the incident beam strikes the glass plate when it is in the position P. As the apparatus is in motion, the paths
of the reflected and the transmitted beams and their reflections at the mirrors M, and M, will be as has been
shown by the dotted lines. Obviously the time taken by the two waves for their ‘round trip’ journeys through
the same distance will not be equal.

The transmitted beam travels towards the mirror M, with relative velocity ¢ — v. And having got reflected
at M,, it travels towards the glass plate P with a velocity ¢ + v. Hence, the required time for its round trip is
given by

D D 2Dc

h=ct=v CHU 22
2
or = 270(1 + 7’—2) -9
C

The time taken by the [.. v < < ¢] reflected beam for its round—trip is given by
t, =2t ...(10)
When ¢’ is the time required by the beam to travel from P to A”.
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Now, from the triangle PA” M, one gets

c2t/2 — UZtIZ + D2

2
or, 1% = 2D >
-0
or, t = D -
-
, D vz)
or, t'==|1+— ..(11)
C( 2¢°
H _n_2D v’
ence t, =2t == 1+? (12)
c

From Egs. (9) and (12), we get the difference in the times required by the two beams for their round trips
is given by
2
t—t, =2 ..(13)

C3

A time difference of one period (T) would amount a path difference of A (one wavelength), which will in

turn, amount to a displacement of one fringe across a particular point (i.e., the cross-point of the cross-wires)

. . . . Dv* DV _ DY’ .
in the field of view of the telescope. Hence, a time difference (7, - 7,) = —- causes —— = z—k fringes to be
c cT ¢

displaced across the cross-point of the cross-wires. Here the relation CT = A has been used. The displacement

of the fringes, in this case, cannot be seen since the apparatus is at rest with respect to the observer all the
time. Hence, no information regarding the time difference between the two paths can be obtained with an
apparatus which is stationary on the earth. For this reason, the apparatus is then slowly turned through 90°
so that the two light beams interchange their paths. This is equivalent to introduction of an additional path

difference which would make the displacement of the fringes noticeable. Because of this act of rotation ZD;
c
fringes should be displaced.

In the Michelson—Morley experiment effective distance was 11 m, i.e., D = 11 m. The wavelenght of light
A=59x10"m,0=3x10"ms" and C=3x 10°ms™".

2
So, 2[2)0
c A

=0.37. Thus, 0.37 fringe was expected to be displaced across the cross-point of the cross-wires.
Their apparatus was capable of noticing even 0.01 fringe, i.e., one hundredth of a fringe. The observed dis-

placement was extremely small as compared to the theoretical value of 0.37 fringe—width. So, the result was
not consistent. The experiment was performed in different reasons of the year and at different places. But, the
result was the same. Thus, the motion of the earth with respect to ether cannot be detected.

The negative result led them to the following conclusions: (i) the hypothesis of existence of ether was ren-
dered untenable by demonstrating that ether has no measurable properties, and (ii) the speed of light in free
space is constant irrespective of the motion of the source or the observer.
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Einstein’s Special Theory of Relativity

Due to invariance of the velocity of light in all inertial reference frames as has been seen above, Einstein put
forward his special theory of relativity in 1905. The special theory of relativity is based on the following two
postulates:

(1) All the basic laws of physics remain same in all inertial frames of reference.

(i) The speed of light in vacuum is same in all inertial frames of reference irrespective of the motion of
the source relative to the observer.

The consequence of the first postulate is that there is no universal (or absolute) reference frame. The
second postulate is the consequence of the experiment of Michelson and Morley.

Lorentz Transformation

A set of transformation equations which satisfy the postulates of the special theory of regativity is known as
the set of Lorentz transformation equations. This set provides us with a method of obtaining the coordi-
nates of a point in a certain reference frame relative to another inertial reference frame and vice versa.

The galilean transformation equations are as follows.

x'=x—ut
y'=y ..(14)
7=z

and t'=t

And the velocity transformation equation are given by

Uy =u,—70
Uy = Uy ...(15)
U, =u,

From Eq. (15), we can get the idea that these equations violate the first postulate of the special theory of
relativity. If we consider the velocity of light in the two inertial frames S and S” to be ¢ and ¢’ respectively,
then from Eq. (15), we get

c¢'=c-v ...(16)

Here, we have considered different velocities of light in different reference frames this is not acceptable in
case of the special theory of relativity. So, in order to satisfy the postulates of the special theory of relativity,
we must get a set of better transformation equations than the galileon transformation equations which are
termed as Lorentz transformation equations as mentioned above.

In order to develop these equations, let a possible relation between x and x” be of the form

x' =kx-0v0) ..(17)
where k is a constant of proportionality. The constant k does not depend on x and 7 but it may be a function of
V. The relation (17) is linear in x and x” and it can be easily reduced to the form x” = x — v¢ which is correct
in newtonian mechanics if k = 1 when v << c. The inverse relation of Eq. (17) can be written as

x=k"(x"+vt") ..(18)

[Note: The interchange of primed and unprimed variables.]

In this new transformation we are not taking 7 = ¢’ relation. That is in Lorentz transformation ¢” # r and v
has been replaced by —v. The other relations are as in case of galileon transformation, i.e.,
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y'=y

and 7=z ...(19)

or,
or,
or,

or,

or,

or,

From Eqgs. (17) and (18), we get
x=k(x'+vt)
x=K[k(x—0v1) +01]
x=kk'(x-vH)+k’vt’
k'vt’=—kk’ (x—vt)+x
k'vk’ =kk’vt—kk'x +x
=kt +(—kk’+ 1) =
vk
' =kt + (1 - kk'Ik'v) x .(20)

In order to determine the value of k and k’, we use the second postulate. Let at # = 0, the origin of the two

systems S and S” coincide with each other. Let this instant correspond to ¢” = 0. Suppose that a light signal
is given out from the common origin of the frames S and §” at 7 = " = 0. The signal propagates in the two
systems satisfying the equations

x=ct ..(21)

and x'=ct’ ..(22)

or,

or,

or,

or

or,

Let us replace x” and ¢” in Eq. (22) by using Egs. (17) and (20),

k(x—v1) =ckt+(1 _,kk )cx
v
1 /
Hence, X =ct & ...(23)

1 c
Il-(—-1|=
(kk’ ) v
Now, comparing Eqs. (21) and (23), we can write
1< (1+v/)

- 1 c
1- —-1|=
w15

1 c v
1_(kk'_1)5=1+E
- L)e_?
_kk' v C
2
- L.z
k' 2
2
kk’=1/(1—v—2)
C
; 1
Kk’ = (24)
1 v’
-
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As can be seen in Eq. (24), kk” depends on v* (and not on v), the relative velocity of S” with respect to S.
In fact, we cannot choose between the two reference frames S and S” without taking account of the sign of
v. But the sign of v does not affect the dependence of kk” on v. So, we choose

=k = (25)

Substituting there values of k and k" in Egs. (17) and (20) and including Eq. (19), we get the following set
of equations:

O
1T
C2
’ —
y =y
7/=z ...(26)
-
po—c
T
C2

The set of Egs. (26) is known as Lorentz transformation equations. The inverse Lorentz transformation can
now be written as

x"+ ot
L7
2
y=y’
z=27'
’
r+ 2
2
= c (27)
7
2

Thus, the measurement of position and time are found to depend upon the frame of reference of the
observer concerned. It v << ¢, we get the galileon transformation from Lorentz transformation.

Addition of Velocities

Let us consider a body which is moving with respect to both the frames S and S’. An observer in the frame S
measures the Components of Velocity V of the body as

dx dy dz
v =% y_-2 g v=%& (28
Tar T M Ty (28)

And an observer in the frame S’ maker the following measurements of the velocity V’ of the body as

’ d 4 ’
S . . (29)
dt Yoodt o dt
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Now, from Lorentz transformations, we get

di’ = dx—vcjt
-2
c
dy’ =dy
dz’ =dz ...(30)
dt - %
dtf — C'z
-2
c
V= ccllx, _dx- v;lt
- U—;
c
V.—v
or V;=—U (31)
1-=V,
c
The y—component of velocity is
,_dy’ o dy
’ ﬁ'(m—%w)
c
1
2
2
V_v - 1)_2
c
V= (32
or ) 1 Vo (32)
2
2
VAT-5
. c
Similarly, V= ..(33
imilarly . 1 Vo (33)
2

The Egs. (31), (32) and (33) constitute transformation equations for velocity.

If the velocity of the frame S’ with respect to the frame S is V and V << ¢, then from Egs. (31), (32) and
(33), we get

Vi=V,-v
V)=V, - (34)
V.=V,

Which are galileon transformation equation for velocities.
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The inverse transformations equations for velocities are as follows:

Vi+o
Vo=
oV,
1+—
C
Vi1 - oA\
V,=———— ...(35)
’ A
1+ —
C
VA1 —o%c?
and VZ =
1+ e
C2

Suppose that a ray of light is emitted in the frame S (which is moving with a velocity v with respect to
the frame S) in the same direction as that of its own motion with respect to S, then V= c. The observer in the
frame S would measure the velocity of the emitted light ray as

Vi+ov
oV
1+

¢
or V_c+v_c+v_C(C+U)
’ T4+ 1+% (c+0)

2
C

V.=c
If velocity of light is ¢ in the frame S’, then it is also c¢ in the frame S. This is consistent with the second
postulate of the special theory of relativity.

Variation of Mass with Velocity

In classical mechanics, mass is considered to be constant. But in relativistic, mechanics it can vary with

respect to time. So, logically we can assume that

mass will be a function of velocity. YA AY’

. m = m(u) where u is the velocity with which the SV

mass is moving. If u = 0, then m = my, the rest mass.
To determine the dependence of mass on velocity,

we shall consider a collision of two l?odles and fur- 1 G 8 2
ther assume that the law of conservation of momen-

tum and the law of conservation of relativistic masses ! Y
of the particles are valid.

Let us consider two bodies each of mass m” mov-
ing in opposite directions along the X’-axis with . > X
velocities u” and —u’ as observed from S’ (Fig. 0 o X
C1.3).

Fig. C1.3 Variation of mass with velocity.
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Let there two bodies collide and coalesce into one single body.
The body thus formed will be at rest according to the law of conservation of momentum in the frame S’.
If the collision is observed from the frame S, the Velocities of the two bodies will be given by

u =L *0 (36
1+u'v
C2
and u, =24 *° (37)
1 uvo
C2

Let m; and m, be the masses of the two bodies with respect to S.
The mass of the combined body is
m=m,+m, ...(38)
The body of mass m moves with a velocity v along the positive x-direction with respect to the frame S as
itis at restin S”.
From the law of conservation of momentum
We can write,

myuy +m, u, = mo ...(39)
u +v —u'v |
or, my|———|+m — | =(m;+my v
u'v u'v
1+—2 1- >
c c |
or. Mifu'+o + _u,+v.—(ﬂ+l)v
’ m, u'v u'v my
1+— 1- >
c c
mr o, m, u —
or, R e L
my |41 my | _ WY
c? c
2 2
v
u,(l—v—z) M’(l——z)
’ my uw'v u'v
1+ > 1- >
c c
my 1+u'v/c?
or, — = ..(41)

m
2 1—u'vlc?

Now, divinding both sides of Eq. (36) by ¢, we get

u; u" +0)

¢ ( u'v)
Cc 1+—2
C
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0w+ o)
or. —=
’ 2 70\2
o2 1+%)
c
u; ' +0)>
or, 1——2=1——,2
¢ 02(1+%)
c
) u'v\? , 2
» c[1+—) —(u"+0)
| U c?
or. -—=
’ 2 70\2
¢ 02(1+u0)
c
2 7”2
(-5l
u 2 2
1 c c
Hence, 1——2= P
B
2
”
v u
”? (1_? (1_ c2)
or, 1——2: -
¢ (1+%)
c
2 ”
o |5
or, 1+“2”)= ¢ - ¢ ..(42)
2
Similarly, from Eq. (37), we get
2 ”
o |5
(1”f)=w T .(43)
2
Now, substituting these values in Eq. (41), we get
2
I
m; c?
. ..(44)
2 )
1 -t
2
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If the velocity of the mass m, with respect to the frame S be zero, i.e., u, = 0, then its mass m, can be
denoted by m,. The symbol m, gives the (rest) mass of the second body when it is at rest with respect to the

frame S.
Let u, = v, i.e., the velocity of the first body with respect to the frame S is v.

So, the Eq. (44) can be written as follows (by denoting m, by m):

m
mo 1 lz
C2
m
oMo ..(45)
2
L
C2

This gives the variation of mass with respect to velocity.

The momentum is defined as
m()
mo = v
1 —0%c?

The momentum is conserved in the theory of relativity also.

In relativistic form Newton’s second law of motion is written as
d d | m?

F=—mu)=—|——

dt (o) dt 0?

2

Mass and Energy Relation

The kinetic energy T of a moving body is the work done in giving it that state of motion starting from rest.

So, the kinetic energy 7" is given by

t
T =[Far
0

where F is the component of force parallel to dr.

Now, we can express force as

F= % (mo)
t
d(mv)
T= d
g a @
or, T= _[ vd (mv) [
0
¢ m,v
or, T= Jvd
0 1 7)2

6‘2

dr
dt
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m, v* ¢
or, T'=—Y-nor-m, _[ vdo [Integrating by parts]
P P
¢ ¢
2
m,v 2
or, T =—2 +m(,c2 1-Z
2 2
1%
)
2
m,v 2
or, T=—2 +m0c2 l—v——moc2
B 2
-z ¢
2
m, o>+ m,c*—m, v )
or, T= m,c
2
1.2
2
m,c )
or, = —m,c
-2
c
_ 2 2
or, T=mc"—m,c ...(46)
or, T =Amc* where Am=m— m,
So, the kinetic energy of a body is the increase in mass multiplied by the square of the speed of light in
free space.

Equation (46) can be written as
mc* =T+ m ¢

i.e., total energy of a body is equal to sum of its kinetic energy and rest mass energy.

If we represent total energy by E and the rest mass energy by E_, then Eq. (46) can be written as
...(47)

E=E +T
where E=mc* and E,=m,c’
The equation E = me? expresses the universal equivalence of mass and energy.

It is also called Einstein’s mass energy relation.
One can easily convert the kinetic energy T to its classical value 1/2 mo® as follows:
T=mc* - m, ¢
2

m,c )
—-m,c

or, T=
v

or,
1-Z
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2

1
or, T=m0c2[(l—v—) 2—1]
&2
2
or, T=m, A1+ % 0—2 + .. 1) [Neglecting higher terms as classically v << c]
c
1 2
or, T= 5 m,v ...(48)
Energy—-Momentum Relation
As stated earlier, the relativistic momentum (p) of a moving particle of mass m is given by
m,v
p =mo = (49)
1
- >
The total relativistic energy is given by
2 my >
E =mc? = ¢ ...(50)
|
2
So, by using Egs. (49) and (50), we can write
2 4 2.2 2
2 2 M,C m, v ¢
E-pe= 2\ 2
[-5) (-]
¢ ¢
or B =m? 1-v%c?
’ p ] 2
=
i
or, E2— p2 = mﬁ A
or, E>= mﬁ A+ PPl
E=\m’c*+p*c? .(51)
Equation (51) gives the relation between the total relativistic energy (F) and the momentum (P) of the
body.
2 4. . .
1S an 1nvariant.

The equation E> — P? ¢* = m; ¢
If the rest mass of a particle is zero, then Eq. (51) reduces to

E=pc






APPENDIX

Experiments

EXPERIMENT NO. 1

Aim To determine wavelength of sodium light having formed Newton’s rings.

Apparatus Traveling microscope, support for glass-plate inclined at an angle of 45°, plano-convex lens,
thin glass plate, source of sodium light and spherometer.

’_ﬁ_‘ﬁ. M.
%

2l

G
A L,

A

=

y v vL

G,

Fig. D1.1a Newton’s ring experimental set up. L;: Biconvex lens, L,: Planoconvex lens, G;: Glass plate inclined
at 45°, G,: Horizontal glass plate, S: Sodium lamp, S;: slit, Tr. M.: Traveling Microscope.

Working Formula

2 2
A= Dn+m_Dn
4Rm
where D, , = diameter of (n + m)" ring.

D, = diameter of n" ring.
and R =radius of curvature of the convex surface of the plano-convex lens.
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Procedure

1.

Place the sodium vapor lamp in such a way that its light passing slit remains at the focus of a vertical
biconvex lens. The light rays coming out of the lens will be parallel.

2. The inclined glass plate (inclined at 45°) will reflect the light beam vertically downward.

10.

. The plano-convex lens is placed under the inclined glass plate on another horizontal glass plate so

that its plane surface remains on top and the spherical surface lies on the horizontal glass plate. There
will be an air film between the lens and the glass plate.

Light rays reflected from the spherical surface of the plano-convex lens and the horizontal glass plate
are received through the traveling microscope.

. Circular rings are formed in the thin air film between the plano-convex lens and the horizontal glass

plate.
Adjust the microscope to see the bright (and dark) rings distinctly.

. Make one of the cross-wires (vertical one) tangent to a bright ring (say 10th) at the right side. Take

the reading from the scale attached to the microscope. Then move the cross-wire towards left and
make it tangent at the right of the seventh ring and take the reading. Similarly, take the reading on the
right side of the fourth ring.

. Moving the cross-wire in the same direction take readings on left sides of the fourth, seventh and

tenth rings.

. Measure the radius of curvature (R) of the curved surface of the plano-convex lens using spherometer

(usually it is given).
The observation for diameters (D) of the rings are tabulated as in Table D.1 (given below):

Observations

Table D.1 To measure the diameters of the rings.

No. of rings Microscope reading D, =x~y(cm) D,fl (cm®)

Left (x) Right (y)
MSR LC VSR Total MSR LC VSR Total

Calculations

2 2
=Dn+m_Dn (Cm)2

A 4dmR

Plot the graph between Di and the number of rings (n). Measure the slope (S) of the line which is given

.. wavelength, A

A(DY)
T An
D;,,-D, AD) g

n+m

4nR  4AnR 4R
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. S
ie., A=—
4R .
Dn
Results 2
I A(D,)
An
Percentage Error
o
Discussions .
Fig. D1.1b

Aids to Viva Voce

Q.1 What is interference of light?

Ans. When two light beams pass through the same region of space, the intensity due to each individual
beam cannot be observed. Instead, a modified intensity is observed which is the result of superposition of the
two beams. This phenomenon is known as interference of light.

Q.2 What are the required conditions for interference of light?

Ans. The sources of light from which light beams participate in interference must be coherent and
monochromatic and the frequencies of the light waves involved should be equal or almost equal.

Q.3 How are Newton’s rings formed?

Ans. Newton’s rings are formed due to interference between two light rays—one reflected by the front
surface of an air film and the other reflected from the back surface of the air film.

Q.4 State the condition for which the center of the ring system will be bright or dark.

Ans. If the ring system is viewed through reflected light the center of the ring system is dark. On the other
hand, if the system is viewed through the transmitted light, the center becomes bright. In the present case the
center of the ring system is dark as it is viewed through reflected light.

Q.5 What is the harm if white light is used instead of monochromatic light?
Ans. The rings will be colored and few in number.

Q.6 On what factors does the diameter of the rings depend?
Ans. The diameter of the rings depends on:
(i) the serial number of the concerned ring,
(i1) the wavelength of the light used, and
(iii) the radius of curvature of the plano-convex lens.

Q.7 Can you measure the refractive index of a liquid by this experiment?

Ans. Yes, in that case, a few drops of the liquid are to be poured on the glass plate and over those drops the
plano-convex lens is to be placed. Newton’s rings will be formed in the liquid. Applying the formula,
D;..—D;
l — ( m+n m) ILL

4Rn

The refrative index [ can be found
Hence, the refactive index of the liquid is given by
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_ 4x AR
o o

m+n
Q.8 How can you measure the radius of curvature of the plano-convex lens?
Ans. The radius of curvature of the lens can measured with the help of a spherometer.

Q.9 Can you measure the radius of curvature of the plano-convex lens by Newton’s ring experiment?
Ans. Yes, one can measure the radius of curvature the lens by the formula,

m+n

D;..-D;
R=—min T
4ni
when value of A is given.

Q.10 Why are Newton’s rings circular?

Ans. Theair film which we produce in this experiment lies between the spherical surface of alens and the plane
surface of the glass-plate. So, the thickness of the film is variable. If one selects a particular thickness of the film
and makes a round trip maintaing the same thickness, one will find a circle. If one point in this circle is bright,
then all other points also will be bright. This is the reason for getting circular fringes in this experiment.

EXPERIMENT NO. 2

Aim Determination of the coefficient of viscosity of water by Poiseulle’s Capillary flow method.

Apparatus Constant-head apparatus, capillary tube, beaker, measuring cylinder, stop-watch, rubber tube
for connection, meter scale, pinch cock and spirit level.

Manometer

Constant-head

Capillary tube

Fig. D1.2 Experimental set up for viscosity measurement.
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Working Formula

where

and

_mpsr’ (h)

8l \v

1 = coefficient of viscosity,

p = density of the liquid,

g = acceleration due to gravity,

r = radius of the capillary tube,

[ = length of the capillary tube,

h = (h, — h;) = pressure head,

v = rate of flow of the liquid (in volume).

Procedure

1.
2.

Measure the length of the capillary tube by using a meter scale.

Measure the radius of the sample capillary tube by using a traveling microscope (usually it is
given).

. Fix the water tank of the viscosity apparatus at a suitable height. Allow the water from the tank to

come out of the tube slowly. Wait until the levels of water at the two arms of the manometer become
steady.
Let water flow through the rubber tube slowly by making use of the pinch cock. The water level in the

nearer arm of the (rubber tube) opening will come down. Fix it at such a level that water flow through
the capillary tube remains laminar.

. Collect water from the output end of the rubber tube in a measuring cylinder for five minutes. Then

measure the volume of the collected water and from this calculate the flow rate of water (in volume/s).
Repeat this step three more times having kept the water level different from the first case in the nearer
arm of the manometer.

. Draw a graph of h versus v (the flow rate). The curve should be a straight line passing through the

origin. If there is a curvature in the curve for higher values of 4 then use the linear portion of it to

calculate the slope %

Observations

Table D1.2 Determination of (%)

No. of obs. Manometer reading (cm) Volume (V) Time (1) Flow rate v = V/t

h; h, h=nh,—h; cm’ (seconds)
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Use of Graph
The slope = Ah
Av
Calculations
Results

Percentage of Error

Discussions

Aids to Viva Voce

Q.1 What is viscosity?
Ans. It is the resistance offered by a fluid to flow when it is subjected to a shear stress.

Q.2 What is coefficient of viscosity?

Ans. The coefficient of viscosity of a liquid may be defined as the tangential force required per unit area to
maintain unit relative velocity between two layers that are unit distance apart.

Q.3 What is the unit of viscosity?
Ans. The unit of viscosity is ‘poise’ in C.G.S. system of measurement.

Q.4 What is the harm if the pressure difference between the ends of the capillary tube is high?

Ans. If the pressure difference is high, then the flow of the liquid through the capillary tube will not be
4

will not be valid.

streamlined. In that case, the formula n = Sio

Q.5 How does the coefficient of viscosity of water depend on the temperature?
Ans. The coefficient of viscosity decreases with increase in temperature.

Q.6 Why is extra precaution necessary while measuring the radius of the capillary tube?

Ans. The radius occurs in its fourth power in the formula for viscosity. A slight error in its measurement
will be much magnified and increase the percentage of error in the final result to a high degree.

Q.7 What is the harm if the tube is of wider bore?

Ans. In atube of wider bore, a slight difference of pressure between the ends of the tube makes the flow of
water turbulent. It is very difficult to get streamlined flow in wide bore tube.

Q.8 What factors are conducive to streamline flow?

Ans. The required factors are fine bore, high viscosity and low density.
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Q.9 Is the capillary (tube) method suited to determine the viscosity of all liquids?
Ans. It is not suitable for liquids with high viscosity.

Q.10 What should be the value of Reynold’s number the flow of the liquid to be stream-lined?
Ans. The value of Reynold’s number should be less than 2000.

EXPERIMENT NO. 3

Aim To determine the value of unknown resistance by using Carey—Foster’s bridge and also resistance per
unit length of the bridge wire.

Apparatus Carey-Foster’s bridge, two equal one ohm resistances, power supply unknown resistance,
table galvanometer, resistance box and plug commutator.

i

Fig. D1.3  Carey—Foster’s bridge.

Theory Carey—Foster’s bridge connection has been shown in the diagram of Fig. D1.3. If one gets the null
point at a length /, from the left end of the bridge wire, then having used wheatstone bridge principle, one
gets

p_ S+a+lp
O R+B+(100-1)p

(1)

where o and 3 are end corrections and p is the resistance per unit length of the bridge wire.
If one interchanges the positions of S and R and gets a null point at a length /, from the left end, then

P R+oa+Lp @
O S+B+(100-1)p
Solving the two Egs. (1) and (2), one get
S—R
= ..(3
Lo, (3)

or, R=S-pU,-1) - (4)
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Now, if one replaces R by a thick metal strip, then R = 0 and Eq. (3) reduces to

S
(=1

p= (5

Procedure

1.

wus v

10.

Connect the circuit of Carey—Foster’s bridge as shown in the diagram of Fig. D.3.

Put a fractional resistance box in the extreme left gap and a metal strip in the extreme right gap.

Put two equal resistances P and Q (each of 1 ohm resistance) in the two middle gaps.

Put a small resistance (say, 0.5 ohm) in the box. Measure the null point.

Repeat Step 4 seven more times with different values of small resistance in the resistance box. Note
these values as /;.

Interchange the resistance box and the metal strip. Repeat Steps 4 and 5 with same values of the
resistance. Note these values as /.

. Put the resistance box in the left gap and an unknown resistance (which is to be measured) in the right

gap. Having put some resistance in the box find out the null point.

. Repeat Step 7 with seven other values of resistance. Note the lengths of the bridge wire from left end

to the null point as /;.

. Interchange the resistance box and the unknown resistance. Repeat Steps 7 and 8 seven times. Note

the lengths of the bridge wire up to the null point from the left end as /,.
Calculate the values p and R from the following two tables:

Observations

Table D1.3a Measurement of p.

No. of obs. | S in ohm Position of null point with metal strip at -1

L-1 Mean p

right gap l,(cm) left gap l,(cm) (cm) ohm/cm ohm/cm

Table D1.3b Measurement of unknown resistance (R).

No.of obs. | ¢ Position of null point when the unknown resistance is L—1,| R=S—p(l,~1,)| Mean R

ohm right gap 1,(cm) left gap l,(cm) (cm) (ohm) (ohm)
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Results

Percentage Error

Discussions

Aids to Viva Voce

Q.1 What is charge?

Ans. Itis a property of some fundamental particles due to which two
similar particles repel each other and two dissimilar particles attract
each other.

Example Electron, Proton, Positron, etc.

Q.2 What is Wheatstone bridge principle? Explain it with a diagram.
Ans. The Wheatstone bridge is shown in the following diagram. This
principle states that when there is no current flowing through the galva-
nometer (i.e., zero deflection is obtained) one gets the following relation
among the four resistances P, Q, R and S:

P_R

o S

This is known as Wheatstone bridge principle.

Q.3 What is a meter bridge? On what principle does it work?

D1.9

B
Q
(® c
s
D

Ans. The meter bridge is a modified Wheatstone bridge where two resistances are replaced by a wire
of one metre length. And hence it is called a meter-bridge. A meter-bridge is shown in the following

diagram:
P Q
AV MW
[ )
«~— 1 meter——
41('1 R S ﬁT—

The meter bridge works on the Wheatstone bridge principle.
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Q.4 Why is the Wheatstone bridge not used in the laboratory? What is the advantage of the meter bridge
over the Wheatstone bridge?

Ans. The Wheatstone bridge is not used in the laboratory because it takes a long time to achieve balance
(i.e., condition of no deflection in the galvanometer) in it as resistances have to be changed one at a time. The
advantage of the meter bridge over the Wheatstone bridge is that one can vary two resistances (R and S) at a
time by moving the jawkey.

Q.5 What is the disadvantage of the meter bridge?

Ans. Inthe meter bridge three metallic strips and a one meter long wire are used. The strips and the wire are
usually made of different metals. For this reason, in the two joints of strip and wire two resistances (ocand ) are
developed. If the values of these two resistances are not determined ahead of the experiment, the meter bridge
gives an incorrect result. This is the disadvantage of the meter bridge.

Q.6 What is the advantage of the Carey—Foster’s bridge over the meter bridge?

Ans. In the meter bridge there are two gaps to insert two resistances (P and Q) while in the Carey—Forster’s
bridge there are four gaps to insert two additional resistances. By interchanging these two additional resistances
one can obtain additional equations which consist of the resistances o and 8. Now one can eliminate ¢ and
B from the final equation which is used to calculate an unknown resistance. So, one need not bother for the
values of the resistances o and B. This is the advantage of the Carey—Foster’s bridge over the metre bridge.
Q.7 What is the specific resistance of matter?

Ans. Itistheresistance offered by aunit cube of that matter. The relation of the resistance and the specific resis-

tance is givenby R=p [—l‘ where R is the resistance, p is the specific resistance and / and A are the length and area

of cross section of resistance. So, if the sample resistance is a unit cube, then / = 1 unitand A = 1 unit’
... in this case, R = p.
Q.8 Can the specific resistance (p,) of the material of the wire be found out from the resistance per unit
length (p)?
Ans. Yes, the specific resistance p, can be measured from the equation
l

R= Ps Z

In the present case [ = 1 meter

R = pl = p ohm/m and A = m* m?
pP=p;—
)

Hence, having known p and r in SI units, one can calculate the value of p, which is given by

P = 77:r2p where A = -2

Q.9 Can this experiment be used to measure the difference between two resistances? Is there any condition
for this?

Ans. In theory it is seen that S — R = p(l, — [,). So, knowing p, [, and /,, the difference between the two
resistances S and R can be found out. The limiting condition is that the difference should be less than the total
resistance of the bridge wire.
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Q.10 What is the relation between p and the diameter (d) of the wire?

Ans. p c—. e, the resistance per unit length varies inversely with the square of the diameter or radius.
d

EXPERIMENT NO. 4

Aim Determination of numarical aperture and the energy loss related to optical fiber.

Apparatus Fiber optic analog transmitter and receiver kits, one and five meter PMMA fiber cords and
in-line SMA adaptors.

Screen

< L

LR U L U N U U R UM R ]
0 1 2 3 4 5 Calibrated screen
Scale

Fig. D1.4 Measurement of numerical aperture.
Theory The numerical aperture (N,) of an optical fiber is the amount of light that is collected by it at its
end.
The numerical aperture N, = i sin 0

For air medium u=1
SO, N,=sin 0
In the Fig. D1.4, let the light beam from the fiber end A fall on the screen BD = W

_ w
a~ (4L2 + W2)1/2
where L is the distance between the end A of the optical fiber and the screen BD. W is the diameter of the
illuminated circle in the screen BD.

The loss of optical energy is a function of the length of the optical fiber. The loss is expressed in the unit of
decibel per unit length. Losses also occur in the optical fibers when one joins two fibers by the in-line adaptor.
In this experiment loss per unit length as well as loss due to fiber-to-fiber joints will be calculated.

If P, be the power of the light energy entering an optical fiber of length L and P be the power output, then

loss due to the fiber is measured as — 10log;, (Pﬂ) in dB. In case of a pure optical fiber, loss is equal to € L.
0

If A" be the loss due to the adaptors, then the total loss is equal to € L + A”. If Py, and P, are the power losses

due to fibers of lengths L, and L, and Py is that due to the combination when the fibers are joined with an
in-line SMA of loss contribution A, then the loss due to fiber of one meter length and the SMA is given by
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Pz — Ppp
and similarly loss due to the fiber of length five meter and the SMA is given by
Pz — Py,
1 . Py — Py,
.. loss per unit length, € =———dB/m
L-L,

And the loss due to the in-line SMA (fiber-to-fiber joint) is given by

A =(Py;—Py)—€L;,dB/m

Procedure

1.

5.

Connect the one meter optical fiber with the LED part of the transmitter kit so that light is seen to
pass through the other end. Make the room dark. Then insert the other end of the fiber through the
hole of the L-shaped numerical aperture measuring kit. Place the circularly calibrated screen plate
vertically on the marked end of the L-kit. Switch on the machine. Make one circle completely bright
on the vertical plate by adjusting the intensity knob. Note down the distance L. Measure the value of
the diameter of the circle (W).

. Move the vertical circularly calibrated screen at different positions and note the diameter (W) of the

completely illuminated circle in each case.

Take out the output end of the fiber from the L-kit and connect it to the power measuring port of
the receiver kit. Apply an input voltage by turning the set P, knob. Make sure that the fiber is fully
stretched without any coiling or bending. Now, measure the input voltage and the output power with
the help of a multimeter. This loss is Py;.

Repeat Step 3 for the five meter fiber. The input voltage should be same as earlier. This power loss is
Py,.

Repeat Step 3 by joining the two fibers by inline SMA. This power loss in Py;.

Observations

Table D1.4a Determination of numerical aperture.

S. No

1
L(mm) W(mm) N, = W/4L? + W?)? Mean N,

Acceptance angle = sin_l(Na) =

Table D1.4b  Calculation of loss of power.

S. No.

Poy— Py,
Py A = (Py3—Py) — Py,

Py, Py, €= L,—L, 03 03 03 03
Ay A A; As
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Results

Percentage Error
Discussions

Aids to Viva Voce

Q.1 What is optical fiber?

Ans. An optical fiber is a very thin and flexible cylindrical thread of transparent glass or plastic material
which can guide visible or infrared light over a long distance. It consists of two different refractive index
profiles, the core and the clad (also known as cladding) as well as an opaque outer profile known as coating
or jacket. The jacket protects the core and the clad. The refractive index of the core is slightly greater than
that of the clad to ensure total internal reflection.

Q.2 How does light pass through the optical fiber from one end to the other?

Ans. Light passes through the core of the optical fiber as a result of multiple total internal reflections. The
greater value of the refractive index of the core than that of the clad ensures the total internal reflection.

Q.3 What is numeral aperture?

Ans. The numerical aperture of an optical fiber is given by the equation N, = i, sin 8, where N, is known as
numerical aperture.

[1, is the refractive index of the medium from which light is loaded at the receiving end of the fiber, 0, is the
angle of acceptance.]

Q.4 What is meant by acceptance angle and acceptance cone of an optical fiber?

Ans. The maximum angle of incidence at the entrance-aperture of the fiber (i.e.) the maximum angle
between the axis of the fiber and the incident ray of light) for which the light ray is totally internally reflected
at the core-clad interface and gets propagated through the fiber is called the angle of acceptance (6,). If one
rotates the incident ray (when the angle between this ray and the axis of the fiber is the angle of acceptance)
about the axis of the fiber at the entrance-aperture, then a cone is produced. This cone is called acceptance
cone.

Q.5 Why does light energy get lost while passing through an optical fiber?

Ans. An optical fiber may contain some impurities in its body. This impurity particles may absorb light.
Besides, due to bending of the fiber while in use, some amount of light gets scattered through the fiber. For
these and some other reasons, the output light becomes less than the input light. Hence, loss of light takes
place in an optical fiber.

Q.6 What is the unit of power loss through the optical fiber?
Ans. The power loss through the optical fiber is measured in a practical unit called decibel which is one
tenth of the unit bel. The symbol for decibel is dB. And the unit decibel is a logarithmic unit. It is defined as
P
-101 =
0 010 ( P

) dB where P, is the input power and P is the output power of the fiber. The loss per unit length
is dBim. ~°
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Q.7 What is total internal reflection of light? Explain?

Ans. When light passes from a denser medium to a lighter medium, then the angle of refraction is greater
than the angle of incidence. The angle of incidence for which the angle of refraction becomes 90° is called
critical angle (8,). If the angle of incidence 6; becomes greater than the critical angle, the light no longer gets
refracted, instead it gets totally reflected in the denser medium of incidence. This phenomenon is known as
total internal reflection.

Q.8 Express the refractive index of the denser medium in terms of the critical angle.

Ans. If 6, be the critical angle in the denser medium, then the angle of refraction in the lighter medium is
90°. So, the refractive index of the denser medium with respect to the lighter medium is given:

sin 90°
by Mg = sin @
1
ey

If the lighter medium is air, and u the refractive index of the denser medium, then

1
sin 6,

‘u=

Q.9 Write the expression for numerical aperture in terms of refractive indices of core and clad medium?
Ans. The numerical aperture is given by

Ny =i~ 3
where U is refractive index of the core and L, is that of the clad.

Q.10 Why should ultra pure glass be used for making optical fiber?

Ans. The glass which is used to make optical fibers should be ultra pure because if impurities like iron,
copper and chromium are present in the glass, they will produce unacceptable losses at the time of transmis-
sion, which should be avoided.

Q.11 What kind of light is used in optical fibers for sending data for communication?

Ans. Laser is used in optical fiber for sending data for communication as it is highly directional and mono-
chromatic and its intensity is very high.

EXPERIMENT NO. 5

Aim To determine the wavelength of an unknown light by laser diffraction method.
Apparatus Optical table, laser source, diffraction grating and modified spectrometer.

Theory If a parallel beam of light of wavelength A be incident on a diffraction grating, the light beam
gets diffracted and forms a diffracted pattern in the space. This pattern consists of the zeroth order principal
maximum and a number of secondary minima and maxima at various orders. The intensity of the maxima
decreases with increasing the order number. The pattern is shown in the following diagram:
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Zeroth order principal
maximum

Second-order secondary
maximum

\

Fig. D1.5(a) Diffraction pattern due to diffraction grating.

First-order secondary
/ maximum

If 6, be the angle of diffraction of nth order secondary maximum, then

dsin 6, = nA
where d is known as grating element. If N be the number of rulings per unit length, then
1
N=-.
d
dsin 0,

If the value of d is known, then one can find out the wavelength A of the unknown light.

Procedure

1. Place the grating vertically on the prism table of the modified spectrometer. Switch on the laser
source so that laser beam is incident on the grating. Due to diffraction by the grating a number of
diffracted beams are seen in the space between the grating and laser detector. These beams can be
received by the detector.

2. If one bright beam is received by the detector, then it converts the light signal to equivalent electric
signal which is seen on the digital meter.

3. At first by removing the diffraction grating from the prism table, the main light beam is detected.
This gives the position of the zeroth-order principal maximum. Then the grating is again placed on
the prism table and consequently many bright spots are seen in the space due to diffraction.

4. By moving the detector towards right the second-order secondary maximum is received and its posi-
tion is noted from the circular scale of the spectrometer. Then the detector is slowly moved towards
left and positions of the first-order secondary maximum (right), the central maximum, first order
secondary maximum (left) and second-order secondary maximum (left) are detected and noted down
as shown in Table D1.5:

Observations

Table D1.5a Estimation of positions of maxima.

No. of obs. Intensity (Digital Side Order no. Angular position (¢)
meter reading) Left/Right MSR VSR LC Total
1 L 2
2 L 1
3 C 0
4 R 1
5 R 2
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Source (D. grating)

0,6,

D

Fig. D1.5b  Positions of central, first and second order maxima.

Table D1.5b  Measurement of wave length angular position of central maximum ¢, =.

S. No. Side Order Number | Angular position Angle of sin@ | A= d s;ln 4 Mean A
Left/Right 0] diffraction (6)
- - - - 0=0¢~ q): - nm nm
1 L 2
2 L 1
3 C 0
4 R 1
5 R 2

*¢C (The angle of zeroth order)

Results

Percentage of Error

Discussions

Aids to Viva Voce

Q.1 What is laser?

Ans. LASER is an acronym for Light Amplification by Stimulated Emission of Radiation. As the name
suggests, laser is an amplified visible light which is highly monochromatic highly coherent, highly direc-
tional and highly intense.

Q.2 What is diffraction of light?

Ans. The phenomenon of bending of light round the sharp corners and spreading of it into the region of the
geometrical shadow is called diffraction.
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Q.3 Distinguish between Fresnel and Fraunhofar classes of diffraction.

Ans. In Fresnel diffraction phenomena either the source or the point of observation or both are at finit dis-
tances from diffracting obstacle. Here, the incident wave front is either spherical or cylindrical. Whereas in
Fraunhofar diffracting phenomena both the source and the of observable are effectively at infinite distance
from the diffraction obstacle. Here the incident wave front is plane.

Q.4 What is diffraction grating?

Ans. Itis an arrangement consisting of a large number of parallel slits of the same width, separated by equal
opaque space. It is thus a structure of alternate transparent and opaque space.

Q.5 How many types of diffraction gratings are there? What is grating constant?

Ans. There are two types of diffraction gratings: (i) transmission grating and (ii) reflection grating. The
grating constant (or grating element) is the sum of the widths of the opaque space and the transparent space
between two consequent corresponding points of a grating. If ‘a’ be the width of the transparent space and ‘b’
be the width of the opaque space, then the grating constant ‘d’ is given by d = a + b.

Q.6 What is the relation between grating constant (d) and rulings number per unit length (m).
Ans. The grating number (or rulings) per unit length is given by the following relation:
m=g
Q.7 State the mathematical expression for the intensity of a diffraction grating with N rulings per unit
length.
M ) sin> NY
X? sin’Y

Q.8 What is the difference between prism spectrum and grating spectrum?

Ans. If I be the intensity, then it is given by I =1,

Ans. The differences of the aforesaid spectra are given in the following table:

Prism Spectrum Grating Spectrum
(i) Itis formed by dispersion. (i) Itis formed by diffraction.
(ii) Itis bright. (ii) It becomes fainter on increase of order.
(iii) The prism forms only one spectrum. (iii) The grating forms spectra of many orders.
(iv) It depends on the material of the prism. (iv) These are independent of the material of grating.
(v) In most cases it is not pure. (v) These are pure.
(vi) The resolving power of the prism is small. (vi) The resolving power of the grating is large.

Q.9 How many types of maxima are obtained in case of grating spectra? What are they named?

Ans Two types of maxima are observed: the primary or the principle or the central maximum and sec-
ondary maxima which are large in number. The secondary maxima are distinguished by order numbers.
The secondary maximum which appears after the primary maximum is called first-order maximum, then
second-order maximum and so on.

Q.10 Are the grating minima classified? If not why?

Ans The grating minima are not classified like the maxima because all of them have zero intensity.
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EXPERIMENT NO. 6

Aim Determination of Young’s Modulus and bending moment of a beam by using traveling microscope by
the method of flexure.

Apparatus Two uprights with knife edge, 1 m long metallic rectangular bar, hanger, measuring weights,
spirit level, traveling microscope, magnifying glass, table lamp, etc.

Fig. D1.6 Experimental bar on knife edges of two uprights.

Theory The experimental bar is shown on the knife edges of two uprights in the Fig. D1.6. If one attaches
a load of mass m to the hanger, the depression of the bar is given by

mg P
X =
4bd*Y
mgl’
= Y= g -
4bd’x
where Y =Young’s modulus of the material of the bar (dyne/cmz),

[ = length of the bar between the two knife edges,
g = acceleration due to gravity,
b = breadth of the bar (cm),
d = depth of the beam (cm).
and X =x; ~ x, = depression
The bending moment is given by

YI
b= Tg = ﬁ (Yx b x d3) (where Ig is the moment of inertia of the bar)
where
2 2
R4 _Ap~ 94
2Ax 2Ax

and d is the distance between the midpoint of the bar and the point concerned where the bending moment is
to be calculated.

Ax=x~x
where x, is the depression at d.
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Procedure

1.
2.
3.

Measure the breadth and depth of the rectangular bar with the help of slide callipers.
The midpoint of the bar is marked as O and each side of it is marked at an interval of 10 cm.

Place the knife edges under the 50 cm mark at both sides of the midpoint. The length of the bar
between the knife edges (/) is 1 metre.

Focus the traveling microscope on the indicator of the hanger. Take the reading on the vertical scale.
This is the depression with zero load.

Apply 0.5 kg load and find the shifted reading of the indicator.

. Increase the load up to to 3.5 kg in steps of 0.5 kg and take the reading of the indicator in each case.
. Determine the difference of position at each value of load with respect to that of zero load. This will

give the depression corresponding to the load.

. Plot a graph of depression against the load. This should be a straight line passing through the origin.

Get the slope of this curve.

. Place the hanger at a point d cm apart from the midpoint at the right of it. Take two readings with zero

and 1 kg load.

Measurements

Length of the bar, / = ... cm
Breadth of the bar, b = ... cm
Depth of the bar, d = ... cm

Least count of Traveling microscope scale = ... cm

Observations

Table D1.6a Measurement of depression for Young’s modulus calculation.

S. No.| Load Travelling microscope readings Mean | Depression

M During increasing load During decreasing load
(kg) MSR (cm) VSR TR (cm) | MSR (cm) VSR TR (cm) (cm) x(cm)

1

2

3

4

5

6

7

Table D.16b Measurement of depression for calculation of bending moment.

SI. No. Load Reading of center Depression Reading of right Depression
(kg) MSR VSR Total X MSR VSR Total X;
1 0
2 1
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Ax=x;~x
2

R = %, Bending moment M, = ﬁ (Yxbx d3)

Results
Percentage of Error
Discussions

Aids to Viva Voce

Q.1 Whatis Young’s modulus?
Ans. It is the ratio of longitudinal stress to longiludinal strain, i.e., Young’s modulus Y is given by

Longitudinal stress

- Longiludinal strain

Its unit is dyne/cm? or newton /m?.

Q.2 What is longitudinal stress?
Ans. lts is the force applied along the length of an object (usually wire) per unit area of cross section.

Q.3 What is longiludinal strain?

Ans. It is the elongation in length of the object per unit original length. So, it is a pure ratio and has no
unit.

Q.4 What is elasticity?

Ans. Itis the property of a solid material due to which a solid body changes its shape and size under action
of a deforming force, but recovers its original configuration when the forces is removed.

Q.5 What is elastic limit? Explain it with a diagram.

Ans. It is the maximum stress, which a solid body can sustain without undergoing any permanent
deformation. The elastic limit is shown in the following diagram.

T

Elongation
X

\
\
\
\
\
\
\
\
}
F Applied force, F

The value F, of the applied force indicates the elastic limit.
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Q.6 While measuring, which quantity in the above experiment would you take utmost care of and why?
Ans. One should be very careful while measuring the length and depth of the bar because these appear in
the expression with power 3. A small error in their measurement will cause a large error in the calculation of
Young’s modulus Y.

Q.7 What is the nature of the load depression graph? Why should it pass through the origin?

Ans Itis astraight line. As zero load produces zero depression, the straight line passes through the origin.
Q.8 If the experiment is performed with a wire what will happen to the diameter of the wire if the length
increases? What is the relevant elastic constant called?

Ans The diameter of the wire will decrease. The relevant elastic constant is called Poisson’s ratio.

Lateral strain
Longitudinal strain

Poisson’s ratio =

Q.9 What is the unit of Young’s modulus and Poisson’s ratio?

Ans  The unit of Young’s modulus is dynes/cm” and that of Poisson’s ratio is none because it is a pure a
ratio, hence a pure number.

Q.10 On what factor does Young’s modulus depend? Will its value be different if a thicker bar is used?

Ans Young’s modulus depends only on the material of the bar. The material remaining the same, Young’s
modulus will be same whether the bar is thicker or thinner.

Q.11 What is Hooke’s Law?
Ans This law states that stress is directly proportional to strain.

EXPERIMENT NO. 7

Aim Determination of modulus of rigidity of the material of a rod by statical method.
Apparatus Rigidity measuring apparatus, screw gage, slide calipers, weights and meter scale.

Theory The modulus of rigidity of the material of the rod is given by

_1801dg tm
2 L9
where [ = effective length rod = [, — [,

g = acceleration due to gravity,
d = diameter of the pulley,
r = radius of the rod,
m = mass of the weight placed at pan,
and ¢ = angular twist = 6, ~ 6,.
The effective length [ of the rod is the distance between two marked positions /; and /,. And ¢ is the twist
of the length / which is the difference of the twists of the positions /; and /, given by 6, and 6, respectively.
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Procedure

Basic Engineering Physics

1. Measure the radius of the rod with the help of a screw gauge.

. Measure the diameter of the pulley with the help of a slide calipers.

2
3. Note the value of the effective length from the scale attached.
4

. Put weights in the pan in steps of 0.5 kg. Determine the values of 6, and 6, from the protractors
attached to the rod. Similarly take the reading while unloading. Take the average of loading and
unloading values.

5. Repeat Steps 3 and 4 for another value of effective length.

6. Draw a graph of the angular twist versus the load for each value of the effective length.

Measurement
Effective length of the rod /= ... cm
Diameter of the rod 2r = ... cm

Diameter of the pulley d = ... cm

Observations
Table D1.7a Measurement of twist for [ = x em.
No. of obs. Load increasing Load decreasing Average angle 0=
Load (degree) (degree) (degree) (degree) 0, ~6
(kg) )~ 0,
0, + 07 0, + 0, |(degree)
0] 0 o7 | o 6=—5— | 6=———
2 2
1
2
8
Table D1.7b  Measurement of twist for [ =y cm.
No. of obs. Load increasing Load decreasing Average angle
Load (degree) (degree) (degree) (degree)
(kg) g 4 8 8 0,~0,
0, + 67 0, + 6", |(degree)
0] 0 o7 0 6=—5— | 6=—>—
2 2
1
2
8
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Graph Plot two graphs for two values of . Plot ¢(= 68, ~ 6,) versus load.
Calculations

Percentage Error

Discussions

Aids to Viva Voce

Q.1 What is a rigid body? Is there any perfectly rigid body in nature?

Ans It is a body which does not undergo any deformation on application of a deforming force on it.
There is no body in nature which can be called a perfectly rigid body.

Q.2 What parameter is used to express the level of rigidity?
Ans The modulus of rigidity is used to express the level of rigidity of a material body.
Q.3 Why is this method of determination of modulus rigidity called statical method?

Ans A method of performing an experiment is called statical method when all the parameters used are
statical. In the present experiment the related physical quantities (i.e., parameters) are all statical, so it is a
statical method.

Q.4 What is a statical parameter or statical physical quantity?

Ans Itis a parameter which can be measured only when the body under observation remains static.
Q.5 What the unit of angle in different systems of measurement?

Ans The unit of measurement of angle in all systems of measurement is the radian like that of time.

Q.6 What is radian?
Ans. It is the amount of angle subtended by an arc of a circle at the center, which is equal in length to the
radius of the circle.

Q.7 In the CGS system of measurement, the unit of angle is radian but you are measuring the angle in
degrees and using it directly in the formula. So, will your result not be wrong?

Ans. No, because the formula of the experiment has been modified in such a way that it will be automati-
cally converted to radian.

Q.8 What is the practical unit of measurement of an angle.
Ans. Degree is the practical unit of angle. (180° = & radian).

Q.9 In the equation of the modulus of rigidity the length and radius of the rod are involved. What change in
the value of the modulus would you find when the quantites are changed?

Ans. No change; because the modulus of rigidity depends on the material and not on the length or radius.

Q.10 Does temperature have any effect on the modulus of rigidity of a rod?
Ans The modulus of rigidity decreases with the rise of temperature (Also see Aid to Viva Voce of
Experiment No. 8).
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EXPERIMENT NO. 8

Aim To determine the modulus of rigidity of the material of a wire by dynamical method.
Apparatus A torsional pendulum, a cylindrical mass, slide calipers, screw gauge and stop-watch.

Theory The time period of oscillation of a trosional pendulum is given by

T=27r\/g (1)

where [ is the moment of inertia of the pendulum bob, C is the moment of the torsional couple per unit angle
which again can be expressed as

nmrt

¢ 2L

(2)

where 1 is the modulus of rigidity of the material of the wire of the torsional pendulum, r is its radius and
L is the effective length. For a cylindrical bob the moment of inertia is given by

1 2
I =— MR
> 3)

where M and R the mass and radius of the cylinder.
From Egs. (1), (2) and (3) the modulus of rigidity can be determined as

8L (1 2)
= — MR
T2r4 2

where T° = T? ~ Tg = The difference of the squares of the time periods with and without putting the cylindrical
mass on the platform of the pendulum.
Procedure
1. Measure the radius of the wire at several places with the help of a screw gauge.
Measure the effective length of the pendulum.
Measure the diameter of the cylindrical bob with the help of a slide calipers.
Mass of the cylinder is usually supplied.

A

Rotate the cylindrical bob at a small angle about the suspension wire having put it on the pan and
then leave it to oscillate freely. This will initiate a torsional oscillation in the bob. Measure the time
period of this oscillation (77) with the help of a stop-watch.

6. Repeat Step 5 without putting the bob on the platform. Measure the time period 7.
7. Repeat Steps 5 and 6 two more times.

Measurements
Diameter of the suspension wire d =2r = ...
Length of the suspension wire [ = ..
Mass of the cylinder M = ...
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Observations

Table D1.8a Time period of oscillation (with the cylinder on the pan).

No. of obs. No. of oscillations Time taken for n Time period T = t/n Mean time period
observed (n) oscillation t (second) (second) (second)
1
2
3

Table D.8b Time period of oscillation without the cylinder on the pan

No. of obs. No. of oscillations Time for n Time period T = t/n Mean time period
observed (n) oscillation t (second) (second) (second)
1
2
3
Results

Percentage of Error

Discussions

Aids to Viva Voce

Q.1 What is modulus of rigidity?
Ans It is the ratio of shear stress to shear strain.

Q.2 What are shear stress and shear strain?

Ans  Shear stress is the tengential force per unit area while shear strain is the change in angle per unit origi-
nal angle.

Q.3 What is a torsional pendulum?

Ans Itisadevice consisting of a disc mounted on one and torsionally flexible elastic wire whose other end is
held fixed. If the disc is twisted and released, it undergoes oscillatory motion, provided the torque in the wire
is proportional to the angle of twist.

Q.4 What is moment of inertia?

Ans It is the sum of the products formed by multiplying the mass of each element of a body by the square
of its distance from the axis of rotation [/ = /rzdm].

Q.5 What is a dynamical physical quantity or parameter?

Ans It is a physical quantity which is related to the motion of a body. For example, velocity, acceleration,
etc.

Q.6 Why is this method of determination of modulus of rigidity called dynamical method?

Ans A method of determination of a physical quantity is called dynamical method if at least one of the
physical parameters involved is dynamical. In this experiment the time period of oscillation is a dynamical
physical parameter and for this reason it is a dynamical method.
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Q.7 Which quantity in this experiment should be measured with greatest care?

Ans. The radius of the wire should be measured with greatest care because it appears in the formula with
fourth power. A small error in the measurement of radius will increase the error in the final result fourfold.

Q.8 Should you take a large number of oscillations or a small number will do?

Ans. If a smaller number of oscillations is taken, the time involved will be smaller and the corresponding
to the error in determining the time will be greater. On the other hand, if a large number of oscillations is
taken the process will be unnecessarily lengthy. So the number of oscillations should preferably be restricted
somewhere between 20 and 30.

Q.9 Is it necessary that the oscillations have small amplitude like a simple pendulum? If not, why?

Ans There is no restriction on the amplitude of oscillation, particularly when the wire is fairly thin and long,
provided the elastic limit is not crossed over.

Q.10 What is the harm if the suspension wire does not coincide with the axis of the cylinder?
Ans In that case, the rotation of the cylinder will not take place with the suspension wire, as axis and the

formula (I = % M Rz) for the determination of its moment of inertia will not apply.

Q.11 Should the wire of suspension be long?

Ans It should be fairly long. In which case the time period will be longer (Also see the Aids to Viva Voce
of Experiment No. 7).

EXPERIMENT NO. 9

Aim To determine the dispersive power of the material of the given prism.
Apparatus Spectrometer, prisms, mercury vapor lamp and spirit label.
Theory The dispersive power of the material of a prism is given by

P,= My — Hy
u-1
where,
U, = refractive index of the material of the prism for blue color,
U, = refractive index of the material of the prism for red color, and

U = average of 1, and U,.

Prism table




Experiments D1.27

B C

Fig. D1.9(a) Experimental set-up of dispersive power of the material of a prism. (b) Angle of minimum
deviation of red, yellow and violet light.

Refractive index for blue color is given by

. (A + 5mb
sin

o =—5n@an)

and that for red color is given by

| (A + 6m,)
Sin 2

Hr="gn@an)

where, §,,, and J,,, are the angles of minimum deviation for blue and red color, respectively, and A is the angle
of the prism.

So, the dispersive power of the material of the prism is given by
Uy — W,
Pj=——
d ‘ub + U, -1
2

Procedure
1. Measure the vernier constant of the spectrometer.

2. Level the spectrometer. Switch on the light source. Adjust the width of the slit so that it is narrow
enough but bright. Place the prism on the prism table with one refracting side of the prism facing the
collimator and the other side facing the telescope. Adjust the collimator and the telescope for parallel
rays using Schuster’s method.

3. Turn the prism table and adjust the telescope to bring the cross-wire to the minimum deviation
position of the bright blue line. Take readings from both the scales (i.e., scales at two sides of the
spectrometer).

4. Repeat Step 3 for the bright red line.

5. Remove the prism from the prism table. Rotate the telescope to bring the cross-wire on the direct
light beam. Take readings from the scales of both sides. The difference between the readings in
Step 3 and this step will give the value of the minimum deviation for blue light. And the difference
between the readings in Step 4 and this step will give the minimum deviation for red light.
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6. Place the prism on the prism table facing the collimator in such a way that the light rays fall on
both the transparent faces equally and get reflected from these faces. Rotate the telescope to get the
reflected rays from one of the faces and take readings. Move the telescope to receive the reflected
ray from the other face and take readings. Difference of these two readings will be equal to twice the

angle of the prism.
Observations

1 smallest div. in. MS
No. of div. in VS

Vernier constant =

Table D1.9a Determination of minimum deviation angle.

Color of Vernier — 1 Vernier — 11 Mean

light

'8 MSR | VSR | ToalV, | 8,=V,~V,, | MSR | VSR |TotalV, | &,=V,~V,, | (unit)
(unit) (unit) (unit) (unit) (unit) (unit)

Blue

Red

Direct Voi Voo

Table D1.9b  Determination prism angle.

No. of Reading with telescope on Reading with telescope on

vernier left side (R;) right side (R,) 2A=R;~R, | Mean 2A
MSR VSR Total MSR VSR Total unit unit
(unit) (unit) (unit) (unit)

Vernier I

Vernier 11

Calculation

Percentage Error

Discussions

Aids to Viva Voce

Q.1 What is a spectrometer?
Ans Itis an optical instrument for studying a spectrum. For example, spectrum of a prism . A spectrometer
has the following four parts: (i) collimator, (ii) telescope, (iii) prism table and (iv) circular scale.

Q.2 Why is sodium light used in this experiment? Can any other light be used?
Ans Sodium light is monochromatic and can be easily produced. This is the reason why sodium light is
used. As a matter of fact, any monochromatic light can be used.



Experiments D1.29

Q.3 Why are telescopes and collimators focussed for parallel rays?

Ans If the incident rays are either converging or diverging but not parallel, the distance of the image from
the prism will vary with the change of position of the prism. As a result if the image is focussed at a given
position of the prism, it will be out of focus in another position. But if the collimator and the telescope are
focussed for parallel rays, the image will remain focussed in all positions of the prism.

Q.4 How does wavelength change between red and violet? What about change of frequency?

Ans The wavelength (4) of red light is the longest while that of violet light is the shortest. On the other
hand, frequency (v) of red light is the shortest and that of violet is the longest.

Q.5 How do crown and flint glasses compare with respect to dispersion?

Ans Flint glass being denser than crown glass produces more dispersion. Hence, a flint glass prism is pref-
erable in the experiment of measurement of dispersive power.

Q.6 What is dispersion of light ?
Ans Itis the act of splitting the various color components of light by using a prism and a spectrometer. The
split rays of different colors is seen in a spectrum.
Q.7 What is dispersive power of an oplical element? On what factor does it depend?
Ans Itis a measure of the power of a medium to separate different color components of light.
It is given by
=M b+l

= 1 where u =

The dispersive power of a device (like prism) depends on the material of the device.

Q.8 Is dispersive power of a material constant?

Ans. No it depends on the range of wavelengths considered. Dispersive power of a material for the range
between the two wavelengths A, and A, will not be equal to that for the range between the wavelengths 4,

and A;.
Q.9 What do you mean by irrational dispersion?
Ans Let us take two prisms of the same refracting angle but made of different materials. While light is
incident on both of them and their spectra are received side by side on the same screen. The spectra will be
found to possess the following characteristics:
(i) Although the screen is placed at equal distances from the prisms, yet their spectra are not of same
width.
(i) Even if the extreme colors, viz. red and violet of the two spectra are made to coincide, the other (inter-
mediate) color will not coincide, i.e, one spectra is not an exact duplicate of the other. For these special
features of the prism spectrum, the dispersion produced by a prism is called irrational spectrum.

Q.10 How can you get rational dispersion?
Ans We can get rational dispersion by dispersion grating.
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EXPERIMENT NO. 10

Aim To determine the wavelength of sodium light by using Fresnel’s bi-prism.

Apparatus Optical bench with four uprights, sodium vapor lamp, bi-prism, convex lens, slit and eye-piece
with a micrometer.

Bi-prism Lens Eye-piece
I o [
Slit ﬂ
——] —] —] —{]
1 2 3 4
N N
\ /

(@)

Eye-piece

N

}4 D

Y

(b)
Fig. D1.10 (a) Optical bench (b) Formation of fringes with a bi-prism.

Theory Light rays from sources (Fig. D.10(b)) appear to be diverging from the two halves of the Fresnel’s
bi-prism leading to the formation of two virtual images S; and S,. Light rays from the two virtual images
interface on the focal plane and form alternating dark and bright fringes. And the fringe-width is given by

(D
-~ d
_de
or, A= D (D)

where, A is the wavelength of sodium light, D is the distance between the virtual source S; and S, and the
screen (i.e., the eye-piece of the micrometer) and d is the distance between S, and S,.
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If a convex lens is placed between the eye-piece and the bi-prism and its position is changed, then for two
positions real images of the virtual sources can be seen through the eye-piece. In these two positions, if the
separations between the real images are d; and d,, then one can have

d = \d1d2 ...(2)
Equation (1) can be used as the working formula.

Procedure

1. Make the bed of the optical bench horizontal by adjusting it with the help of a spirit level and leveling
SCrews.

2. Bring the centers of the slit, the bi-prism and the eye-piece at the same height.
3. Move the bi-prism close to the slit.

4. The eye-piece is focused on the cross-wires which are usually at right angles to each other. The cross-
wires are turned till one of them appears vertical to the observer’s eye.

5. Make the central edge of the bi-prism parallel to the slit. Make the slit narrow and get it illuminated
with sodium light.

6. Look through the eye-piece and see whether a bright patch is seen or not. If it is not seen, then rotate
the top of the upright (carrying the bi-prism) about the vertical axis and move the upright a little at
right angle to the bench so as to bring the bright patch in the field of view.

7. Rotate the bi-prism in its own plane by the tangent screw till the fringes are seen and become quite
clear. Now, the edge of the bi-prism has become parallel to the slit.
Measurement of the fringe width (x)
(i) Determine the list count of the eye-piece.

(i1) Adjust the distance of the eye-piece till the fringes appear quite distinct and broad enough to count
them.

(ii1) Set the vertical cross-wire on one of the bright fringes and note the reading on eye-piece scale.
(iv) Then set the cross-wire on consecutive 20 fringes and take both main scale and micrometer
readings.

Measurement of D The distance between the slit and the eye-piece gives you the measure of D, or D,
depending on the case.
Measurement of d

(1) For this part, keep the distance between the eye-piece and the slit slightly more than four times the
focal length of the convex lens. Do not alter the positions of the slit and the bi-prism.

(i1) Introduce the convex lens between the bi-prsim and the eye-piece and place it near the eye-piece.
Move the lens towards the bi-prism till two sharp images of the slit are seen.

(iii) Measure the distance d; between two images of the slit by the eye-piece micrometer.
(iv) Move the lens towards the bi-prism till two images are seen again.
(v) Measure the distance d, between these two images.

(vi) For measurement of d; and d, use a lens of good quality so that the images become free from chro-
matic defects.

(vii) Carry out the measurement of d, and d, with great accuracy because even a slight error in this measure-
ment can considerably adversely affect the result.
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Observations Least count of the micrometer is given by

Table D1.10a

LC =

1 division of micrometer _ /

Measurement of fringe width x.

No. of division of the CS ~ 7

No. of Micrometer reading (a) 1\{0. of Micrometer reading (b) Width for| Mean | One fringe
fringe s | MS VS Total | fringes MS VS Total | 10 fringe | width for width
(a) (cm.) (b) (cm)| (a~b) |10 fringe
w x = (W/10)
(cm) (cm) (cm)
1 11
2 12
3 13
4 14
5 15
6 16
7 17
8 18
9 19
10 20
Measurement of D
Position of upright carrying slit = ... cm
Position of upright carrying eye-piece = ... cm
Observed value of D: cm
Table D1.10b Measurement of d = +d;d, .
SL. Micrometer reading d=
No.
]stP .. 2ndP )
osition of lens osition of lens 4, d,d, Mean
Image 1 Image 2 d; Image 1 Image 2 cm | cm. d
MS | VS | Total | MS | VS | Total | cm | MS | VS | Total | MS | VS | Total cm
(cm) (cm) (cm) (cm)
1.
2.
Calculations

Percentage of Error

Discussions
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Aids to Viva Voce

Q.1 What is interference of light?
Ans See Aids to Viva Voice of Experiment No. 1.

Q.2 What are the required conditions for interference of light?
Ans See Aids to Viva Voce of Experiment No. 1.

Q.3 What are coherent sources?

Ans These are sources in which there is a constant phase difference between waves emitted from different
parts of the source.

Q.4 How are the coherent sources produced?

Ans Coherent sources are produced by placing two parallel slits in front of a real source of monochromatic
light. In the present experiment, the two virtual images s, and s, of the slit s (acting as real source) act as two
coherent sources. They are produced by refraction at the two halves of the bi-prism.

Q.5 Where are the fringes formed in this experiment? What types of fringes are they?

Ans The fringes are produced any-where in the space where the two beams superpose. These are called
non-localized fringes.

Q.6 What will happen if the slit is illuminated by white light?

Ans The fringes except the central band will be colored. The central band will be white. The colored bands
will have red on the outside and violet on the inside.

Q.7 Are the dark and bright fringes equally spaced?
Ans Yes; that is a characteristic of the fringes produced by a bi-prism.

Q.8 Why do you not take measurements with dark fringes?

Ans Measurements can be done by setting the cross-wire in the middle of dark bands but such setting is
more difficult and entails a greater probability of error than its setting in a bright fringe. This is why measure-
ments are not done with dark fringes.

Q.9 What will happen if the slit and the edge of the prism are both turned horizontal instead of being turned
verlical?

Ans Fringes will be formed in the vertical direction. A micrometer screw, capable of moving in a horizontal
direction only, will not be able to measure the width of such fringes.

Q.10 Do you know any other method, based on interference, for determining the wavelength of light?

Ans Yes; Lloyd’s mirror method, Newton’s ring method, Michelson’s interferometers method are the other
methods, based on interference of light, which may be employed to determine the wavelength of light.






APPENDIX

Useful Physical Constants

Rest mass of electron
Charge of electron
Specific charge of electron
Rest mass of proton
Charge of proton

Speed of light in vaccum
Planck’s constant
Boltzmann constant
Universal gas constant
Gravitational constant
Avogadro’s number
Refractive index of water
Refractive index of glass
Viscosity of water (20°C)
Standard atmospheric pressure
Bohr radius

Compton wavelength of electron
Permittivity of free space
Permeability of free space
Slefan’s radiation constant
Rydberg constant

Young’s modulus of steel

9.1x 107" kg
-1.6x 10" ¢

1.758 x 107! c/kg
1.673 x 10" kg
+1.6x10"7¢

3 x 10% m/s

6.63 x 1074 Js

1.38 x 107 J/K
8.314 J/(k mol)
6.6720 x 10" Nm%/kg*
6.023 x 10% mol™
1.33

1.50

1.002 x 10~ Ns/m?
1.013 x 10° Nm™
529%x 10" m=053 A
242%x 10" m

8.85 x 1072 F/m
47 x 107 H/m

5.67 x 107 w/m? K*
1.09737 x 10" m
2.1x 10" Pa






Model Question Papers

MODEL QUESTION PAPER -1

Group A

Multiple-Choice-Type Questions

1. Choose the right alternatives for any ten of the following:
(1) For a particle executing S.H.M. the phase difference between displacement and velocity

i/ V1
@ 7 () 0 © 3 @ 7
(i) The quality factor of a series L-C-R circuit is
W ® % CRt @ RLC
(iii) Two sources will be coherent if they
(a) have constant wavelength (b) have a constant phase difference
(c) have a constant amplitude (d) None of these

(iv) The resolving power of a grating, having N number of total rulings in n™ order is
(a) % (b) nN (c) g (d) None of these

(v) Optic axis is a direction along which

(a) the ordinary ray travels faster than the extraordinary ray
(b) the extraordinary travels faster than the ordinary ray
(c) both the extraordinary and the ordinary ray travel with same velocity
(d) None of these

(vi) Inlasing action, the spontaneous emission does not depend on
(a) the number of atoms present in the excited state
(b) the intensity of the incident light
(c) Both of them
(d) None of these

(vii) If a hologram breaks into pieces, each piece can reproduce
(a) the entire image (b) the halfimage (c) one third image (d) one fourth image
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(viii) The de Broglie wavelength of a moving electron subjected to a potential V is

1.26 12.26 ¢ 12.26 ¢ 12.26 ¢
—A b) —/—A ——A d —/—A
(a) N7 (b) 7 © — (d) 7

(ix) The wavelength of which the spectral energy density of emitted radiation at temperature 7 from
a black body attains maximum value proportional to

@ () T © 1 @ r*
(x) Origin of continuous x-rays is due to the process of
(a) ionization (b) inner orbital transition
(c) bremsstrahllung (d) None of these
(xi) The number of Bravais lattices are
(a) 12 (b) 14 (c) 13 (d 10
(xii) In the recording of the hologram one superimposes
(a) object wave and reference wave (b) two object waves
(c) two reference waves (d) None of these
(xiii) The product of group velocity (v,) and phase velocity (v,) of de Broglie waves is
(a) ¢ (b) c? (c) lessthan ¢ (d) None of these
(xiv) Uncertainty principle is the consequence of
(a) wave nature of particle (b) wave particle duality
(c) particle nature of wave (d) particle-particle interaction

Group B

Short-Answer-Type Questions

Answer any three of the following.

2. Write down the differential equation of a series LCR circuit driven by a sinusoidal voltage. Identify
the natural frequency of this circuit. Find out the condition that this circuit will show an oscillatory
decay and find out the relaxation time.

3. (a) Define temporal and spatial coherence.

(b) In a Newton’s ring experiment the diameter of the 4" and 120 rings are 0.4 cm and 0.7 cm
respectively. Find the diameter of the 20" dark ring. [0.908 cm]

4. (a) What is population inversion? Explain
(b) What are the basic principle of holography?
5. (a) Show that in cubic crystal of side a the interplaner spacing between consecutive parallel planes
of Miller indices (hkl) is
a
Ay = N awrs s
VR: + 12 + 1
(b) Can x-ray be diffracted from a single slit of width 0.1 mm? Explain.

6. Draw a neat diagram of ruby laser. Discuss the operation of a ruby laser with the help of energy
diagram.
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Group C

Long-Answer-Type Questions

Answer any three questions.

7.

10.

11.

(a)

(b)
(©)
(d)

(e
(@)
(b)
(©
(d)

(a)

(b)

()

(d)

(a)
(b)

©)
(d
(e
(@)
()
(©

In a Young’s double-slit experiment, the angular width of a fringe found on a distant screen is
0.1°. The wavelength of light used is 6000 A. What is the spacing between the slits?

[3.44 x 107 cm]
Show that interference phenomenon does not violate the principle of conservation of energy.
What is meant by the resolving power of an optical instrument?

Calculate the minimum number of lines in a grating which will just resolve the lines of wave-
lengths 5890 A and 5896 A in the second order. [491]

Discuss the phenomenon of double refractions.

Write down Planck’s radiation law and hence obtain Wien’s displacement law.
Why do unmodified lines appear in compton scattering?

Show that a free electron at rest cannot absorb a photon.

Show that the de Broglie wavelength for a material particle of rest mass mand charge g associ-
ated from rest through a potential difference of V volts relativistically is given by

h

qV %)
1+ 2)]
2myc

Describe the Davisson and Germer experiment giving emphasis on the interpretation of the
result of the experiment.

2myqV

The maximum uncertainty in the position of an electron in a nucleus is 2 x 107"*m. Find the
minimum uncertainty in its momentum, given /# = 6.63 x 10734 s. [212.6 x10 kg ms™']

What do you mean by Bravais lattice? Find the Miller indices of a plane which intercepts at

a, g, 3c in a simple cubic unit cell.

Starting from de Broglie’s hypothesis show that the group velocity associated with particle is the
same as the particle velocity.

Define Einstein’s 4 and B coefficients and deduce their mutual relation.

If the wavelength of radiation of a ruby laser is 694.3 nm, what is the energy of the photon emit-
ted? [1.787 eV]

Define metastable state.

Why is laser needed for holography?

State some of the applications of holography.

Define free vibration. Can a real vibrator vibrate completely freely. If not why?
What is the difference between amplitude resonance and velocity resonance?
What is the vital-factor (quality factor) of a forced oscillator?
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(d) A voltage having r.m.s value V= 100 volts is applied to a series resonant circuit with resis-
tance R = 10 €, inductance L = 10 mH and capacitance C = 1 uF. Calculate the natural frequency
and current at resonance in the circuit.

(e) Ify=fi(x—vt)+f, (x + vf) where f; and f, are the two functions then show that y satisfies wave
equation.

MODEL QUESTION PAPER -2

Group A

Multiple-Choice-Type Questions

1. Choose the right alternatives for any ten of the following:
(1) The time period (7) of a damped vibration is

(@) —2F ) —2F_ (©) 27\We—F  (d) None of these

\/2k2 - wg w02 — i

(ii) If visible light is used to study the Compton effect then Compton shift will be
(a) negative (wavelength of the scattered light will be lesser)
(b) more positive than what is observed with X-ray
(c) zero
(d) positive but not detectable in the visible window
(iii) Origin of continuous X-ray is due to the process of

(a) ionization (b) inner orbital transition
(c) bremsstrahlung (d) None of these
(iv) In aruby laser, population inversion is achieved by
(a) optical pumping (b) inelastic atom-atom collisions
(c) chemical reaction (d) applying strong electric field.

(v) A stone is dropped from the top of a building. What happens to the de Broglie wavelength of the
stone as it falls?

(a) it increases (b) it decreases (c) remains constant (d) de Broglie

(vi) Assuming that the atoms in crystal are spheres of equal size and touching each other, it can be
shown that atomic radius of bcc is equal to

a a a a
= b) V3 — 3= d) —
@ 3 (b) 3% © V35 @ 25
(vii) Holography is a method in which one
(a) record the amplitude only (b) records the phase only

(c) not only records the amplitude but also the phase of the light wave
(d) None of these
(viii) Davision and Germer studied electron diffraction with nickel crystal and found a first-order peak
at 65° with electron beam of 54 eV. If, instead a 216 eV beam were used them the peak would
have been at

(a) 27° (b) 54° () 130° (d) 260°
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(ix) A lightray is passing through a calcite crystal. If the plane of vibration of the light ray is perpen-

dicular to the optical axis then the ray
(a) is an O-ray (b) is an E-ray
(c) has both non-zero O and E components (d) cannot propagate through the crystal.
(x) The color of the laser output in case of ruby laser.

(a) violet (b) blue (c) red (d) green
(xi) The fringes in Young’s double slit experiment are

(a) equally spaced (b) not equally spaced

(c) partially equally spaced (d) None of these

(xii) Missing order in the interference maxima in Fraunhofer double-slit pattern occurs if the

(a) slit width is decreased

(b) slit width is constant, but the slit separation is increased
(c) slit width increased

(d) None of these

(xiii) Wien’s displacement law could explain the distribution of thermal radiation in the spectrum of

black body radiation in the region of

(a) higher wavelength (b) lower wavelength
(c) middle wavelength (d) None of these
(xiv) Uncertainty principle has significance only in
(a) macroscopic world (b) microscopic world
(c) both macroscopic and microscopic world (d) None of these

Group B

Short-Answer-Type Questions

Answer any three of the following.

2.

Establish the differential equation of simple harmonic motion. A point mass m is suspended at the
end of a massless wire of length / and cross-sectional area A. If the Young’s modulus of elasticity of
the wire be Y then obtain the frequency of oscillation for the simple harmonic motion along the verti-
cal line.

. Do interference phenomena violate the principle of conservation of energy? What happens to fringe

width if the double slit set up is immersed in water?

In a lasing process, the ratio of population of two energy states £, and E, (E, being a metastable state)
is 1:1.009 x 10%. Calculate the wavelength of the laser beam at a temperature of 320 K.

. A beam of x-rays of wavelengths 0.842 A is incident on a crystal at a glancing angle of 8° 35’, when

first-order Bragg’s reflection occurs. Calculate the glancing angle for the third-order reflection.

Derive an expression for Compton shift in wavelength for a photon scattered from a free electron at
an angle 6.
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Group C

Long-Answer-Type Questions

Answer any three questions.
7. (a) Define logarithmic decrement. And derive a relation for it.

(b) In a Newton’s ring experiment, the diameter of 5™ dark ring is 0.336 cm and the diameter of the
15™ dark ring is 0.590 cm. Find the radius of the plano-convex lens if the wavelength of the light
used is 5890 A.

(c) Plot a intensity distribution curve for Fraunhofer diffraction due to single slit and find the posi-
tions of maxima and minima.

(d) Define the resolving power of microscope.

8. (a) Whatis the difference between the natures of ordinary and extraordinary rays of light when they
pass through positive and negative crystals?

(b) Describe in brief, the working principle of laser?
(c) Explain He-Ne laser with energy level diagram.
(d) What is holography? Explain the process of recording and reconstruction of hologram.

9. (a) State clearly, explaining all the terms, the Plank’s law, Rayleigh—Jeans law and Wien’s displace-
ment law for radiation. Find out the two limits at which the Planck’s formula reduces to the other
two.

(b) What is matter wave?
(c) What is the experimental evident in favour of de Broglie hypothesis of matter waves?
(d) State and explain the Heisenberg uncertainty principle.

10. (a) Define atomic packing factor. Calculate it for BCC and FCC structure.
(b) Draw the planes and directions denoted by (100) (110) and (102) of a cubic structure.
(c) Distinguish between continuous and characteristic x-ray spectra.

(d) Calculate the minimum energy of a photon for its existance with in the nucleus of diameter
107 m.

(e) Discuss the significance and importance of uncertainty principle.

MODEL QUESTION PAPER - 3
Group A

Multiple-Choice-Type Questions

1. Choose the right alternatives for any ten of the following:
(1) If w,is the natural frequency of a body and k is the damping constant, then its quality factor is

20,
(@ aw,lk (b) T

w()
(© % (d) none of these



(i)

(iii)

@v)

v)

(vi)

(vii)

(viii)

(ix)

)

(x1)

(xii)

Model Question Papers M1.7

In Young’s double slit experiment, coherent waves are produced by means of
(a) division of wave front (b) division of amplitude
(c) refraction (d) None of these

Optic axis is a direction along which
(a) the extraordinary ray travels faster than the ordinary ray
(b) the ordinary ray travels faster than the extraordinary ray
(c) both the extraordinary ray and the ordinary ray travel with same velocity
(d) None of these

The Miller indices are used for
(a) identifying crystal direction (b) notation of crystal planes
(c) notation of different crystals (d) identifying the density of packing

The de Broglie wavelength of a particle with momentum p is
2

h 2 i h
@ 5 ® © 5 @

Number of oscillation modes for the electromagnetic standing waves of frequency v and v + dv
or the cavity radiation is proportional to

@) v (b) © v @ S
In Fraunhofer diffraction minima are
(a) all perfectly dark (b) never perfectly dark
(c) perfectly bright (d) None of these
In case of laser, variation of divergence of a laser beam with distance gives us an idea about its
(a) brightness (b) coherence
(c) monochromaticity (d) directionality

Which of the following wavelengths falls in the x-ray range?
(a) 1 nm (b) 100 nm (¢) 0.001 nm (d) 1000 nm
The virtual image in holography is known as
(a) pseudoscopic image (b) orthoscopic image
(c) photocopy (d) None of these
Compton effect is observed if the target electron is
(a) free
(b) bound to the nucleus
(c) binding energy is very small compared to the energy of the incident photon
(d) None of these
In case of FCC structure, coordination number is
(a) 8 (b) 12 (©) 5 (d) 6
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Group B

Short-Answer-Type Questions

Answer any three of the following.

2. Starting from the equation of plane progressive wave in one dimension, derive the differential equa-
tion of the wave.

3. In a He-Ne laser transition from 3S to 2P level gives a laser emission of wavelength 632.8 nm. If the
2P level has energy equal to 15.2 x 107" J, calculate the pumping energy required. Assume there is
no loss.

4. If the energy levels of K, L and M state of Pt are 78 KeV, 12 KeV and 3 KeV respectively. Calculate
the wavelength K, and K lines emitted from platinum.

5. What is the minimum number of lines of a grating which resolves the 3" order spectrum of two lines
having wavelengths of 5890 A and 5896 A.

6. What is the minimum kinetic energy of the recoil electron?

Calculate the maximum energy transferred by the photon to the electron. Is it possible for a photon
to transfer its whole energy to the electron?

Group C

Long-Answer-Type Questions

Answer any three questions.

7. (a) In a one-dimensional motion a mass 10 gm is acted on by a restoring force 10 dynes/cm and a
restoring force 2 dynes/cm. Find

(1) whether the motion is a periodic or oscillatory.
(i1) the resistance force per unit velocity which will make the motion critically damped.
(iii) the mass for which the given forces will make the motion critically damped.

(b) 9 kg of hg is poured into a U-tube of uniform internal diameter of 1.2 cm. It oscillates freely
about its equilibrium position. Calculate the period of oscillation.

8. (a) Write down short note on Bravais lattice and Miller indices.

(b) What do you mean by x-ray spectrum? Draw continuous x-ray spectra for different applied
voltages.

(c) An x-ray tube is operated at 50 kV. Find the maximum speed of the electron striking the surface
of the anode and the shortest wavelength of x-ray produced.

9. (a) Whatis grating element? Find out the relation of grating element with the number of rulings.
(b) What is the Rayleigh criterion of resolution?
(c) Discuss the phenomena of double refractions.

(d) A ray of light is incident on a glass of refractive index 1.732 at the polarization angle. Find (i)
angle of polarization, and (ii) the angle of refraction of the ray.

(e) State Malus law.
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10. (a) Write down Planck’s radiation law and hence prove Wien’s law.

(b) Show graphically, how the energy density versus frequency plot of blackbody radiations is
changed if the temperature is increased.

(c) Describe briefly the Davisson—-Germer experiment. What inferences may we draw from this
experiment?

MODEL QUESTION PAPER - 4
Group A

Multiple-Choice-Type Questions

1. Choose the right alternatives for any ten of the following:
(1) Two mutually perpendicular SHMs with equal time periods but different amplitudes are
superposed. If the phase difference between these oscillations is 45°, then they form a
(a) circle (b) straight line (c) ellipse (d) parabola
(i) The center of the Newton’s rings for the transmitted system of a monochromatic source of light
is
(a) dark (b) partially dark (c) bright (d) None of these

(iii) A plane polarized light of intensity /,is incident on a polarizer. whose axis of polarization is 30°
with respect to the direction of propagation of the incident light. The intensity of light coming
out of the polarizer is

, b V31, 31, q 1,
(@ I, b) — © @ -
(iv) If A, and A are wavelength of L and K x-rays respectively, then
(@) A <Ag (b) A, > Ak (© A=A (d) A, =4A¢
(v) The nearest neighbor distance in the case of BCC structure is
@ 23 () 22 © 2 @ 2
3 3 \3 \2
(vi) The Compton wave length is
h h hm h
@ e () — (©) —— (d) —
0C mg ¢
(vii) The absorptive power of a blackbody is
(@ 1 () 0 (c) 2 (d 3
(viii) In He-Ne laser, the laser light is emited due to the transition from
(a) 3s—>2p () 3s—>3p () 2s>2p (d) None of these
(ix) The reconstruction process in holography produces
(a) avirtual image (b) areal image

(c) both virtual and real image of the object (d) None of these
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(x) Phase velocity and group velocity are equal when the medium is

(a) dispersive (b) isotropic (c) non-dispersive  (d) None of these
(xi) For heavy particle
(@) AxAv,= % (b) AxAv.=0 (©) AxAv,=a () AxAv, = g
(xii) The intensity of principle maxima in the spectrum of a grating with N number of lines is propor-
tional to
(@) (b) N © N @ &
N N2

Group B

Short-Answer-Type Questions

Answer any three of the following.
2. What are sharpness of resonance and Q-factor? Show that the Q-factor is given by

ayL
0= R
in case of series LCR resonant circuit.

3. Sodium Light of wavelength 589 nm and 589.6 nm are made incident normally on a grating having
500 lines per mm. Calculate the angular dispersion of these lines in the spectrum of first order.

4. State and explain Brewster’s law of polarization clearly indicating the nature of polarization of the
reflected and refracted ray.

5. An electron has de Broglie wavelength of 0.15 A. Compute the phase and group velocities of the
de Broglie waves. Find the kinetic energy of the electron.

6. Find the interplanar distance of (110) plane and (111) plane of Nickel crystal. The radius of Nickel
atom is 1.245 A.

Group C

Long-Answer-Type Questions

Answer any three questions.
7. (a) A particle is subject to a harmonic restoring force and a damping force. Its equation of motion is
given by
dx dx
m—=—sx—k—
dl2 dt
Under the condition of critical damping, find the expression for displacement as a function of
time.



(b)
()

(b)
()

(b)
(©)
(d)
10. (a)
(b)

(©)

Model Question Papers Mi111

What do you understand by ‘logarithmic decrement’, ‘relaxation time’ and ‘quality factor’ of a
weakly damping oscillator?

Do interference phenomena violate the principle of conservation of energy?

What are the conditions for sustained interference pattern?

Why two independent source of light of same wavelength cannot produce interference pattern?
Show that intensity distribution for diffraction in a single slit is given by

.2 .
=1, sin” B [where B= I1d sin O
lia A

where the symbols have their usual significance. Deduce also conditions for maxima and
minima.

Why do you need population inversion in a laser?

Obtain a relation between Einstein’s A and B coefficients. What are their physical
significances?

Define holography and hologram.

What are object wave and reference wave?

The energy gap in Geis 0.72 eV. Find the maximum wavelength of a radiation which can cause
transition from the valence band to conduction band.

Derive an expression for Compton shift in wavelength for a photon scattered from a free elec-
tron at an angle 6. At which angle will the shift be maximum?

Show that the de Broglie wavelength of a particle of mass m and kinetic energy Ej is given by

hc

VEg (Ex + 2myc?)

MODEL QUESTION PAPER -5

A=

Group A

Multiple-Choice-Type Questions

1. Choose the right alternatives for any ten of the following:

®

(i)

(iii)

Example of a weakly damped harmonic oscillator is
(a) dead-beat galvanometer
(b) tangent galvanometer
(c) ballistic galvanometer
(d) discharge of a charged capacitor through a resistance.
For constructive interference, the phase difference is an even multiple of

(a) g (b) 21 (O (d) None of these

In Fraunhofer diffraction, the incident wavefront is
(a) plane (b) spherical (c) cylindrical (d) arbitrary shape



@iv)

)

(vi)

(vii)

(viii)

(ix)

x)

(xi)

(xii)

Basic Engineering Physics

When two parellel rays of x-rays of wavelength A, are incident at an angle 0 on a crystal with
lattice separation d, constructive interference would be observed when (n is an integer)

(a) nA=2dsin 0 (b) nA=dsin 6 (¢) nA=dsin26 (d) nA=2dsin206
Miller indices of a plane which has intercepts of 2, 3 and 4 units along the three axes are
(a) (6,4,3) (b) (2,3,4) (© (3,2, 1) d (2,3,2)

All the radiation laws can be shown to be special cases of
(a) Wien’s law (b) Stefan—Boltzmann’s law
(c) Rayleigh—Jeans law (d) Planck’s law
Uncertainty principle is the consequence of
(a) wave nature of particle (b) wave-particle duality
(c) particle nature of wave (d) particle-particle interaction

For holography system the exposure time is of the order of
(a) 5 seconds and depends on the colour of the object
(b) nearly 2 seconds
(c¢) 1 second
(d) 50 seconds

The wavelength of He-Ne laser is
(a) 632.8 nm (b) 600 nm (c) 532.8 nm (d) 500 nm
Number of optic axes in a uniaxial crystal is
(a) one (b) two (c) five (d) ten
If A, and 4, be the relativistic and non-relativistic wavelength of the electron, then
@ 4> 2, ) 4, =4, © Ay> A @ A=

nr
The atomic packing factor for BCC structure is

(a) 74% (b) 68% (©) 52% (d) None of these

Group B

Short-Answer-Type Questions

Answer any three of the following.

2. A cubical block of side L cm and density d is floating in a water of density p (p > d). The block is
slightly depressed and released. Show that it will execute SHM and hence determine the frequency
of oscillation.

3. In an interference experiment d is the distance between the two coherent sources of light with
wavelength A and D is the source screen distance. Show that the separation between the two
consecutive dark bands is given by

_DA
ﬁ_d

4. Calculate the ratio of the stimulated emission to the spontaneous emission at a temperature 300 K
for the sodium D line.
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. Determine the kinetic energy of a particle for which its de Broglie wavelength becomes equal to its

Compton wavelength.

X-rays with 1.54 A are used for the calculation of the d 100 Plane of a cubic crystal. The Bragg’s angle
of first-order reflection is 10°. What is the size of the unit cell?

Group C

Long-Answer Type Questions

Answer any three questions.

7.

10.

()

(b)
(@)
(b)
(©

(d)

(@)
(b)
©)
(d)
(e

(@)
(b)
(©
(d)

Derive an expression for the velocity of a forced oscillator. Discuss the variation of velocity
amplitude with driving force frequency and show its behavior graphically.

Define temporal coherence and spatial coherence?
What is missing order?
what you mean by resolving power of an optical instrument?

A parallel beam of light of wavelength 5890 A falls normally on a plane transmission grating
having 4250 lines/cm. Find the angle of diffraction for maximum intensity in first order.

State Brewster’s law and hence prove that the angle between the reflected and refracted ray is
90°.

Define (i) unit cell, (ii) space lattice, and (iii) basis.

Define atomic packing factor. Calculate it for BCC and FCC structure.

What is white x-ray?

Show that a free electron at rest cannot absorb a photon.

Imagine an electron to be somewhere in the nucleus whose dimension is 10 m. What is the
uncertainty in momentum?

What are the difference between ordinary light and laser light?

What is optical resonator? Discuss it in brief.

Discuss the operation of a ruby laser system with the help of energy diagram.

What is hologram? Explain the process of recording and reconstruction of hologram.






Solved WBUT Questions of 2008

OSCILLATIONS (SHM, FDV and FV)

Group A

Multiple-Choice-Type Questions

1. (i) Two mutually perpendicular SHMs with equal time periods but different amplitudes are super-
posed. If the phase difference between these oscillations is 45°, them they form a

(a) circle (b) straight line (c) ellipse (d) parabola
Ans. (¢)
(i) Motion of a system in critical damped condition is
(a) oscillatory (b) damped oscillatory
(¢) harmonic (d) non-oscillatory

Ans. (d)
(iii) A plane wave travels in a medium in the positive X-direction. The displacements of the particles
are given by,
y(x, ) =10sin 27 (¢ — 0.2 x)
where x and y are measured in metre and ¢ in seconds. The wavelength of the wave is
(a) 0.2m (b) Sm (©) 2r m (d 04m
Ans. (b)

Group B

Long-Answer-Type Questions

1. A particle is subjected to a harmonic restoring force and a damping. Its equation of motion is given
by
m d_zx =—sx—k dx
d dt
Under the condition of critical damping, find the expression for displacement as a function of time.
You can justify why this condition (critical damping) corresponds to the fastest non-oscillatory
decay?

Ans. Refer to Section 2.4 of Chapter 2.



S1.2

2.

Ans.

Basic Engineering Physics

Establish the equation of a forced harmonic oscillator. Solve this equation to obtain the amplitude
of steady state oscillations. What is Q-factor of a forced oscillator? The amplitude of an oscillator of

th
frequency 200 cps falls to (%) of its initial value after 2000 cycles, Calculate its relaxation time,
th
quality factor, time in which its energy falls to (%) of its initial value.

Refer to Sections 3.3 and 3.7 of Chapter 3 and the solution of the problem is given below:
Here, frequency Vv =200 cs!

) . 1 1
T T=—=—+
ime period V=200 second
Ratio of final amplitude A, to initial amplitude A, is given by
o1
A, 10

The time period to complete 2000 oscillations (¢,) is given by
‘= 2000 _ 2000
'TT T 200
bt

=10 seconds

Initial amplitude, A; = Ae
and the final amplitude A, = Al (1 + t)

A_f ~ Ae—b(z+z,)

A; Ae™
L _
or, T0-¢
or, 107 =™
or, - logio =-bt,
or, bt, = %
log|,
b = 1 = 1
t,logj, 10x0.432
or, b =0.230
*. The relaxation time 7, is given by
11
" 2b 046
or, 7. =2.174 second

The quality factor Q is given by

_o _2mv
Q_2b_ 2b
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271 x 2000
, =——=27304
o Q=046 -
Let t, be the time duririg which the energy falls to (1—0) of its initial value,
E,=—E.
710
Again E =E ¢
E.
) o E. —2bt,
or. o= Eie
or, 107! = 7200
or, -1 =-2bt, log‘io
or, 2bt, logf0 =1
or, h= ;L
2b x log|,
Or. t :;
’ >70.46 x 0.432
or, t, =5.032 second

OPTICS (Interference, Diffraction and Polarization)

Group A

Multiple-Choice-Type Questions

1. (i) The electromagnetic wave is called transverse because
(a) the electric field and the magnetic field are perpendicular to each other
(b) the electric field is perpendicular to the direction of propagation
(c) the magnetic field is perpendicular to the direction of propagation
(d) both the electric field and the magnetic field are perpendicular to the direction of
propagation
Ans. (d)
(i) Optic axis is a direction along which
(a) the extraordinary ray travels faster than the ordinary ray
(b) the ordinary ray travels faster than the extraordinary ray
(c) both the extraordinary ray and the ordinary ray travel with same velocity
(d) None of these
Ans. (¢)
(iii) A plane polarized light of intensity I, is incident on a polarizer whose axis of polarization is 30°

with respect to the direction of propagation of the incident light. The intensity of light coming
out of the polarizer is
V31,

1 31, I,
@ Iy (b) 5~ © 5 @
Ans. (c¢)
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(iv)

Ans. (¢)
)

Ans. (a)
(vi)

Ans. (a)
(vii)

Ans. (c¢)

Basic Engineering Physics

The radii of the Newton’s rings (R,) depend on the wavelength of the incident light (1) and the
radius of curvature of the convex surface of the plano-convex lens (r) as follows:

(a) R, increases with A and decreases with r.
(b) R, increases with r and decreases with A.
(c) R, increases both with A and r.
(d) R,decreases both with A and r

The relation between the path difference (A/) and phase difference (A¢) is
2r T
Ap=="=Al b) Ap==Al
(@ Ag== b) Ap=>
2r b4
Al===A d) Al==A
(©) N (0 (d 1 (0

In Fraunhoffer diffraction, the incident wave front is
(a) plane (b) spherical (c) cylindrical (d) of arbitrary shape

The separation between diffraction lines (A) for the pattern formed by a transmission grating
depends on the number of rulings per inch (n) and the wavelength of the incident light (1) as

(a) A increases with n but decreases with A
(b) A decreases with n but decreases with A
(¢) A increases both with n and A
(d) A decreases both with n and 4

(viii) Double slit interference pattern is the limiting case of double slit differaction pattern when the

Ans. (¢)
(ix)

Ans. (a)
(x)

Ans. (b)

(a) distance between the slit, tends to zero.

(b) distance of the source and the slit tend to infinity.
(c) slit widths tend to zero.

(d) distance between the slits tends to infinity

A light ray is passing through a calcite crystal. If the plane of vibration of the light ray is
perpendicular to the optical axis the ray

(a) is an O-ray,

(b) is an E-ray

(c) has both non-zero O and E components
(d) cannot propagate through the crystal

A source of light emits lights of frequencies between v and v + Av. Coherence time of the
emergent light beam is 7, then
(@) T, Av (b) T, -1 (©) T,ev d) Tt
Av v



Ans.

Solved WBUT Question Papers S1.5

(xi) The intensity of principal maxima in the spectrum of a grating with N number of lines is
proportional to

1 1
@ (b) N (©) N @
©

Group B

Long-Answer-Type Questions

1.

Ans.
. Calculate the polarizing angle for light traveling from water of refractive index 1.33 to glass of

Ans.

Ans.

Ans.
. A convex lens of focal length 40 is employed to focus the Fraunhofer diffraction pattern of a single

Ans.

Two polarizers are placed at crossed position (angle between the polarizing planes are 90°), a third
polarizer with angle 6 with the first one is placed between them. An unpolarized light of intensity / is
incident on the first one and passes through all three polarizers. Find the intensity of light that comes
out.

Refer to Worked-out problems of Chapter 6, Problem 6.3.

refractive index 1.53.
(a) Refer to the Worked-out problems of Chapter 6, Problem 6.2.
(a) Explain briefly the action of a dichroic polaroid.

(b) InYoung’s double slit interference distance between the coherent sources are 1.15 mm. Calculate
the fringe width that would be observed on a screen placed at a distance of 85 cm from the
source. The wavelength of light used is 5.893 A.

(c) Interference phenomenon does not violate the principle of conservation of energy. Justify it.
(a) Refer to Section 6.15 of Chapter 6.

(b) Refer to Worked-out problem of Chapter 4, Problem 4.6.

(c) Refer to Section 4.8 of Chapter 4.

A film of oil of refractive index 1.70 is placed between a plane glass plate and an equi-convex lens.
The focal length of the lens is 1 metre. Determine the radius of the 10th dark ring when light of
wavelength is 6000 A.

Refer to Worked-out problem of Chapter 4, Problem 4.19.

slit of 0.3 mm width. Calculate the linear distance of the first order dark band from the central band.

The wavelength of the light is 589 nm.

Refer to Worked-out problem of Chapter 5, Problem 5.3.

(a) Calculate the least width that a grating must have to resolve two components of the sodium-D
line in the second order, the grating having 800 lines/cm. The wavelength for D, and D, lines of
sodium are 5893 A and 5896 A, respectively.

(b) Deduce the missing order for a double slit Fraunhofer diffraction pattern if the slit width are
0.16 mm and they are 0.8 mm apart.

(c¢) Two stars situated at a distance of 9.5 x 10" km from a telescope of diameter 20 cm are sending
light of wavelength 600 nm. Find the distance of the separation of the stars for which, they are
just resolved.
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Ans. (a) Refer to Worked-out problem of Chapter 5, Problem 5.14.
(b) Refer to Worked-out problem of Chapter 5, Problem 5.5.
(c) The diameter of the telescope

AL
D=122—=
Yy
Here, y = Distance of separation of the stars;

L = Distance of the telescope from stars = 9.5 x 10?2 km=9.5x 10" m;
A = wave length of the light = 600 mm = 600 x 10~ m

y =122 x M 1.22X600 x 10°x9.5x 10"

L =
D 20 x 1072
or, y =3.477x 10" km

7. Sodium light of wavelength 589 nm and 589.6 nm are made incident normally on a grating having
500 lines/cm. Calculate the angular dispersion of these lines in the spectrum of first order. By a
simple calculation can you justify whether these lines are resolved or not?

Ans. Here wavelengths of the given rays are

Ay =589.0 nm
A, =589.6 nm
Number of rulings/cm in the given grating N = 500 lines/cm
sin 6, .
We have, A= where n is the order
Nn
Let 6,=6, and n=1
For A = A,, so we get
sin 6/ 589 x 107 = m 0]
SN T TS00x1

sin 0] = 0.02945 = sin 1.688°
0/ = 1.688°
For A=A, Let6,=0],n=1

2, sin 07
N.(1)
= sin @7 = N x 2 =500 x 589.6 x 10/
or sin 07 = sin 1.689°
67 = 1.689°

.. angular dispersion 6, is given by
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0,=67-6"=1.689°-1.688°

6,=0.001°
Let Nn be the number of ruling per cm just to resolve nth order spectrum
.. resolving power R, =nN,

To resolve 1% order the expression reduces to

R,=(1)N,
Again, resolving power is given by
A
R,=—
L.V}
A
N, =R ==
TP AL
5893 [ M+ A,
, N, =—— |+ A=
or | G >

N, =982.1 rulings/cm
The given grating has N = 500 rulings/cm
. N <N,
.. the lines 589.0 nm and 589.6 nm are not resolved here.

8. The width of each slit of a double slit is 0.15 mm and they are separated by a distance of 0.45 mm. If
the double slit produces Fraunhofer diffraction, find the angular position of the first minima and the
missing orders.

Ans. Missing orders are obtained when interference maxima and diffraction minima correspond to the
same value of direction angle 6, i.e.,

(a+b)sin 6, =nA [interference maxima]

and asin 6, =mA [diffraction minima]
a+b _n . . .. _
7 = L= inthiscase 6, =6,]
Here a=0.15mm and b==045mm

n _015+045 _060_,
m=T005 0.5

for values of m =1, 2, 3, etc., and
n=4,8,12, etc.

So the 4lh, 8lh, 12th, etc., orders of interference maxima will be missing in the diffraction spectrum.

9. (a) Find the intensity distribution for the Fraunhoffer diffraction pattern through a single slit.
(b) Hence find the position of maxima and minima.
Ans. (a) Refer to Section 5.4 of Chapter 5.
Refer to Section 5.4 of Chapter 5.
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10.

Ans.

11.

Ans.

Basic Engineering Physics

A parallel beam of light of wave length 500 nm is incident normally on a narrow single slit of width
0.2 mm. for a Fraunhoffer diffraction pattern, find the angular position of the first and the second
maxima.

For single slit diffraction, the intensity function is given by

I=1, sin” o
o’
where o= ™ s}in 4 and 6 is diffraction angle and « is slit width.
there A=500mm=>5x 107 cm,

a=0.02 cm

Let 6, and 6, be the required angles. Let ¢, and o, be the corresponding vales of c.
The first two maxima occur at

o, =1430r7
and o, =2462 1
N ma sin 6, d Tta sin 6,
ow oy =————and 0 =——F+—
1 A, 0{2 /’l
7a sin 0
B 0= 1430 7 sin 6, = 104
7a sin 6,
and ——=0,=2462 1
A
. 2462 A
= sin 0, = a
11430 x5 x 10—5)_ -
0, =sin (—0.02 =sin" (0.0036)

6, = 3.57 x 107 radian

2.462 x 5 x 10‘5)

6, = sin” ( 0.02

or, 6, = 6.15 x 107 radian

(a) What is Brewster’s Law?

(b) How is Brewster’s angle connected to the refractive index of the medium?
(c) Discuss the nature of polarization of the reflected and refracted rays?

(d) Describe a Nicol prism and discuss its use as a polarizer.

(a) Refer to Section 6.7 of Chapter 6.

(b) Refer to Section 6.7 of Chapter 6

(c) Refer to Section 6.7 of Chapter 6

(d) Refer to Section 6.12 of Chapter 6.
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LASER

Group B

Long-Answer-Type Questions

1. (a) Define Einstein’s A, B coefficients and deduce their mutual relation.

(b) Show that the ratio of spontaneous and stimulated emission is proportional to the cube of the
frequency.

(c) Explain the construction and action of the optical resonator in ruby laser.
Ans. (a) Refer to Section 7.4 of Chapter 7.

(b) Refer to Section 7.4 of Chapter 7.

(c) Refer to the Section 7.7 of Chapter 7.

QUANTUM PHYSICS

Group A

Multiple-Choice-Type Questions
1. (i) A stone is dropped from the top of a building. What happens to the de Broglie wavelength of the
stone as it falls?
(a) Itincreases (b) It decreases
(c) Remains constant (d) de Broglie wavelength cannot be defined
Ans. (b)

(i) Number of oscillation modes for the electromagnetic standing waves of frequency to v + Av or
the cavity radiation is proportional to

(@ v (b) V? © v d) — 1

(k)
Ans. (b) e -1

Group B

Long-Answer-Type Questions
1. (a) An electron and proton has same de Broglie wave length. Prove that the energy of electron is
greater.
(b) Why Compton effect cannot be observed with visible light?

(c) Show that the temperature dependence in Stephan’s law can be derived from Planck’s radiation
law.

Ans. (a) Refer to Worked-out problem 9.20 of Chapter 9.
(b) The wave length of the visible light is A = 6000 A.

So, energy of the visible light E, = h—lc
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of £ - 062x10*x3x10°
' " 6000%x 1070% 1.6 x 1071°

or, E, =2eV

But the binding energy of an electron in the atom is E, = 10 eV.
So, when visible light falls on a target, it cannot liberate electrons of the scatterer. So we cannot
observe Compton effect with visible light.
(c) Refer to Section 9.2.6 (b) of Chapter 9.
2. (a) Derive the expression for Compton shift when a photon interacts with electron. Show that it is
impossible to transfer all the energy of the photon to the electron.
(b) Describe an experiment which verifies de Broglie’s hypothesis about the wave nature of
particles.
(c) Show that the product of group velocity and phase velocity of the de Broglie wave are
constant.
Ans. For the first part, refer to Section 9.4. Answer of the second part is as follows:
Let us assume that a photon transfer all its energy to free electron at rest. Now from the law of
conservation of energy
1
hv + my = [mg c +p202]§ ..(1)

where my, ¢? is the rest mass energy of the electron and Av is the initial energy of the photon and from

the law of conservation of momentum, we have
hy +0=0+p
c
or, hv =pc ..(2)

So, from Egs. (1) and (2), we have

1
pe+myc’ = [mé &+ prh)?

or, m(z) s p202 = p202 + 2m, pc3 + mé o
or, 2my pc3 =0
or, 2hv my =0 [. hv=pc]

either hv=0 or my, =0
which is impossible so, it is impossible for a photon to give all its energy to a free photon to give all
its energy to a free electron.
(b) Refer to Section 9.5.8 of Chapter 9.
(c) Refer to Section 9.5.4 of Chapter 9.
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Solved WBUT Questions of 2009

OSCILLATIONS (SHM, FDV and FV)

Group A

Multiple-Choice-Type Questions

1. (i) Superposition of two SHM waves of equal time period and equal amplitude with phase difference
T
o= 5 forms a

(a) circle (b) ellipse (c) parabola
Ans. (a)
(i1) If ais the force constant of an oscillating body of mass m, the Q-factor is given by
(a) 9=CNam (b) 0=CVmla () O0=CNodm
Ans. (b)
(iii)) When a spring with spring constant k is cut into three equal parts, the force constant of each of
the part would be

(a) k/3 (b) 3k () k
Ans. (b)

Group B

Long-Answer-Type Questions

i(ot — kx)

1. (a) Show thaty = ae is solution of wave equation.

(b) The potential energy of a particle with mass 10 g is given by, V(x) = 32 x> + 0.2, where x is in
meter and V is in joule. Write down the equation of motion and solve it.

Ans. (a) The wave equation is given by

0 0*
oy _ 22 e))
or ox*
The given function is
y = ad @k (2)

Differentiating it with respect to x and ¢ twice, we get

) )

o +iwae" =
ot

2
dy 0 (- kx)

or, =—wae

o
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(b)

Basic Engineering Physics

82
or, 2wy
ot
) )
Again, 9 ikae'( @~
o0x
) .
or, _yz = (- ik)? qe @~
ox
82
or, —)2] =- k2y
ox

From Eqgs. (3) and (4), we can write
19y 19y
o oF K ox’

or oy _ (2p Py

? kJ ox?

%y Qav) %y
or, —= —

or’ (2_7t)2 ox*

A

0? 0?
or, _i) = (vA)? —Z

or ox

0’ , 9%
or, .y =0 )

ot ox
where v=VA
Equations (1) and (5) are of the same form.

y = ae'™ represents a wave equation.

Here mass m =10 g = 102 kg
The potential energy is given by

V(x) =322 +0.2

Force F(x)=- d‘;(;)
or, F(x) =- (64 x)
or, Fx)=-64x
or, F(x) =—kx where k=64J]/m
or, m d—2x =—kx

ar

..(3)

(4

(5

(D)
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P ko
or, dt2+mx_
or. d—2x+ﬁx=0
’ dt2 ]0
2
or, 4x64x=0 2
dr

Equation (2) is the required equation.
For the answer of the second part of the equation refer to Section 1.5 of Chapter 1.
2. (a) Establish the differential equation of damped harmonic motion.
(b) Solve the equation for light damping and prove that the amplitude of vibration decreases

exponentially with time.
(c) A cubical block of side L cm and density d is floating in a water of density p(p > d). The block
is slightly depressed and then released. Show that it will execute simple harmonic motion and

hence determine the frequency of oscillation.
Ans. (a) Refer to Section 2.3 of Chapter 2.
(b) Refer to Section 2.4 of Chapter 2.

©

Displaced state

Fig. 1 Oscillation of a floating black.

Let m be the mass of the block. If the block is displaced a distance y below its equilibrium
position, then the vuoyant force increases by (L*y) pg because L%y is the additional volume of
liquid displaced hence L’y p is the mass and L%y pg is the weight of liquid displaced further.

Thus the restoring force is given by

F=—(L7pg)y=—ky
Since the restoring force is proportional to the displacement, the motion is SHM of angular

frequency
E Jpg
O=Nm = Vm
Jwpyg \/Wg . 3
or, w= Im = m [ S m=L p]
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/g
x 2TV =4|—
ofr. I

L1
2w VL

which is the required frequency.

OPTICS (Interference, Diffraction and Polarization)

Group A

Multiple-Choice-Type Questions

1. (1) Newton’s ring experiment is based on

(a) division of amplitude (b) division of wave front
(¢) None of these

Ans. (a)

(i1) In a plane transmission grating light

(a) diffracts to produce the resultant pattern
(b) diffracts and interferes to produce the resultant pattern
(c) interferes to produce the resultant pattern.

Ans. (¢)

Group B

Long-Answer-Type Questions

1. (a) What is the difference between temporal coherence and spatial coherence

(b) If the amplitudes of two coherent light waves are in the ratio 1:4, find the ratio of maximum and

minimum intensity in the interference pattern.

Ans. (a) The temporal coherence of any wave field implies the possibility of predicting phase and
amplitude at a point in space at different instants of time. A monochromatic wave field is
temporally coherent. The spatial coherence is concerned with phase correlation between two

wave fields at two space points at the same instant of time.
Let a, and a, be amplitudes of two coherent light waves.
a:a,=1:4
or, a, =4a,
the ratio of the maximum to minimum intensity is given by

9

Imax _ (al + a2)2 _ (&)2 25

Lisin (a,~ a])2 3a,

ie, Lo i Inin=25:09.

*¥*r Tmax



2. (a)
(b)
(©)

(d)
(e)

Ans. (a)

(b)
()

LASER

Solved WBUT Question Papers S1.15

What is double refracting crystal?
Discuss Nicol prism as polarizer and analyzer.

Determine the Brewster’s angle for glass of refractive index 1.5 immersed in water of refractive
index 1.33.

Prove that the intensity of secondary maxima formed for Fraunhofer diffraction at a single slit
are of decreasing order.

In a plane transmission grating the angle of diffraction for second order maxima for wave length
5 x 10° cm is 30°. Calculate the number of lines in one centimeter of the grating surface.

It is a transparent crystal which can generate two refracted beams of light when an ordinary light
ray is incident on it. One of the refracted rays obeys the laws of refraction and is called ordinary
ray and the other ray does not obey the laws of refraction and is called the extraordinary ray.
Calcite crystal is an example of doubly refracting crystal.

Refer to Section 6.12.2 of Chapter 6.

The refractive index of glass is given by , i, = 1.5 and the refractive index of water is given by,

oM, =133
the refractive index of glass with respect to water is given by
alle 150

= =—"=1.128
oMe =", =133

If 6, be the angle of polarization in water, then
ol = tan 6p
or, tan 6, = 1.128
6, = tan”' (1.128) = 48.4°

Group A

Multiple-Choice-Type Questions

1. @

Ans. (a)

In the He—Ne laser, the laser light emits due to the transition from
(a) 3s > 2p (b) 3s > 3p (c) 2s > 2p

Group B

Long-Answer-Type Questions

1. (a)
Ans. (a)

Describe briefly the working principle of laser action.
Refer to Section 7.5 of Chapter 7.
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2. (a) InaHe-Ne laser transition from 3s to 2p level gives a laser beam of wavelength 632.8 nm. If the
2 p level has energy equal to 15.2 x 107'? J. Calculate the required pumping energy (assuming
no loss of energy).

Ans. The pumping takes place between the energy levels E;, and E;; and the transition takes place
between E and E,, levels.

he
AE = E3s - E2p = 7
—34 8
or, AE=6.627><10 ><3><10J
632.8 x 107°
or, AE=3.14x10"7

The required pumping energy is given by,
E=Ey - Ey=E,,+AE

or, E=1520% 107" +3.14x 1077
E=18.34]

3. (a) Discuss the operation of ruby laser with the help of energy level diagram.
(b) What is the role of optical resonator in laser production?
Ans. (a) Refer to Section 7.10.1 of Chapter 7.
(b) Refer to Section 7.8 of Chapter 7.

QUANTUM PHYSICS

Group A

Multiple-Choice-Type Questions

1. (i) The de Broglie wave length of a particle of mass m and kinetic energy E is

h h 2mE
(@) A=5— (b) — © \—
2mE A h
Ans. (b) " 2mE
(i) Mass of a photon of frequencies Vv is given by
hv hv hv*

c
Ans. (b)

Group B

Long-Answer-Type Questions

1. (a) What is Compton effect? Calculate the Compton wave length for an electron.
(b) Why does the unmodified line appear in Compton scattering?
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Ans. (a) Itis a phenomenon of collision between a photon and a loosely bound electron of an atom. When

2.

Ans.

(a)
(b)

()

(d)
(@)
(b)
©

a photon of energy Av collides with a free (or loosely bound) electron of the scatterer at rest, it
transfers some of its energy to the electron. The scattered photon has a smaller energy v’ (< hv)
and consequently a greater wavelength than that of the incident photon. The change in wave
length of the scattered photon by considering the elastic collision between the incident photon
and the free electron is known Compton shift.

The Compton wavelength of an electron is given by

h

© = myc
where m;, is the rest mass of the electron.
6626 x 107
C9.1x 10 x3x 10°

or, A =0.02426 A

When an x-ray photon collides with a free electron (or very loosely bound electron whose work-
function is less). The wave length shift of the photon is given by

=2426x10"%m

c

Al:%(l—cos )

where m, is the rest mass of the scattered electron. As the mass of the electron is very much
small, AL is appreciably high, and a modified line is observed. On the other hand, when the x-ray
photon collides with a tightly bound electron, the photon cannot strip off the electron from the
atom, the collision becomes that of the atom and the photon.

In this case mj, represents the mass of the atom. So, the wavelength shift AA becomes almost
zero. For this reason, unmodifield lines are observed.

State and explain de Broglie hypothesis.

Prove that the product of phase velocity and group velocity for a de Broglie wave is equal to the
square of the light velocity.

Compute the smallest possible uncertainly in the position of an electron moving with velocity
3 x 107 m/s. The rest mass of electron is 9.1 x 107! kg.

Derive Wein’s displacement law from Planck’s radiation law.

Refer to Section 9.5.1 of the Chapter 9.

Refer to Section 4.5.4 of Chapter 4.

The uncertainly principle in terms of position and momentum is given by

AxAp, 21

If (Ax),,;, be the smallest possible uncertainly in position, then

min
(Ax)min (Apx)c =n
where (Ap,). is the corresponding uncertainly in momentum
Here, velocity of the electron is
v,=3%x10" ms™
and mass of the electron is

m,=9.1x 10" kg
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So (Ap),=9.1x 10" kg x 3 x 10" ms™!
o, (Ap), =273 x 10 kg ms™
34
(A0 no . 1.055x 107 Js

™7 (AP), 273 % 102 kg ms™!

or (Ax),.. =0.0386 x 107 m
(Ax),;, =3.86x 107* m
Refer to Section 9.26 of Chapter 9.
3. Why Compton effect cannot be observed with visible light but can be observed due to x-rays?

min

Ans. The Compton effect cannot be observed with visible light because the energy possessed by a photon
of visible light is not sufficient to cause the Compton effect. Let us consider a visible light photon
having wave length A = 600 mm, i.e., A = 600 x 10 m

The energy possessed by the photon is

_he _6.627x107 x3.0x 10°
A 600x107x1.6x 107"

or, E=2¢eV.

The binding energy of an electron in the atom is Ez= 10 eV. As for example the binding energy of an
electron of a hydrogen atom is 13.6 eV.

So when a photon of visible light falls on a target, it fails to liberate electrons. So, one cannot see
Compton effect in case of a visible light.

But an x-ray photon can cause Compton effect as its energy is far more than 10 eV.

CRYSTALLOGRAPHY

Group A

Multiple-Choice-Type Questions

1. (i) Miller indices of a plane which cut intercepts of 2, 3 and 4 units along the three axes are

(@ (2,3,2) (b) (2,3,4) (c) (6,4,3)
Ans. (c).
(i) The atomic radius of a face centred cubic crystal of lattice constant a is
a \3a \2a
(a) 2 (b) 4 (©) 4
Ans. (c)

(iii) An x-ray tube is subjected to a potential difference of 50 kV with the corresponding current of
8 mA through it. The number of electrons stricking per second on the target material is

(@) 5x10' (b) 6x 10" (c) None of these
Ans. (a)
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Group B

Long-Answer-Type Questions

1. (a) Deduce the formulae for interplaner spacing of a simple cubic crystal.
(b) Why x-ray diffraction is used for crystal structure analysis?
Ans. (a) Refer to Section 10.9 of Chapter 10.

(b) Refer to the answer of Question No. 7 of ‘Short Questions with Answer’ under ‘Review Exercise’
of Chapter 10.

Solved WBUT Questions of 2010
Group A

Multiple-Choice-Type Questions

1. Choose the correct alternatives for any ten of the following: 10x1=10
(i) If a particle is executing simple harmonic motion with frequency v then its potential energy
(a) remains constant over time (b) is oscillating with a frequency v
(c) is oscillating with a frequency v/2 (d) is oscillating with a frequency 2v
Ans. (d)
(i) The quality factor Q for an L-C-R circuit is
R L
@ 2% (b) ©F © = @ 2
Ans. (b)

(iii) An external force F = F, ¢'®* is applied to a slightly damped oscillator of natural frequency Wps
then in steady state it will oscillate with a frequency

(a) @, b) o ©) wy—o (d) o - o
Ans. (b)
(iv) The intensity of principal maximum in the Fraunhofer diffraction spectrum produced by a
grating with N number of lines is proportional to

1 1
@ + (b) N (©) N @ —
Ans. (c¢) N
(v) In the propagation of lightwave the angle between the plan of polarization and plane of vibration
is

(@) 0° ®) 7 © 7 A x
Ans. (b)
(vi) In case of simple cubic crystal, the effective number of atoms per unit cell is
(a) 2 (b) 1 © 3 (d) None of these

Ans. (b)
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(vii) In order to produces X-ray by striking electron beam on a metal target the kinetic energy of the
electron should be
(a) less than one eV (b) of the order of eV
(c) of the order of keV (d) of the order of GeV
Ans. (b)
(viii) If the energy of a particle is much higher than its rest energy then the energy is
(a) independent of the momentum
(b) proportional of the momentum
(c) proportional to square of the momentum
(d) proportional to the square root of the momentum
Ans. (b)
(ix) If a wave packet is described by

2
ox)=Aexp (— x_) then the momentum uncertainty is proportional to

(@ ho (b 2 © ho’ @ %

Ans. (d)
(x) Given that the temperature of a younger star is higher than that of an older one,
(a) ablue star is younger than a red star
(b) a blue star is older than a red star
(c) both of them are same age
(d) color of the star cannot be correlated to the age of the star

Ans. (a)
(xi) In ruby laser, the active medium is
(a) solid (b) liquid
(c) gas (d) asolid and gas mixture
Ans. (a)
(xii) In a Nicol-prism the O-ray is totally internally reflected and the E-ray is transmitted. This state-
ment is
(a) true (b) false (c) partly true (d) partly false
Ans. (a)

(xiii) Two sources are said to be coherent when the waves produced by them have
(a) same wavelength
(b) same wavelength and same phase
(c) same wavelength and constant phase difference
(d) same amplitude and constant phase difference

Ans. (¢)
(xiv) In an arrangement for viewing Newton’s ring, if the lens which rests on a glass plate were moved
upwards by one wavelength, (of the viewing light), which of the following will be observed?
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(a) The central spot becomes bright. (b) No change of fringe pattern is observed.
(c) The rings shift towards the center. (d) The rings move out from the center.
Ans. (b)
(xv) Holography is base on
(a) the interference of reference and object waves which are coherent

(b) superposition of object and the reference waves which are of slightly different
wavelengths.

(c) recording of superposed images of two different wavelengths
(d) recording the phase information of the resultant of the reference and the object waves
Ans. (d)
(xvi) For a laser action to occur, the medium used must have at least
(a) 4energylevels (b) 2energylevels (c) 3energylevels (d) one energy level
Ans. (b)

Group B

Short-Answer-Type Questions

Answer any three of the following. 3x5=15

2. Avibrator of 10 g mass is acted on by a restoring force of 5 dyne/cm and a damping force 2 dyne-s/cm.
Find whether the motion is overdamped or oscillatory. If at # = O the vibrator was at position x = 0,
when a velocity 1 cm/sec is imparted to it then calculate the maximum deviation along positive
X-axis. 2+3

Ans. Here, mass of the oscillator m =10 g,
restoring force k = 5 dyne/cm and
damping force =2 dyne-s/cm
The equation of the damped oscillator is given by

2
mdE B dx kx=0
dt2 dt
While solving this equation, we get damping constant b = Cr %10 = 0.1 and the angular
m

frequency @ = \/% = \/% =0.705

In this case, b < @, so the motion is oscillatory.
Now, since the motion is damping and oscillatory, the amplitude of oscillation will decrease
exponentially as follow:

Aty =Aye™

where A is the expected constant amplitude in the absence of damping. The vibration of the
displacement will be as given in the following figure:
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Ans.

Basic Engineering Physics

X
A

R :

Fig. 1

As can be seen the amplitude will be maximum when ¢ = % where T is the time period of

oscillation.
A=A (%) = A, e
2r
We know that 7 =——""——
Va? - b?
T= 2r _ 2 _2m
7N0.50-0.01 +0.49 0.7
2
Amax _ AO 670.] X ﬁ/4
_2z
or, A =Ape 28

A mlA
Apax =4Ap e unit.

(a) In a Newton’s ring experiment, the diameter of a dark ring is 0.32 cm, when the wavelength of
monochromatic light be 6000 A. What would be the diameter of that ring when the wavelength
of light changes to 5000 A? 2

The diameter of the dark ring is given by
D? = 4nAR

Dy _032x0.32 _22x32
A 6000 x 107 6

or, 4nR = x 1070

When wavelength A” = 5000 A, the diameter is

D2 = 4nRA’ = 32232 5 10 5 5000 x 1078
=32x32x5xlo4
6
o, D, =29.21x107cm

D; =0.29 cm
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Ans.
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(b) Write down the expression for the intensity of light due to Fraunhoffer diffraction in a
transmission grating and hence find the condition for secondary minima in the interference
pattern [Refer to Section 5.7]. 1+2

(a) Two polarizers are placed at crossed position and angle between the polarizing planes are 90°.
A third polarizer with angle 6 with the first one is placed between them. An unpolarized light of
intensity / is incident on the first one and passes through all three polarizers. Find the intensity
of the light that comes out. [Worked-out Problems; Problem 6.3] 3

(b) What is population inversion in the context of LASER? Does it violate Maxwell-Boltzmann
distribution law? [Refer to Section 7.6; No, it does not violate] 2

(a) An electron is observed moving at 50% of the speed of light, v= 1.5 x 10% m/s. What is the
relativistic mass of the electron? What is the kinetic energy of the electron? 2

The relation between relativistic mass and rest mass is given by

)

V1 = ve?

Here, v=1.5 x 10® m/s and ¢ = 3 x 10 m/s

m=

my
m:
\/1_1.5x1.5x10'6
3x3x10'"
Or. m=im
1) \/§ 0

The relativistic mass of the electron is % m the kinetic energy (T) of the electron is

T =mc* - moc2

2
=— m0C2 - m0C2

V3
Tz(z—@

T) moc2 =0.15 moc2

(b) Write down the conservation laws in Compton scattering. Show that in Compton scattering
while the photon can be scattered at any angle between 0° to 180°, the recoil electron can only

or,

be emitted at angles between 0° and 90° [Refer to Sections 9.4.1 and 9.4.4]. 2+1
. (a) The linear absorption coefficient of an element of X-rays having A = 0.3A is 135 m™". Find the
half value thickness for that material. 2

Here A=0.3 A

If 1 be the linear absorption coefficient them intensity I = I,e ** where I, and I are intensities of x-ray
before and after passes through the thickness x.

Here1=@ so. x= 2093 _0.693
e N EX
so, half-value thickness of the material is 0.0051 m

(b) Cs metal (atomic weight 130) has a cubic unit cell of lattice constant 0.6 nm. If the density of Cs
is 2 g/cc, determine whether the unit cell is simple, bodycentered or facecentered. 3
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Ans. For a cubic crystal, the lattice constant

nM,\13
v

Here n is the number of atom per unit cell. Atomic weight M, = 130, density of Cs p =2 g/cc

Lattice constant a = 0.6 nm

=0.6x 107 m
=0.6x 107 cm
and N = 6.023 x 10%*/g mole
. @pN (0.6 x 107)’ x 2 x 6.023 x 107
M, 130
_0.6x0.6%0.6x 107 x 2 x6.023 x 10
130
n=2

The unit cell is body-centred.

Group C

Long-Answer-Type Questions

Answer any three of the following. 3x15=45

7. (a) Starting from the equation of motion and after solving it show that, for a forced oscillator in the
steady state, the displacement amplitude at low frequencies (@ — 0), the velocity amplitude at
velocity resonance (@ = @) are independent of the frequency of the driving force.

2+6+2+2

Ans. For developing and solving the differential equation of a forced oscillator refers to the Article 3.3.
The complete solution of the said differential equation is given by

y =pe? cos {(Na — b*) 1 — 6}

f [ / 3 ( 2ba), )]
+ COs { @'t —tan —_—
V(@ - 0 + 4b° 0™ @ - o

where @’ is the regular frequency of the driving force.

At steady state condition the first part of the equation is zero.
... the equation then given by
y=Acos (0t — &)

where = f
V(@ - 0™ + 4b*w’”
a( 2bo’
and o = tan™! (7)
0)2 _ w/2
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d
So, velocity V= % =—Aw’ sin (0" — &)
Hence, the velocity amplitude is given by
A =Aw’
a)l
or, A, = f
\/(a)2 -0 +4b’w”?
or, A, = f
(&~ 0™ + 40
\J o’
or, A, = f =
(i - a)) + 4b*
0]
Y
Vo A? + 4b°
Lo o
where A= o O

At velocity resonance, 0= @’
A=0

S

4

Hence, the velocity amplitude A, is independent of @’ i.e., the frequency of the driving force.

v

(b) Explain the terms logarithmic decrement and quality factor of a damped oscillatory system. How
are they related? I1+1+1

Refer to Section 2.4 for logarithmic decrement.
In case of damped oscillator the amplitude of vibration is time dependent and it is given by.
A1) =Age™

Wy
where Ay = —

Vo - b*
As can be seen in the equation A(?) = Aoe_b !. The amplitude decreases exponentially, for this reason,
it is called logarithmic decrement.
For explanation of the quality factor, refer to Section 3.7.

When an external force is applied to a damped oscillator, it obtains a steady state oscillation and that
time there does not remain any logarithmic decrement of the amplitude. And only this time we can

obtain an expression for the quality factor Q (: %)

So, the quality factor and logarithmic decrement are not functionally dependent.

(a) Derive the intensity distribution of diffraction of Fraunhofer class of light due to a single slit.
Sketch the intensity distribution [Refer to Section 5.4], T7+2
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(b) A single slit forms a diffraction pattern of Fraunhofer class with white light. The second
maximum in the pattern for red light of wavelength 7000 A coincides with the third maximum
of an unknown wavelength. Calculate the unknown wavelength. 3

Here mA =mi,
where n, and n, are order members n, = 2, A, = 7000 A

_mA 2x7000 ;14 3
To=— == A=< 1000 A
A, = 4667 A

(c) InYoung’s double-slit experiment the distance between two slits is 0.5 mm. The wavelength of
light is 5000 A and the separation between the sources and the screen is 50 cm. Calculate the

Fringe width in this case. 3

The fringe width B= 2_:}
Here, 2d = 0.5 mm = 0.05 cm,

A=5000 A = 5000 x 107 cm
and D =50cm
. = 30x5000x10%

0.05
B=0.05cm

(a) How can you get an elliptically polarized light from an linearly polarized light by using an
optical device?
A plane polarized light is incident on a piece of quartz cut parallel to the axis. Find the least
thickness for which the ordinary and the extraordinary rays comine to form plane polarized light
given that y, = 1.5442 and u, = 1.5533, A =5 x 107 cm. 2+3

A 5% 107
= = cm
4 (U, — o) 4 x(1.5533-1.5442)

5x107 5

= = 107!
4% 00001 ™= g or <10 em
t=0.0013 cm
(b) Define Einstein A, B coefficients of absorption and emission. Find out the relations among them
[Refer to Section 7.4]. 1+41+1+3

(c) Explain how holographic images are reconstructed from the holograms. [Refer to Section 8.3]4
(a) Describe the function of an optical resonator. What is the use of such a device in the context of
LASER generation? [Refer to Section 7.8] 3+1
(b) What is coordination number? Determine the coordination number for sc¢ and bcc structures.
Draw necessary sketch, ‘atomic packing factor’ increases with coordination number. Justify the
statement. [Refer to Section 10.4.] 1+4+3
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The atomic packing factor (APF) can be expressed by the following mathematical formula

nv
fa=7

where f, is the atomic packing factor and V is the volume of a unit cell of the crystal and v in the

volume of each atom (v = % nr ) and 7 is the coordination mumber. In the above equation, v and V

are constants for a particular type of matter (i.e., element). So, we see that

Jaoen

f,= % n = kn where k = ‘% = constant

If we now plot f, against n we get the following curve:

A

Y

Fig. 2

(c) Find the short-wave limit of continuous X-ray spectrum. Does it shift by 0.5 nm when the
voltage applied to X-ray tube is doubled? 2+1

Duane Hunt law gives us minimum wavelength (i.e., short wave limit) of continuous X-ray as
follows:

hc
/’Lmin = Z/
6.62 x 107 x 3 x 10°
or, Ammin = 5 m
1.6x10"° v
or, Ay = 12““/125 x 107 m  Gf Vis in volt)
or P 124&2.5 A= 124&.25 o

If the voltage V is doubled then A’ min will be given by

1= 124125 _ 1241.25 am
min Vl 2V

where V, =2V
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when voltage is doubled, the wave length shift is given by

A= /lmin == /l,min
1= 1241.25 1241.25

A
ob % 2V
1241.25 ( 1 )
AA= 1-——=
or, A v >
or, AL = 620"/625 nm

so, if V be 1241.25 volt only then wave-length shift will be 0.5 nm.
11. (a) State and explain de Broglie’s hypothesis. Show that the relativistic de Broglie wavelength is

given by
h
/lrelativislic = —2
\E(E, + 2myc”)
(The notations used have their usual significance) [Refer to Section 9.5.6]. 243
(b) Describe an experiment which verified de Broglie’s hypothesis. [Refer to Section 9.5.8] 4

(c) Write down the expression of the number of possible modes of cavity waves of frequency v to
v + dv. Using Planck’s hypothesis about the energy quantization of the cavity oscillators, find
out the average energy of an oscillator at a temperature 7 and the energy density within the
frequency range v to dv. Explain why the energy density decreases at very high values of the
frequency at a finite temperature. I1+3+1+1

[Refer to Sections 9.2.3 and 9.2.5]

Solved WBUT Questions of 2011

Group A

Multiple-Choice-Type Questions

Choose the correct alternatives for any ten of the following: 10x1=10

1. (i) Resulatant of two perpendicular simple harmonic motions of equal frequency and equal ampli-
tude but a phase difference of 7 radian is

(a) astraight line (b) an ellipse
(c) acircle (d) a spiral collapsing inward

Ans. (a)
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(ii) If the equation of motion of an oscillator is given by X + Tx + yx = 0 then the motion is

(a) simple harmonic without damping (b) acritically damped simple harmonic
(c) an overdamped simple harmonic (d) an underdamped simple harmonic
Ans. (d)
(iii) An oscillator with natural frequency @, experiences a damping force and also a periodic force

A cos (Q1). Amplitude of displacement velocity of the resulting steady state forced oscillation is
studied with slow variation of €, when Q = @,

(a) The displacement amplitude shows a maximum
(b) the velocity amplitude shown a maximum
(c) amplitude of both displacement and velocity show maxima

(d) amplitude of displacement shows minimum while the amplitude of velocity shows
maximum

Ans. (c)
(iv) Diffraction occurs when the width of the narrow slit D is
(a) comparable to the wavelength of the light used
(b) equal to the wavelength of the light used
(c) much greater than the wavelength of the light used
(d) much smaller than the wavelength of the light used
Ans. (a)
(v) In Newton’s ring experiment the diameters of the dark rings are proportional to
(a) odd natural numbers
(b) square root of the natural numbers
(c) square root of the odd natural numbers
(d) square of the natural numbers
Ans. (b)
(vi) A diffraction pattern is obtained with a plane transmission grating using a beam of red light.
What happens after red light is replaced by blue light?

(a) The lines will shift towards lower angles?
(b) The lines will shift towards higher angles
(c) The lines will disappear
(d) No visible changes will be noticed
Ans. (a)
(vii) A rotating calcite crystal (a doubly refracting crystal) is placed over an ink dot. On seeing through
the crystal, one finds

(a) two stationary dots

(b) two dots moving along a straight line

(c) one dot rotating about the other

(d) both dots rotating about a common axise
Ans. (d)
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(viii) In He-Ne laser, Ne atom obtains energy
(a) on collision with He atom (b) from chemical rection
(c) from optical pumping (d) from electrical pumping
Ans. (a)
(ix) Which of the following statements is not true about reconstruction of the holographic image?
(a) The hologram must be illuminated with a partially incoherent light
(b) Both real image and virtual image are formed
(c) The frequency of the illumination should be equal to that of the reference wave
(d) the reconstructed image is a virtual image
Ans. (a)
(x) A proton, electron and a helium nuclcus move with equal velocity. Rank their de Brogile wave-
lengths from longest to shortest

(a) Helium nucleus, proton, electron (b) Proton, electron, helium nucleus
(c) Helium nucleus, electron, proton (d) Electron, proton, helium nucleus

Ans. (d)

(xi) The shift in wavelength in Compton effect is equal to Compton wavelength when the scattering
angle is

(a) zero (b) m/2 © (d) w4

Ans. (b)

(xii) If the kinetic energy of a particle is equal to its rest energy then
(a) its mass is equal to its rest mass (b) its mass is double of its rest mass
(c) its mass is half of its rest mass (d) its mass is V2 times its rest mass

Ans. (b)
(xiii) Number of oscillation modes for electromagnetic standing waves of frequency between v to
v + dv in case of cavity radiation is proportional to

@ v’ (b)? © v @ -2
ekt — 1
Ans. (b)
(xiv) The spacing between (340) planes in a face centered cubic crystal of lattice constant 10 nm is
(a) 1nm (b) 2 nm (¢) 4nm (d) 7nm
Ans. (b)

(xv) An X-ray tube, while operated with an applied potential difference of 80000V, shows a current of
8 mA. The number of electrons striking per second on the target material is

(a) 6.4x10° () 1x 10’ (c) 5x 10" (d) 5% 10"
Ans. (d)
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Group B

Short-Answer-Type Questions

Answer any three of the following. 3x5=15

1. (a) Derive the expression for the total energy of a simple harmonic oscillator and show that it is
constant and proportional to the square of the amplitude [See Section 1.7 of Chapter 1]

(b) If an oscillator’s motion is descrided by
x=e¢PsinQr
Where ¢ is the time, then calculate its logarithmic decrement. 3+2
Ans. (b) The maximum amplitude of displacement on any side of mean position at any time ¢, is
A= e P
Let# =1, + T, where T is the time period of oscillation then amplitude
Ay =e P+ o g o PT
If the successive amplitudes are A, A,, them
Ay = P2D — g o PT
and A= Pu3Dop, o PT
A Ay Aj

A_2 —=eﬁT=k(say)

SO, A_3 A4

Then, log, k = BT is known as logarithmic decrement.

The time-period of oscillation 7' = 2

So, logarithmic decrement

2nf3
IOge k= ?
2. How are coherent sources produce in Young’s double slit experiment? Show that the law of conserva-

tion of energy is not violated in case of interference [See Section 4.6 & 4.8 of Chapter 4] 2+3
3. (a) Find the ratio of Einstein’s coefficients of spontaneous and stimulated emission
[See Section 7.4.1 of Chapter 7]

(b) Describe how the optical resonator in a laser setup is used to ensure that the frequency spread of
the output light is very small [Sec Section 7.8 of Chapter 7] 3+2

4. A particle of mass m is constrained to move in one dimension and trapped in an infinite potential well
of width a. Estimate its ground state energy from uncertainty principle. Sketch a graph of this energy
with the width a. 4+1

Ans. A particle of mass m constrained to move in infinite potential well of width a. The maximum
uncertainty in the position of the particle is
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(Ax)max =a 1
From the uncertainty principle E
AxAp,.=h
h _h
or, Apx = E = z
The ground state energy
Apy ,
E = = — >3
2m  2ma?

5. Draw a diagram showing the behaviour of X-ray intensity with wavelength. Distinguish between
continuous and characteristic X-ray spectra. Derive short wavelength limit of continuous spectra.
How are the characteristic spectra generated [Refer to Section 10.13 of Chapter 10] 1+1+2+1

Group C

Long-Answer-Type Questions

Answer any three of the following. 3x15=45
1. (a) Find the frequency of oscillation of an underdamped harmonic oscillator of mass m, in terms of

its natural frequency @, and damping constant y (where — p is the damping force, v being the

velocity [Refer to Section 2.4 of Chapter 2] 3

(b) If the same oscillator is driven by an external force, F' = F, cos ¢, then find the phase difference
between the displacement and the driving force in the steady state.

[Refer to Section 3.3 of Chapter 3] 5

(c) A series L-C-R circuit is driven by ac source of frequency Q. Write down the differential equa-
tion the charge across the capacitor should satisfy. Identify the parameters of forced damped
oscillator in term of L-C-R. Find the frequency at which the current in this circuit in maximum.
you have to deduce th necessary formula from the different equation (you may use your results

of part (b) of this question). 1+1+5
Ans. (c) The differential for a series L-C-R circuit with ac source of frequency Q is
d’ d ,
Ay e S Ve
dtz d C

Where V, ¢/ is the ac source voltage.
The electrical current is written as
JjQt
i= Yot
z

where z is the impedance and given by

. |
Z=R+j(or_-L
”( QC)
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Now for obtaining maximum current Z should be minimum. So for minimum Z,

1
QL-— =0
Qc
1
QP =—
or LC
’ NLC

2. (a) In Young’s double slit experiment the slits are 0.2 mm apart and the screen is 1.5 m away. It is

observed that the distance between the central bright fringe and the fourth dark fringe is 1.8 cm.

Find the wavelength of light. 3

(b) Write the expression of intensity (explaining the symbols) distribution for Fraunhoffer diffrac-
tion due to a double slit. Draw the distribution graphically.

[Refer to Section 5.5 of Chapter 5] 2+1
(c) Find the condition of diffraction minima and interference maxima from the above expression.
[Refer to Section 5.5 of Chapter 5]
(d) In a double slit experiment if the slit width is 2 mm and the separation between the slits is 4 mm
then find the missing orders. Derive the formula that you use. 3
(e) Define resolving power of a grating. What factors does it depend upon?
[Refer to Section 5.10 of Chapter 5] 1+1

)5

Ans. (a) For (n +1)th dark fringes x,,, | = (n + 5

For fourth dark fringe, n = 3
Also, x,=18cm,2d=02mm,D=15m

(s 1) 150x A
50 1.8 "(3+2) 0.02

_7, 150x 4
27 0.02

_1.8x2x0.02
T 7x150

= 6860A

or, =6.86x 10~ cm

(d) Missing order are obtained when interference maximum and diffraction minimum corresponds
to the same value of direction angle 6, i.e,

(a + b) sin 8, = nA [interference maximum]

and a sin 6,, = mA [diffraction minimum]
5o at+tb _n
a ~m

Here a =2 mm and b = 4mm
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n 6

m=§=3

For values of m =1, 2, 3, etc. orn =3, 6, 12, etc. So, the 3rd, 6™ 12t etc, orders of interference
maxima will be missing in the diffraction pattern.

3. (a) Using Brewster’s law show that light incident on a transparent substance at polarising angle

Ans.

given reflected and refracted rays at right angle to each other.
[Refer to Section 6.7 of Chapter 6] 3

(b) Describe how circularly polarized light and unpolarized light may be distinguished by experi-
ment. [Refer to Section 6.4 of Chapter 6]

(c) Unpolarized light is incident on two polarizing sheets placed on top of the other. Each sheet
reduces the intensity of unpolarized light by 50%. What must be the angle between the character-
istic directions of sheets if the intensity of the transmitted light is % of the intensity of the incident
beam. 3

(d) A quarter wave plate is fabricated with smallest possible thickness for wavelength of 589.3 nm.
What phase retardation will be obtained with this plate with light having wavelength of 435.8 nm?
You may neglect the variations of refractive indices with wavelength for this problem. 3

(c) Describe how the phase information of an object wave may be recorded in a holographic plate.
[Refer to Section 8.2 of Chapter 8] 3

(c) Let the intensity of unpolarised light as . The intensity of polarized light transmitted by the first
sheet would be

IO
I =5 or 1,=2I

If 1, is the intensity of the transmitted light then

1 2
I, ==1 ==1
1737573
Again I =100520, or §I=100520
2 2
0 ==
or cos 3
2 o
or, cos@ =\g= 35.26

(d) The path difference between ordinary and extraordinary waves is given by (for quarter wave
plate)

5893
4

ISP

(/'Lo -~ /'Le)t =
Where ¢ is the thickness of the plate

The phase retardation 8 = i—ﬂ x path difference

1
2r 5893

=—F-X
435.8 4
=0.6761
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4. (a) Describe the construction of a ruby laser. Also discuss how population inversion is achieved in
ruby laser by clearly drawing the energy diagrams. Discuss whether this result is suitable for
continuous or pulse mode operation [Refer to Section 7.10.1 of Chapter 7] 2+2+1

(b) Show that the total energy per unit volume of a black body radiation is proportional to the fourth
power of the absolute temperature. [Refer to Section 9.2.6 of Chapter 9]

(c) Write down the equation describing mass energy equivalence. From that relation show that if a

particle is moving with a velocity much smaller that of light then the kinetic energy is given by %

m, v*, where my is the rest mass and v is the velocity of the particle. 2
(d) X-ray of wavelength 0.2 A is scattered by a stationary particle of Compton wavelength of the
2.43 pm at an angle 45°. Calculate the wavelength of the scattered ray and the kinetic energy of
recoiled particle. [Refer to Example 9.8 of Chapter 9]
(e) If a beam of electron is maximally diffracted from a crystal of interplanar separation d, at an
angle 6 then show that the acceleration voltage V for the beam of electron is given by

e (32vm)
2me \2d sin @
where m and (—e) are the mass and charge of an electron and / is Planck’s constant. 2
ns. (c) The mass energy relation is given by
E = mc*
The relativistic kinetic energy is

KE = (m — mO)c2 where m,, is the rest mass

m(}
- 2 o
1—2’—2 [1
c

2\-112
Now.ifc>>v,then(1—v—2) —]+U_+m

c 202

lAmc

2
since 21_2 is very small, the higher order terms are neglected.

2

Now K.E. 1+—2—1]"mc2
2c
L
(e) The de Broglie wavelength of the wave associated with the electron is
pR—
2meV

Again from Bragg’s Law

2dsin @ = Aforn=1
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2
S0, 2d sinG)2 = (ZrilzeV)
or =L( h )2
’ 2me \2d sin@

The accelerating voltage V for the beam of electron is

:L( h )2
2me \2d sin@

5. (a) It is found that the maximum possible kinetic energy of an electron emitted by a radioactive
nucleus of radius 107'* m is 4 MeV. Then show that the electron did not exist in the nucleus
before the radioactive decay. [Sec Section 9.6.5 (b) of chapter 9] 3

(b) Light of wavelength 5893A falls on a material of work function ¢ = 1.90 eV. Calculate the energy
of incident photon and the wavelength of the most energetic photoelectron (h = 6.62 x 107* Js,
c=3x10° m/s, mass of electron = 9 x 107! kg, charge of electron e = 1.6 x 107" O)

243
(c) Discuss why the phenomenon of photoelectric effect cannot be explained from the wave theory
of light. 4

(d) Deduce Wien’s displacement law from Planck’s law of blackbody radiation.
[Refer to Section 9.2.6 (a) of Chapter 9] 3

Ans. (b) The energy of the incident photon

g = he _6.62x10* x3x 10°

=337x107"]
Pea 5893 x 1070

=2.1eV
Kinetic energy of the recoil electron
K.E = hv - ¢ where ¢ is the work function
=2.1-19
=0.2eV
=0.32 x 10" Joule.
The wavelength of the photo electron

_he _6.62x107* x3x 10°
E 0.32x 107"
=62.06x 107" m

A

(c) According to Maxwell wave theory of light, the more intense incident light should eject the
electrons from the metal with their greater energy. But experimental result shows that maximum
kinetic energy of the ejected electron is independent of intensity of the incident light.

According to wave theory, the emission of electrons should occur for any frequency of the
incident light. But experimental result shows that there is a minimum frequency known as thresh-
old frequency (v,) for a given metal below which no emission of electrons is possible.
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According to wave theory, the electron should taken some time to receive the energy from the
incident light. But experiment shows that there is no time lag between illumination of the metal
surface and the emission of electrons.

(a) Define primitive cell. Are all unit cell primitive? [Refer to Section 10.2.1 of Chapter 10] 2
(b) Deduce the interplanar space of a simple cube of lattice constant a, for the planes (hkl).
[Refer to Section 10.9 of Chapter 10] 4
(c) In a certain crystal, the crystal planes ofoMiller indices (110) having a separation of 1.12A show
X-ray diffraction with wavelength 1.54 A. Calculate up to which order, Bragg’s reflection can be
observed.
(d) In a triclinic cryctal, a lattice plane makes intercepts of length a, 2b and — ¢/2. Find the Miller
indices of the plane.

(e) Calaculate the lattice constant of a substance having fcc lattice, molecularweight 60.2 and den-
sity 6250 kg/m® Avogadro number = 6.02 x 10%

(c) From Bragg’s Law,
2d sin @ = nA

The maximum value of sin 6 is equal to one. So, maximum order of Bragg’s reflection that can
be observed is

n= 2d sin@
A
Heresin@=1,d=1.12 A and 1 = 1.54A
_ 2x1.12x1
1.54

The value of 7 is integer, so the maximum possible value of order number is 1

SO =145

(d) The intercept lengths are a, 2b and —c/2

- b c

2p£=24.2.¢

a 2 Rkl

1 1.1 -1

: —i=:1==1:2:—

o nkC 2
1

X h:ik:l=1:=:-2
or. >

=2:1:-4

So, the Miller indices of the given plane are (214)
(e) Here Molecular weight M = 60.2,

density p = 6250 kg/m’
and Avogadro No. N =6.02 x 10%/g mole
=6.02 x 10*/kg mole
For FCC n=4
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113
Lattice constant a= (4_M)

Np

_ ( 4x60.2 )1/3
6250 x 6.02 x 10

=4x10""m

Solved WBUT Questions of 2012
Gmup A

Multiple-Choice-Type Questions
1. Choose the correct alternative for any ten of the following: 10x1=10
(i) The relaxation time (7) of a damped harmonic oscillator with damping constant (K) is
(a) 7=1/K (b) T=112K (c) =K (d) t=2K
Ans. (a), (b)

(i1) The resonant frequency of an electrical oscillator is given by

—2mIC -1 _2r —omlL
(a) v=2mLC (b) 1)—277:\/zf (©) v—m (d) V—Zﬂ\/;

Ans. (b)

(ii1) If ‘o is the force constant of an oscillating body of mass ‘m’ the Q-factor is

a a
(@) Quvam  (b) Qocy2 © 02 () Qo2
Ans. (a)
(iv) If a thin mica sheet is placed between two interfering waves, then
(a) Fringe width increases (b) Fringe width decreases
(c) Fringe pattern get shifted (d) No change in the fringe pattern

Ans. (c)

(v) The emissive power of a blackbody kept at absolute temperature 7 which is very near to the
temperature of surroundings (7)) is proportional to

@ (T-Tp)" (b) (T-Ty) () T* @ 7.
Ans. (b)
(vi) The miller indices of a plane having intercepts 2, 3, 4 units along X, Y, Z axis respectively are
(a) (6,4,3) (b) (4,3,6) (© (2,3,1) (d) (2,3,4).
Ans. (a)
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(vii) Compton shift AA and Compton wavelength A, are equal if the angle of scattering is

(a) 6=0° (b) 6=90° (c) 6=180° (d) 6=360°
Ans. (b)
(viii) The relativistic energy momentum relation is

(a) p2 =FE’+ mgc2 (b) E*= p2 + mgc4

(c) E*= [7202 + m§c4 (d) p2 =FEc* + m§c4
Ans. (c)

(ix) According to Wien’s displacement law

A A
(a) A,,T=Constant (b) 7’” =Constant  (c) /lmT2 = constant (d) —’Z = Constant
T

Ans. (a)

(x) Volume of a unit cell in FCC structure is

16V2

(a) 167277 (b) 4N2r° ©) — (d) 227
r
[» = mean radius of the constituent atoms]
Ans. (a)
(xi) Polarization conclusively proves that light waves are
(a) longitudinal (b) progressive (c) stationary (d) transverse

Ans. (d)
(xii) An o-particle is 4 times heavier than proton. if a proton and a-particle are moving with the same
velocity, their de-Broglie wavelengths are given by

(@ A,=4, (b) 4,=44, ©) A,= Ay d) A,=A
Ans. (b)
(xiii) For larger value of damping constant k the resonance curve will be
(a) Unchanged (b) Flatter (c) Sharper (d) None of these
Ans. (b)
(xiv) In Ruby laser, the host crystal is
(a) ALO; (b) MnO, (c) CaCO, (d) ALSO,
Ans. (a)
(xv) If we measure the energy of a particle accurately then the uncertainty of the measurement of time
becomes
(a) 0 (b) © 1 @ 3

Ans. (b)
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Group B

Short-Answer-Type Questions

Answer any three of the following. 3x5=15

1.

Ans.

(a) Show that for a particle executing SHM, the average kinetic energy is half of the corresponding
maximum energy.
[Refer to Section 1.7 of Chapter 1]

(b) Calculate the time period of the liquid column of length 1 in a U-tube, if it is depressed in one
arm by x, d is the density of liquid and A is the cross-sectional area of each arm of the tube.

[Refer to Worked-out Examples, Example 1.6 of Chapter 1]  3+2
(a) What do you mean by population inversion?
[Refer to Section 7.6 of Chapter 7]
(b) Draw the energy level diagram in helium and neon laser transition.
[Refer to Section 7.10.2 of Chapter 7] 2+3
(a) Determine the atomic packing fraction of FCC lattice. [Refer to Section 10.5 of Chapter 10]

(b) X-rays of wavelength 1.54A are used for the calculation of the d,o plane of a cubic crystal, the
Bragg’s angle of 1% order reflection is 10°. What is the size of the unit cell? 243

(b) The interplanar distance of (100) is

dyoo = —
R+ + P
— a = A
B VP + 0%+ 0° ot
From Bragg’s equation
2dygpsin @ = ni
Here n=1,A=154A and 6=10°
So 2asin 10 =1x1.54
1.54 o
= =4.43A
of 4= 2510

So the size of the unit cell is 4.43 A

What is Einstein’s A and B coefficient? Relate spontaneous and stimulated emission probabilities and
hence find out the relation between field energy and A, B coefficient. 1+4

[Refer to Section 7.4.1 of Chapter 7]

. Define blackbody? Establish Wein’s distribution law and Stefan’s law from Plank’s blackbody

radiation law. [Refer to Section 9.2 and 9.2.6 of Chapter 9] 1+2+2
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Group C

Long-Answer-Type Questions

Answer any three of the following 3x15=45
1. (a) A cubical block of side L cm and density p is floating in water of density p, (o, > p). The block

is slightly depressed and released. Show that it will execute simple harmonic motion. Determine

the frequency and time period of oscillation. 3+1+1

(b) Write down the differences between standing and progressive wave and establish the differential
equation of a progressive wave. [Out of syllabus] 2+2

(c) Established the differential equation of SHM from energy conservation principle. An oscillator
executing SHM has zero displacement at time 7 = 0. If the displacements are 1 mm and 1.5mm at
instants 0.1 and 0.2 seconds, calculate the frequency and amplitude of oscillation.

[For first part Refer to Section 1.9 of Chapter 1. For second part see solution given below] 2+2

(d) A body of mass 10 g is acted upon by a restoring force/unit displacement of 10’ dyne/cm, a fric-
tional force/unit velocity of 4 x 10° dyne/cm, s~ and a driving force of 10° cos er dyne. Find the
value of maximum amplitude. 2

Ans. (a) If a cubical block of side L cm and density p is slightly depressed by x cm, then the mass of the
displaced liquid is (sz(,x). The block will experience an upward thrust of magnitude (pOngx).
This restoring force is proportional to displacement. Hence the motion become simple harmonic.
The equation of motion is
2
r p% =— pyL’ gx

or. & =_ Po8 X
’ at Lp
or. d_zx + p"gx -
’ ar - Lp
2
or, d—f + X =0
dt
Where o = Po8
Lp
. . 2 Lp
, T dT ==—4"—=2
or. 1me perio o) T g
and frequency V= 1_1 Po8
T 2rm\Lp
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(c) The displacement of a particle executing SHM is given by
X =a sin ¢

Now 0.1 =asin0.lo and 0.15=asin 0.20
or, 0.15 = 0.1 $in0:20
sin 0.1w
01 2 sin 0.1w cos 0.1m

’ sin 0.1®
or cos 0.10 =0.75
or ® =0.723 rad

o 0.723
F =—=—"""=1.15H

requency i ey SHz

Amplitude a=—21 0l _5i51cm.

TSin0.1m  sin41.4

(d) The driving force F cos o't = 10° cos @'t
F_10° _

F=10° dyne and acceleration f'= =10 - 10* dyne/gm
kK 4x10° >
H = = = 2 1
ere =~ axi0 - 2x 10
or, 2b =4 x 10757

Restoring force constant k = 107 dyne/cm

oL k107 s
Atresonancew—m—\/%— W—IO S

Now maximum amplitude

P 10°
M V0T 4x 1021072 + (2 x 10)?
=0.025 cm

2. (a) Two independent sources of light of same wavelength cannot produce interference. Justify.
[Refer to Section 4.9 of Chapter 4] 3
(b) Plot the intensity distribution curve of Young’s double-slit interference experiment and label it.
[Refer to Section 4.8 of Chapter 4] 2
(c) Can you measure the refractive index of a liquid by Newton’s ring experiment? Explain. 3
[Refer to Section 4.17.3 of Chapter 4]

(d) In Young’s experiment the width of the fringe obtained with light of wavelength 6000 A is
2.0 mm. What will be the fringe width if the entire apparatus is immersed in a liquid of refractive
index 1.33? 3
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(e) Newton’s ring experiment is performed with reflected light of wavelength 5700 A using a
plano-convex lens and a plane glass plate. What would be the observation when the glass plate is
moved away from the lens along the axis of the lens by 10~ m? 4

Ans. (d) The wavelength of light in water is given by

)‘air
A

‘water = ILL

. . . . D A‘air
The fringe width in air = a4 B

. . . DA( ater
The fringe width in water = ———= . ..

2d
So ﬁair = :uﬂwater =133 ﬂwater
:Bair 2
or ﬁwater = m = m =1.503 mm

The fringe width in the liquid (water) is 1.503 mm

(e) For reflected light the central spot is dark. The glass plate is moved away from the lens along the
axis of the lens by 10 m, then central dark spot will be shifted to nth dark ring.

We have 2t =nA

Lo2_ 2x10°
A 5700 10710

So central fringe will be 35" dark ring.

or,

3. (a) Distinguish between Fresnel and Fraunhofer class of diffraction.
[Refer to Section 5.2 of Chapter 5] 2

(b) Using the expression of single-slit diffraction intensity, show that the secondary maxima are
given by the equation tan o = d, where o = 7 e sin /A, symbols have their usual meaning

[Refer to Section 5.4 of Chapter 5]

(c) Draw and explain the intensity distribution curve in case of Fraunhofer single slit diffraction
phenomenon. [Refer to Section 5.4 of chapter 5] 4

(d) State and explain Rayleigh criterion of resolution. [Refer to Section 5.9 of chapter 5] 3

(e) An oil immersion microscope just resolves the rulings of a grating having 3900 lines/mm when
light of wavelength 400 nm is employed. Find the numerical aperture of the lens.

Ans. (e) The resolving power

RP = 1é22/1 where N, is numerical aperture of the lens
A

1.224

So, N, =
° A T2XRP.
Resolving power = grating element = L mm
3900
L 10°m

~ 3900
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and A =400 nm =400 x 10°m
-9
N, = 1.22 % ;100 x 10
—3
2 x 3900 x 10

_ 1.22 400 x 3900 x 10~ x 10

B 2

=0.95

4. (a) Calculate the distance between the adjacent parallel planes of the types [100], [110] and [111]
in an FCC lattice of lattice constant ‘a’. Check the validity of the statement “The most closely
packed planes are the most widely spaced”. 5

(b) Establish the relation between lattice constant and density of a material of a simple cubic
crystal. [Refer to Section 10.6 of Chapter 10] 5

(c) If an X-ray tube is subjected to a potential difference of 50 kV and the corresponding current is
8 mA, find:

(i) the number of electrons striking per second the target material
(ii) speed of electron
(iii)) minimum wavelength of the X-ray produced
(iv) cut-off wavelength of the X-ray produced

(v) energy of each stricking electron. 5
Ans. (a) We know thatd, = ——%
R+ I3+ P
So, digy =a,dyjp=-% and d;, =-= for SC.
100 =75 m=z

A FCC contains central atom to each face so,

dyyy = % which is parallel to d,,
Distance between d, and d,, is %.
So, digy =2=0.5
0 100 =75 a

di, =—2=035a

242
but dyy, = % =0.57a

Length of the occupied atoms

Packing factor = - —
g magnitude of the direction

. 2r 2r
So for 100; packing factor = — = =0.71
prckine @~y
. 2r
for 110, packing factor =
2a

=L=1
2242 r
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for 111, packing factor = 2r
a

2r
= =0.40
N3 2N2r

Which show that [110] plane is closely packed having least interplanar distance.

Charge flows per second

i) No. of elect =
(©) () No. of electrons Electronic charge

8§x 107

— _ 16
T 16x107° 2> 10

(i1) We know % mv* = eV

—19 3
or ’ =\J2§1v= 2x1.6x 10 ><30>< 10
9.1 x 10~

=13.26 x 10" m/s

1240 1240
(ii1) Apin = ——— = ———
eV 50x10°

(iv) Cut-off wavelength = 0.248 A

-34 8
) KE:thax=£= 6.62><1010 x3x10 _
Apin 0248 x 10'°x 1.6 x 10

=0.248A

Joule

=5.005 x 10* eV
=50.05 keV.

5. (a) What is holography? Why is it called a wavefront reconstruction?
[Refer to Sections 8.1 and 8.3 of Chapter 8] 4

(b) Explain with neat diagram, spontaneous emission, stimulated absorption and stimulated emis-
sion of radiation and deduce of expressions relating various Einstein’s coefficients.
[Refer to Sections 7.3 and 7.4 of Chapter 7] 6
(c) Write a short note on Nicol prism and its use as polarizer and analyser.
[Refer to Sections 6.12 of Chapter 6] 5
6. (a) What is the origin of modified and unmodified lines in Compton effect?
(b) Can you observe Compton effect if visible light is used instead of X-rays?
(c) Prove that the maximum recoil energy of a free electron of rest mass m, when struck by a
L 2myc® A
photon of wavelength A is givenby E,, ,, = 5
electron. A+ 224

(d) Show that in Compton scattering while the photon can be scattered at any angle between 0° to
180°, the recoil electron can only be emitted at angles between 0° and 90°

[See Section 9.4.1 & 9.4.4 of Chapter 9]  3+2+5+5

. Here A is the Compton wavelength of the
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Ans.

6.

Basic Engineering Physics

(a) In Compton effect the modified line is due to scattering of photon from free electron and an
appreciable wavelength shift occurs.
When photons of incident radiation collide with tightly bound electrons of the target atom, the
energy and momentum of the colliding photon are exchanged with the atom as a whole since the
mass of the target atom is much greater than of a free electron, the Compton shift in this case is
neglected and A’ practically coincides with A. This explains the presence of unmodified line.

(b) X-rays are very short wavelength (A = 1A) radiation. In place of X-rays if we use light in the
visible range (A = 4000A — 7000A), the wave length (A)) will not be perceptible. The Compton
shift

h
A?L:m—oc(l—cos 0)

For maximum shift @ = 180°, So

AL =0.0484 A
The percentage Compton shift for A = 4000A
iy

o x 100 = 0.001 %

So we see that Compton shift for the case of visible light is not significant. So it is impossible to
observe Compton effect with visible light.

(c) The kinetic energy of the recoil electron is given by

1 1
E = I’l — = h (— — _)
v=v)=hc 1T
The energy become maximum when A’ is maximum.
1 1
So E  =he|l=-
e ‘ ( A’ /,L,max )
Again A=A 0-cosp)+A
If o=, =X
So Aoax =24+ 4
1 1
So E  =hcl--
max %z 2&+1)
2hcA,
T AMA+2A)
Again Compton wavelength A, = mhc
or, h =m,Ac
2myAic?

or Emax =

24204,
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